
Vol.:(0123456789)1 3

Biomechanics and Modeling in Mechanobiology (2020) 19:2149–2162 
https://doi.org/10.1007/s10237-020-01329-0

ORIGINAL PAPER

A two‑layer elasto‑visco‑plastic rheological model for the material 
parameter identification of bone tissue

Andreas G. Reisinger1,2 · Martin Frank2 · Philipp J. Thurner2 · Dieter H. Pahr1,2

Received: 22 July 2019 / Accepted: 13 April 2020 / Published online: 6 May 2020 
© The Author(s) 2020, corrected publication 2020

Abstract
The ability to measure bone tissue material properties plays a major role in diagnosis of diseases and material modeling. 
Bone’s response to loading is complex and shows a viscous contribution to stiffness, yield and failure. It is also ductile and 
damaging and exhibits plastic hardening until failure. When performing mechanical tests on bone tissue, these constitutive 
effects are difficult to quantify, as only their combination is visible in resulting stress–strain data. In this study, a methodol-
ogy for the identification of stiffness, damping, yield stress and hardening coefficients of bone from a single cyclic tensile 
test is proposed. The method is based on a two-layer elasto-visco-plastic rheological model that is capable of reproducing 
the specimens’ pre- and postyield response. The model’s structure enables for capturing the viscously induced increase in 
stiffness, yield, and ultimate stress and for a direct computation of the loss tangent. Material parameters are obtained in an 
inverse approach by optimizing the model response to fit the experimental data. The proposed approach is demonstrated by 
identifying material properties of individual bone trabeculae that were tested under wet conditions. The mechanical tests 
were conducted according to an already published methodology for tensile experiments on single trabeculae. As a result, 
long-term and instantaneous Young’s moduli were obtained, which were on average 3.64 GPa and 5.61 GPa, respectively. 
The found yield stress of 16.89 MPa was lower than previous studies suggest, while the loss tangent of 0.04 is in good agree-
ment. In general, the two-layer model was able to reproduce the cyclic mechanical test data of single trabeculae with an 
root-mean-square error of 2.91 ± 1.77 MPa. The results show that inverse rheological modeling can be of great advantage 
when multiple constitutive contributions shall be quantified based on a single mechanical measurement.

Keywords Two-layer rheological model · Trabecular bone · Single trabecula · Plasticity · Viscosity · Material parameter 
identification · Optimization

1 Introduction

Mechanical testing is the gold standard for obtaining bone 
tissue material properties on the macroscopic and meso-
scopic length scale in experimental biomechanics. Material 
properties like stiffness and strength condense the material 
response to applied stress or strain into descriptive values. 
These values allow for easy comparison of sample groups 

(young vs. old or healthy vs. pathological, etc.) and are used 
as an input for constitutive material models.

Bone is a living tissue that is subjected to continuous 
adaptations. Its mechanical behavior is subjected to changes 
over time due to a remodeling process (Lanyon et al. 1982; 
Giorgio et al. 2016, 2017). Mechanical testing requires usu-
ally to extract bone samples from the living environment or 
utilizes donor tissue where remodeling and metabolic pro-
cesses have stopped. As such, mechanical testing generally 
provides only a still image of the continuous tissue altera-
tions that take place in the living organism.

As known for many decades, the material response of 
compact bone to a mechanical load includes multiple con-
stitutive effects. Aside its well-investigated linear elastic 
stiffness, bone tissue also shows a viscous contribution 
(McElhaney 1966). In the post-yield regime, bone is hard-
ening (Reilly et al. 1974), while stiffness is degrading due to 
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microstructural damage (Zioupos and Currey 1994; Garcia 
2006; Leng et al. 2009).

For separating these effects in mechanical tests, appropri-
ate loading protocols must be used. To quantify viscosity, 
tests at different strain rates, sinusoidal, relaxation, or creep 
tests have to be performed (Lakes et al. 1979; Sasaki et al. 
1993; Yamashita et al. 2001; Abdel-Wahab et al. 2011). The 
post-yield behavior is assessed with monotonic or cyclic 
loading till failure (Reilly and Burstein 1975; Carter et al. 
1981; Pattin et al. 1996). It is very demanding to identify 
elastic, inelastic and viscous contributions on a basis of a 
single specimen, as fundamentally different tests have to be 
done in succession. Care must be taken to keep the specimen 
perfectly intact from test to test. This means, that mechanical 
damage must be avoided and also biological degradation of 
the samples has to be inhibited. Moreover, testing different 
mechanical properties on multiple sets of samples requires 
statistical methods to compensate for the high inter-sample 
variation that is inherent for biological samples.

Mechanical properties are typically obtained by extract-
ing them directly from stress and strain data. Hereby, differ-
ent practical approaches exist. One method for determining 
the yield stress uses the last point of the linear region, with 
the linear region being found by the R2 method (Synek et al. 
2015; Frank et al. 2018). Other methods use the 0.2% strain 
limit (Keaveny et al. 1994a), or a line intersection method 
(Reilly and Burstein 1975). Those methods very likely pro-
duce different results, which is problematic when determin-
ing an intrinsic property of the material. Another problem 
that is often accepted for the sake of simplicity concerns the 
viscoelasticity of bone: As bone is viscoelastic, the young’s 
modulus and yield stress extracted from stress–strain curves 
are depending on the applied strain rate. In general, those 
quantities represent apparent properties and not intrinsic 
properties of the material.

Especially, on the submillimeter length scale of single bone 
structural units like trabeculae, the determination of material 
properties is still a challenge (Lucchinetti et al. 2000; Carretta 
et al. 2013a; Hernandez et al. 2005; Bini et al. 2002; Szabó 
et al. 2011a, b; Jungmann et al. 2011). When keeping bone 
samples out of the living environment, degradation and dehy-
dration processes start. To determine bone’s material proper-
ties close to an in vivo state, bone should be tested fresh and 
be kept wet. Recent advantages in testing procedures allow for 
testing individual trabeculae under wet (submerged) condi-
tions in tension (Frank et al. 2017, 2018). These delicate tests 
are laborious, have a considerable reject rate and are prone 
to noisy data so every successfully tested sample is precious. 
Viscous and post-yield material properties of single trabeculae 
are yet to be determined. As the individual strut represents 
the structural unit of trabecular bone, knowledge of its mate-
rial properties, that is not only stiffness but also viscous and 
post-yield properties is of great importance in the diagnosis 

of bone related diseases like osteoporosis and fracture risk 
estimation. Classically such material properties have not been 
directly measured (except in nanoindentation tests, e.g., Polly 
et al. 2012; Donnelly et al. 2006) but inferred from combined 
mechanical testing and finite element simulations (Mullins 
et al. 2009; Carnelli et al. 2010).

An alternative approach for determining a set of mate-
rial parameters from stress–strain data of a bone specimen is 
the method of parameter identification by optimization (also 
referred to as ’inverse method’). Hereby, the parameters of 
a suitable material model are optimized so that the model 
response coincides with the mechanical testing data (Muller 
and Hartmann 1989; Ichikawa and Ohkami 1992; Gelin and 
Ghouati 1995). The found set of parameters are then supposed 
to represent the material parameters of the tested sample. The 
underlying material model needs to contain formulations for 
the constitutive effects that should be identified. Also the test 
protocol must allow to assess the different constitutive effects 
included in the material model. At the same time, the number 
of material parameters must be kept low to ease the optimiza-
tion process and to avoid overfitting and ambiguous solutions.

In the case of uniaxial stress, simplified one dimensional 
rheological model representations are practical, where ele-
ments of certain constitutive effects are combined in series 
or parallel (Sperry 1964). This way of describing material 
behavior is commonly used in well known material models 
for bone on the tissue level, that incooporate combinations of 
viscous and plastic and damage contributions (Garcia 2006; 
Garcia et al. 2010; Schwiedrzik et al. 2014; Schwiedrzik 
2014; Natali et al. 2008; Fondrk et al. 1999).

In this study, we propose a two-layer elasto-visco-plastic 
rheological model for reproducing the uniaxial behavior of 
small length-scale bone samples. The two-layer model topol-
ogy is based on the work of Kichenin (1992) and extended 
by an exponential hardening law going back to Voce (1948). 
To the authors knowledge, the model configuration presented 
in this work, has not yet been applied to bone tissue. The 
two-layer model is used for the identification of stiffness, 
damping, yield stress and hardening coefficients of indi-
vidual human bone trabeculae, based on cyclic tensile test 
data obtained in wet conditions. Hereby the models’ mate-
rial parameters are optimized with a multi-start method so 
that the model response follows the experimentally obtained 
stress–strain data of an individual bone trabecula.

2  Methods

2.1  The two‑layer elasto‑visco‑plastic rheological 
model

Besides being linear elastic, bone’s response to a mechani-
cal load includes different energy dissipation mechanisms. 
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Beyond the yield point, bone is exhibiting plastic flow (Reilly 
et al. 1974) and damage (Zioupos and Currey 1994). In addi-
tion, its mechanical behavior is depending on strain rate and 
thus contains a viscous contribution (McElhaney 1966).

The two-layer rheological model described in the following, 
aims to capture the plastic and viscous behavior of bone tis-
sue in order to model the mechanical response of single bone 
trabeculae under cyclic tensile load. (The constitutive effect 
of damage is neglected in this work, which will be justified in 
hindsight in Sec. 4.)

The two-layer rheological model consists of a Prandtl 
model and a Maxwell model arranged as two parallel layers, 
Fig. 1. The total model stress �mod is the sum of the stress �pr 
in the Prandtl layer and the stress �mx in the Maxwell layer.

and in terms of stress rates,

Prandtl Layer The Prandtl layer itself is built from an 
elastic spring with elastic modulus Epr in series with a plastic 
slider (Sperry 1964; Grzesikiewicz and Zbiciak 2012). The 
total strain � of the two-layer model splits here into an elastic 
part and in a plastic part �p resulting in the elastic relationship

For the plastic slider, a yield condition f is defined whose 
yield limit is expanding exponentially in the amount of 
equivalent plastic strain � , based on Voce (1948).

(1)�mod = �pr + �mx

(2)�̇�mod = �̇�pr + �̇�mx

(3)�pr = Epr(� − �p)

(4)f (�pr, �) = |�pr| − [�Y + (�u − �Y)(1 − exp(−�p))]

with exp(x) = ex . In this approach, the stress is converging 
against an ultimate stress �u with increasing � . The onset of 
plastic deformation starts at the yield stress �Y of the mate-
rial. The exponent p is shaping the stress evolution between 
�Y and �u , Fig. 2.

The basic idea is that plastic flow in the sense of |�̇�p| > 0 
occurs only if a stress state �pr reaches the current yield limit 
where f = 0 . Stress states �pr for which f < 0 are elastic and 
no change in �p takes place and thus �̇�p = 0.

The evolutionary equation for � is simply

The flow rule is defined as

with the function � being the slip rate.
Stress �pr and � are restricted by the Kuhn–Tucker com-

plementary conditions (Simo 1998): First, �pr needs to be 
admissible and reside within or on (but not outside) the yield 
surface. In addition, plastic flow must go into the direction 
of the applied stress, which implies � to be nonnegative. 
Consequently,

Second, it is required that plastic flow occurs only for stress 
states residing on the yield surface and that stress states 
which reside within the yield surface do not lead to plastic 
flow.

For �̇�p being nonzero, the stress point must persist on the 
yield surface so that ḟ (𝜎pr, 𝛼) = 0 for 𝛾 > 0 (Simo 1998). 
This adds the persistency (or consistency) condition

(5)�̇� = |�̇�p|

(6)�̇�p = 𝛾 sign(𝜎pr)

(7)f (�pr, �) ≤ 0 and � ≥ 0

(8)�f (�pr, �) = 0

(9)𝛾 ḟ (𝜎pr, 𝛼) = 0 (if f (𝜎pr, 𝛼) = 0)

Fig. 1  Two-layer rheological model, consisting of a Prandtl layer 
and a Maxwell layer in parallel with the associated layer stresses �pr 
and �mx , respectively. The strain in the plastic slider is denoted as �p 
and the strain in the damper as �v . Epr , Emx are the elastic moduli of 
the springs, �Y , �u are yield- and ultimate stress, p is the exponential 
hardening exponent and � the damping parameter. The model’s global 
state is described by the global stress �mod and global strain �

Fig. 2  Evolution of the elastic domain of the Prandtl layer in stress 
space, depending on the equivalent plastic strain � . Drawn for differ-
ent values of the exponent p 
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From the consistency condition (Eq. 9), it follows that � can 
be nonzero only if

From Eq. 10 and substituting Eqs. 3, 4, 5, 6 it is possible to 
solve for the slip rate � in case of plastic flow (f (�pr, �) = 0) . 
Together with the Kuhn–Tucker condition (Eq.  8), one 
obtains the expressions for the slip rate

Maxwell layer The Maxwell layer is built from an elastic 
spring with elastic modulus Emx in series with a viscous 
damper with coefficient of viscosity � . Its well-known gov-
erning equation takes the form (Marques and Creus 2012)

The damper strain �v is obtained by

Time integration For a strain-driven process, � (and thus 
�̇� ) is a known time signal over time t. Then the problem 
to be solved consists of determining the stress response in 
the Prandtl layer �pr and the Maxwell layer �mx due to � 
and adding them up to �mod according to Eq. 1. Due to the 
topology of the model, �pr and �mx are decoupled and can 
be determined independently. Time integration strategies for 
the Prandtl layer are described in the “Appendix”. The Max-
well Layer can be solved in time domain by standard ODE 
solvers or by integrating the hereditary integral (Gutierrez-
Lemini 2014).

DMA properties For comparison of the pure viscoelastic 
properties of the two-layer model with dynamic mechanical 
analysis (DMA) data from other studies, its storage modulus 
E′ , loss modulus E′′ and loss tangent tan(�) are derived.

For a harmonic excitation, the two-layer elasto-visco-
plastic model from Fig. 1 behaves like a Zener model if 
operated in the elastic range. The governing equation of the 
viscoelastic Zener model is Marques and Creus (2012)

Applying the Laplace transform L() transfers Eq. 14 from 
time domain into frequency domain, which gives

with the constants

(10)ḟ =
𝜕f

𝜕𝜎pr
�̇�pr +

𝜕f

𝜕𝛼
�̇� = 0

(11)𝛾 =

{
sign(𝜎pr)

Epr�̇�

Epr+(𝜎u−𝜎Y)p exp(−p𝛼)
, if f (𝜎pr, 𝛼) = 0

0, if f (𝜎pr, 𝛼) < 0

(12)�̇�mx +
Emx

𝜂
𝜎mx = Emx�̇�

(13)�v = � −
�mx

Emx

(14)𝜎 +
𝜂

Emx

�̇� = Epr 𝜀 +
𝜂(Epr + Emx)

Emx

�̇�

(15)� + as� = b� + cs�

and s being the complex frequency parameter. � and � are 
the Laplace-transformed functions of stress and strain, 
respectively. For a harmonic strain excitation, the transfer 
function is obtained by

The frequency response or gain of the system is obtained by 
evaluating H(s) at i� , where � is the angular frequency and 
i =

√
−1 . In the context of DMA, the frequency response is 

equivalent to the complex modulus E∗

From Eq. 18, the storage modulus E′ and loss modulus E′′ 
can be easily extracted for a given angular frequency � . The 
loss tangent (or loss factor) is the tangent of the phase shift 
� between strain excitation and stress response and given by

Long-term and instantaneous Young’s Modulus When load-
ing the two-layer model quasi-statically the Maxwell layer 
has no stress contribution and stays fully relaxed ( �mx = 0 ). 
Similarly, holding a certain deformation state until the vis-
cous stress contribution is decayed also results in �mx = 0 . 
In these two cases, the model stiffness is solely driven by 
the elastic spring in the Prandtl layer. Epr can be therefore 
referred to as the quasi-static or long term Young’s modulus.

In contrast, when applying a step load on the model in 
the form of a Heaviside step function, the apparent model 
stiffness is the sum Epr + Emx , which is therefore referred to 
as the instantaneous Young’s modulus.

So Epr and Epr + Emx make up the lower and the upper 
bound in between any apparent Young’s modulus obtained 
at a finite strain rate must reside.

2.2  Tensile testing of individual trabeculae

To validate the two-layer elasto-visco-plastic rheological 
model, microtensile tests on individual bone trabeculae were 
conducted. The reason for testing bone microstructural units 
instead of macroscopic bone samples lies in the reduced 
contribution of damage in the deformation mechanism 

(16)

a =
�

Emx

b = Epr

c =
�(Epr + Emx)

Emx

(17)H(s) =
output

input
=

�

�
=

b + c s

1 + a s

(18)
H(i�) = E∗(�) = E�(�) + iE��(�) =

=
ac�2 + b

a2�2 + 1
+ i

c� − ab�

a2�2 + 1

(19)tan(�) =
E��

E�
=

c� − ab�

ac�2 + b
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(Schwiedrzik et al. 2014) and largely also in the exclusion 
of structural effects present in mechanical tests conducted 
on larger trabecular bone samples.

Sample preparation The usage of human tissue in this 
study was approved by the Southampton and SouthWest 
Hampshire Research Ethics Committee, ethic votes LREC 
194/99/1, 210/01, 12/SC/0325. 28 individual trabeculae 
were dissected from the central femoral head of a 61 year 
old female donor. First, the central femoral head was cut into 
3 slices, in the frontal plane, of 2 mm thickness with a band-
saw (300 CP – Diamond Bandsaw, Exakt, Germany). Bone 
marrow was removed from these slices with a dental water 
jet (OralB, Germany). Sequentially, a previously established 
dissection and processing protocol for preparation of the 
individual trabeculae was used (Frank et al. 2018).

This protocol aims to process several trabeculae in paral-
lel and to obtain wet samples for testing. In brief, trabeculae 
were cut under a microscope (SZX10, Olympus Corporation, 
Japan) with a hand held miller (Dremel 400, Dremel Europe, 
the Netherlands). Only samples that had an aspect ratio of at 
least 3 were selected. After cutting, the geometry of every 
trabeculae was obtained with a calibrated �CT100 (Scanco 
Medical AG, Switzerland) at 70 kVp, 114 � A, integration 
time 200 ms, average data 4, 1500 projections, nominal reso-
lution of 3.3 μm and aluminum filter 0.5 mm. Then, the ends 
of the trabeculae (and the adjacent bone) were embedded in 
epoxy glue (UHU Endfest 300, UHU, Germany) for at least 
16 h in custom-made silicone chambers, in order to mount 
the samples properly into the tensile test device, Fig. 3a, b). 
After that, a speckle pattern was applied with a water-soluble 
spray paint (RAL9005, Dupli-Color, Motip dupli, Germany) 
to enable optical strain recording. Then, samples were rehy-
drated in Hank’s balanced saline solution, HBSS (pH = 7.4) 
for at least 2h at room temperature before testing. Figure 3c 
shows a representative sample with the applied speckle pat-
tern, recorded with the video camera during tensile testing.

Mechanical testing Individual samples were mounted to a 
servo-electric load frame (SELmini-001, Thelkin AG, Swit-
zerland), equipped with a custom made tensile test set-up (as 
presented in Frank et al. 2018). The set-up (see Fig. 3a) was 
modified to allow a better sample alignment. In the current 
configuration, the sample can be fixated with two clamps 
to prevent movement out of the frontal plane. The whole 
setup is placed in a water bath, which is filled with HBSS 
to mimic a physiologic environment. Strain was recorded 
with a camera (UI-3250CP-M-GL, IDS GmbH, Germany), 
at 10 Hz which was equipped with a KITO-D zoom objec-
tive (mounted on a KITO-ADP-0.5 adapter, Kitotec GmbH, 
Germany). Strain determination is performed with the digi-
tal image correlation (DIC) package trackpy (Allan et al. 
2016), which detects several points at the top and at the 
bottom of the trabecula. These points are tracked over time 
and the length between the dots at the top and the bottom 

is determined. The change in length related to the original 
length yields the engineering strain � of the sample, Fig. 3c. 
A 10-N load cell (HBM-S2M, Germany, relative error 0.02% 
of full scale output) was used to measure the experimen-
tal force. The obtained mean particle positions from strain 
tracking at the top and the bottom of the trabeculae were 
used as a reference for cropping the representative volume, 
Fig. 3c. A representative cross-sectional area Amean was then 
determined by dividing the obtained volume of each trabecu-
lae (from the �CT, as presented in Frank et al. (2017)) by 
its length. With this, engineering stress was calculated by 
�exp = F∕Amean , where F is the force signal.

Loading profile A preload of ∼ 0.05 N was applied and 
held for 30 s to align parts and close gaps within the clamps. 
The main loading profile was displacement-controlled and 
attempted to accentuate the viscous and plastic response of 
the sample, Fig. 4. It consisted of two parts, which both 
were performed at a displacement rate of 0.01 mm/s. In the 
first part, it was attempted to make the viscous force relaxa-
tion visible. Here, the sample was loaded up to 0.025 mm 
(machine displacement) and held at this position for 60 s. 
Then, the sample was unloaded to position 0 mm and held 
for 60 s. In the second part, the sample was always elongated 
by 0.05 mm, compared to the previous step and held for 10 s. 
Then, it was unloaded by 0.025 mm and held for 10 s. This 
procedure of loading, holding, unloading, holding continued 
until the sample was fractured. The obtained measurement 
data was resampled to 1Hz, to reduce the computational 
expense for solving the model.

The samples fractured at different points in time. To 
unify the data, the time series were cut off at the end of the 
fourth loading cycle. Samples that fractured before that, were 
excluded from the study. As the time series is used as an input 
for the two-layer model, the preload had to be excluded from 
the data by shifting load and displacement to be 0.0 at t = 0 . 

(a)

(c)(b)
(d)

Fig. 3  a Tensile test setup. b Embedded tensile sample. The bone tra-
becula resides between the two stained (black) epoxy strips. c Tra-
becula, with applied speckle pattern and tracking points at the top and 
bottom during tensile testing. Horizontal lines indicate the mean ver-
tical position of the points and are used for strain calculation. d The 
representative cross section Amean of each sample, determined from 
� CT scans, is used for stress calculation
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That was necessary to avoid an step load as model input, that 
would lead to an unrealistic initial viscous stress response. 
After optimization, �Y and �u were then corrected for the pre-
stress originating from the applied preload.

2.3  Material parameter identification

A set of material parameters q = [Epr, �Y, �u, p,Emx, �] shall 
be found, for which the stress response �mod of the two-layer 
model fits best to the measured stress response �exp of a tra-
becular sample.

As �mod is calculated for the time discretization of �exp , both 
time series are synchronized. The goodness of their fit can be 
expressed in terms of the weighted root-mean-square error 
( RMSEw ) evaluated at the time points ti of the time series (with 
i = 1...n and n being the total number of time points).

Here, �mod denotes the two-layer model stress response, 
evaluated for a certain set of material parameters q and the 
strain signal � from the tensile test of a sample. The weight-
ing factor wi enables to emphasize certain time points in 
the optimization process. It was found in pretests, that the 
trivial approach with wi = 1.0 at all points in time leads to 
a higher rate of odd or indistinct optimization results. The 
optimization process is more robust, when wi = 1.0 at the 
points highlighted in Fig. 4 and wi = 0.0 otherwise.

When setting wi = 1.0 for all ti , the weighted RMSE simpli-
fies to the standard RMSE (Chai and Draxler 2014; Crawley 
2007), that can be interpreted as the bandwidth around the �exp 
signal in which 68% of the �mod signal resides.

(20)RMSEw(q) =

√√√√1

n

n∑
i=1

wi(�mod(q, �, ti) − �exp(ti))
2

(21)RMSE(q) = RMSEw(q) | wi = 1.0 ∀ i

Equation 20 is taken as the objective function for the optimi-
zation task, which consists of choosing q so that

The optimization task from Eq. 22 is addressed with a 
downhill simplex algorithm (Nelder and Mead 1965). This 
method relies on the selection of a suitable start parameter 
set q , at which the optimization is initialized. As the shape 
of the objective function Eq. 20 is unknown, the selection 
of the initial q is difficult and potentially crucial at the same 
time. It was found in pretests, that the objective function 
appears to have multiple local minima, which makes the 
solution returned by the algorithm highly dependent on the 
choice of this initial parameter set. To mitigate that prob-
lem, the optimization task was performed using a multi-start 
method. In particular, each material parameter qi in q was 
assigned a meaningful range qiL ≤ qi ≤ qiR , based on results 
from Frank et al. (2018). That range was spanning one or 
two orders of magnitude and expected to contain (or to be 
close by) the global minimum of that parameter, Table 1. 
By subdividing each range by four points, 46 = 4096 points 
in parameter space of q were created and used as starting 
points for optimization. As a result, 4096 optimization solu-
tions were obtained, from which q∗ , the solution with the 
minimum RMSEw value was selected, and considered as a 
quasi ’global’ solution, Fig. 5. The standard RMSE value 
according to Eq. 21 was then calculated at q∗ to ease result 
interpretation.

2.4  Apparent Young’s Modulus

For the purpose of comparison with the modeling approach, 
the Young’s modulus of each sample is also evaluated in 
a classical way. Therefore linear regression is performed 
on the first loading cycle of the experimental stress–strain 
data. Starting from a few data points, the data window is 
enlarged while evaluating the coefficient of determination 
R2 (Frank et al. 2018). The specific data window for which 
the R2 reaches a maximum is taken as the linear region of 
the stress–strain data. The apparent Young’s modulus Eapp is 
calculated as the slope of the linear regression in this linear 

(22)RMSEw(q) → min with {q ∈ ℝ | q > 0}

Fig. 4  Loading profile of the trabecular sample with controlled 
machine displacement over time. The white circles indicate points at 
which the RMSE objective function is weighted with weighting factor 
wi = 1.0 . wi = 0.0 otherwise. The apparent Young’s modulus Eapp is 
extracted from the stress–strain data of the first loading ramp

Table 1  Table containing the 
material parameter ranges used 
for the multi-start optimization 
method

qi qiL qiR Unit

Epr 500 5000 MPa
�Y 10 100 MPa
�u �Y+10 �Y+100 MPa
p 10 1000 1
Emx 500 5000 MPa
� 2000 20000 MPa s
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region. As being an apparent property, it incorporates vis-
cous and/or other effects.

3  Results

In total, 13 out of 28 samples had to be removed from the 
study due to difficulties during testing (7 cases), early frac-
tures (2 cases), and discrepancies between strain and stress 
signals that became visible during data processing (4 cases). 
The remaining n = 15 sets of tensile test data were further 
processed. Due to varying trabecular sizes and shapes, 
the actual strain and strain rate of the measurement length 
(Fig. 3d) were fluctuating among the samples, despite the 
applied displacement profile was identical. Figure 6 shows 
the strain of the measurement length averaged over all sam-
ples and its bandwidth. The average strain was obtained from 
averaging the strain values of all samples at each point in 
time. The average strain rate in the first loading ramp was 
found to be �̇�(t = 2s)=0.00196 ± 0.0018 1/s.

The rheological model could be optimized for the 
tensile test data sets with an average RMSE value of 
2.91 ± 1.77MPa. For each sample around 3.5 ∗ 106 time 
series were calculated in course of the optimization 
procedure.

For each sample, a set of material parameters q∗ was iden-
tified. The average and standard deviation of all sets of mate-
rial parameters q∗ are reported in Table 2 (a). The listed yield 
stress �Y and ultimate stress �u are already corrected for the 
prestress in each sample. The prestress originating from the 
applied preload was on average 5.52 ± 3.35 MPa.

The fit of the exponential hardening law to the experi-
mental data resulted in an average ultimate stress of 
�u = 63.99 ± 25.13 MPa. Per definition, �u is the maximum 
stress level that can be reached in the Prandtl Layer by 

ongoing plastic deformation. This value is not to be mistaken 
as the failure stress of the samples. In the experiments, the 
samples actually failed on average at an apparent maximum 
stress level of 70.43 ± 26.5MPa. This observed failure stress 
includes also a viscous stress contribution, whereas �u does 
not.

The average apparent Young’s modulus Eapp was found 
to be higher than the modeling results, but stay in the same 
order of magnitude, Table 2 (b).

Figure 7 displays the tensile behavior of a selected sample 
and the according model response with the optimized set of 
material parameters q∗ and the apparent stiffness Eapp . The 
RMSE of this sample is 1.18 MPa, corresponding to a good 
fit within the sample population.

For the same sample, the sensitivity of the objective func-
tion value RMSEw (Eq. 20) to variations of the material 
parameters was investigated. Therefore the objective func-
tion value was evaluated while varying one material param-
eter qi at a time, Fig. 8. The variation was performed by 
scaling the material parameter of interest while leaving the 
others at their optimum values. It is shown that for a specific 
relative change, the objective function is more sensitive to 
variations in Epr and �Y and the least sensitive to � and Emx.

4  Discussion

In this study, a procedure for identifying elasto-visco-plastic 
material parameters of bone tissue from tensile test data is 
proposed. Therefore a two-layer rheological model is solved 
in the time domain with the experiment’s strain data as an 
input. The material parameters of the model are optimized 
so that the model’s stress response fits best to the experi-
mental stress response. The resulting set of optimized mate-
rial parameters are supposed to pinpoint the actual material 

Fig. 5  Multi-start method, exemplary shown for a single material 
parameter qi . The optimization is started at 4 equally spaced points 
for which three separate local minimums in the objective function 
RMSEw are found. Small arrows indicate the optimization process of 
the downhill simplex algorithm. The qi value at the lowest minimum 
is selected as the ’global’ solution q∗

i

Fig. 6  Average from all 15 strain signals obtained in the tensile tests 
(blue line). The shaded area represents the bandwidth of the meas-
ured strains, enclosed by the minimum (and maximum) strain value 
for each time point. The slope of the dotted line is the average strain 
rate of the first loading ramp
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properties of the sample. This procedure is demonstrated for 
tensile tests of individual bone trabeculae.

The difficulty of testing tiny trabecular specimens lead 
to a considerable reject rate of samples of almost 40%. This 
rather large number is caused mainly by sample preparation 
issues (7 out of 28 samples), similar as previously reported 
(Frank et al. 2018). In the current study, more samples had 
to be discarded due to discrepancies between the stress and 
strain signal, which might be caused by the rather long hold-
ing periods in the test protocol, combined with tiny sam-
pling rate deviations of the camera. Two samples fractured 
already in the second loading cycle and were not usable for 
the rheological model, although the test itself worked prop-
erly. Taken together, sample preparation is the most critical 
part and will unfortunately always cause a rather high reject 
rate, as also reported in other studies (Carretta et al. 2013a; 
Bini et al. 2002; Hernandez et al. 2005).

Young’s Modulus The model could reproduce the experi-
mental data with a good average RMSE value of 2.91 ± 1.77 
MPa. The identified Young’s modulus bounds for wet single 
human trabeculae are Epr = 3.64GPa for the long term stiff-
ness and Epr + Emx = 5.61GPa for the instantaneous stiff-
ness, Table 2.

When performing mechanical tests, strain is applied nei-
ther pure quasi statically nor instantaneously but at a finite 
strain rate. In theory, any apparent stiffness Eapp extracted 
from stress–strain data, obtained in such a way, should 
always reside within the bounds Epr < Eapp < Epr + Emx . 
Various methodologies for obtaining Eapp exist though, such 
as the R2 - method described in this work or the maximum 
slope method as used in, e.g., Mirzaali et al. (2016). This 
methodological variation, together with potential signal 
noise, toe regions, etc. lead to uncertainties in determining 
Eapp . In practice Eapp might therefore fall outside the bounds. 
This happened in this work, where - on average - Eapp is 
larger than Epr + Emx , Table 2.

In the context of other studies on micro-tensile tests of 
single trabeculae, this study’s Epr and Epr + Emx appear to 
be within the wide range of reported values. Frank et al. 
(2017, 2018) tested wet bovine trabeculae in two studies 
in tension and reported an average Young’s modulus of 8.2 
GPa and 6.5 GPa, respectively. Other works were performed 
dry, resulting in significantly higher stiffness values of 10.4 
GPa for human trabeculae (Rho et al. 1993), 11.84 GPa for a 
young and 15.56 GPa for an old bovine source (Carretta et al. 
2013a), and around 16.5 GPa for human femoral trabeculae 
(Carretta et al. 2013b). The current results are in good agree-
ment with the work of Choi et al. (1990), who tested moist 
cortical- and trabecular specimens and found their Young’s 
modulus to be around 4.59 GPa and 5.44 GPa, respectively. 
Likewise, Szabó et al. (2011b) reported 5.2 ± 3.1 GPa from 
three point bending tests on fully hydrated bovine trabecu-
lae. Bini et al. (2002) obtained values of 1.41–1.89 GPa on 
human femoral struts which is surprisingly low for dry con-
ditions. Ryan and Williams (1989) tested bovine trabeculae 
and also found them to be compliant with 0.4–1.8 GPa.

As shown in Fig. 8 for a specific sample, the instantane-
ous bone stiffness is tentatively subjected to a higher uncer-
tainty as the optimization process is considered less sensi-
tive to Emx . Interestingly, even high variations of Emx would 
impose almost no change in the model’s goodness of fit. This 
could be attributed to the relatively low stress contribution of 
the Maxwell layer to the total model stress, Fig. 7b.

Yield stress The yield stress �Y of a material is defined as 
the stress level at which the first plastic deformation occurs 
when a sample is loaded quasi-statically and monotonically. 
In theory this is the last point of the initial linear region in 
stress–strain data. There are multiple approaches for deter-
mining the apparent yield stress of bone from mechanical 
testing data. Sometimes the linear region is being deter-
mined by the R2 method, see also Sec. 2.4, with its last point 
taken as the yield stress. Other methods use the 0.2% strain 

Table 2  (a) Average material parameters and their standard devia-
tion from n = 15 tensile trabecular samples, identified by fitting the 
two-layer rheological model to mechanical test data. ( �Y and �u are 

corrected for the preload.) (b) Apparent Young’s modulus as directly 
extracted from stress–strain curves

(a) Avg.  ±  SD Unit

RMSE 2.91  ±  1.77 MPa
Epr 3.64  ±  2.02 GPa
�Y 16.89  ±  12.67 MPa
�u 63.99  ±  25.13 MPa
p 172.2  ±  114.0 1
Emx 1.97  ±  0.99 GPa
� 3.71  ±  3.51 GPa s
tan(�) 0.0396  ±  0.0285 1

 (b) Avg.  ±  SD Unit

Eapp 6.32  ±  4.77 GPa
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limit (Keaveny et al. 1994a), or a line intersection method 
(Reilly and Burstein 1975), that likely would produce differ-
ent results. The mentioned methods are also hard to apply, if 
the loading protocol is non-monotonic.

In addition to the methodological ambiguities, mechani-
cal tests are in general not really quasi-static. The resulting 

force-displacement data includes necessarily a decep-
tive viscous force contribution depending on the applied 
strain rate. The yield stress �Y obtained from the two-layer 
model is excluding viscous effects and represents a pure 
quasi-static quantity. From the theoretical point of view, 
an apparent yield point, extracted directly from force–dis-
placement data, is therefore in general higher than the pure 
�Y of the two-layer model.

In this study, the apparent yield stress was not 
extracted from the stress strain curve, as the first load-
ing ramp was too low for some samples to allow for a 
robust determination. However, the found �Y in this work 
of 16.89 ± 12.67MPa is substantially lower than values 
from other studies, where yield stresses of 60–80 MPa 
were found in wet micro-tensile tests on bovine trabecu-
lae, extracted by curve fitting (Frank et al. 2017, 2018). 
Carretta et al. (2013a) reported even higher yield stresses 
between 78 MPa and 115 MPa as measured on dry bovine 
trabeculae and in Carretta et al. (2013b). 115–130 MPa 
for dry human femoral trabeculae were obtained. Tensile 
tests on wet compact bone specimens provide a similar 
yield limit of 122.3 MPa (Currey 2004). To conclude, the 
obtained yield stresses of the present study appear to be 
low in the context of other literature. Comparability is cur-
rently limited though, as no study exists, that reports the 
yield stress of single wet (submerged) human trabeculae 
measured really quasi-statically.

Viscosity The two-layer model allows for a direct evalua-
tion of the loss tangent tan(�) based on Epr,Emx, � and a cho-
sen frequency. The loss tangent is proportional to the ratio 
of dissipated to stored energy for harmonic cyclic loading. 
Samples were obtained from a human femur, so the cyclic 
loading of walking was considered physiologically relevant. 
For the sake of simplicity, a walking frequency of 1Hz was 
assumed and chosen for evaluating tan(�) . Hereby an average 
tan(�) = 0.04 ± 0.029 was obtained.

(a)

(b)

(c)

Fig. 7  Selected tensile behavior of a single trabecular sample (id: 
A2439_T15) as measured experimentally (magenta) vs. simulated 
by the two-layer model with optimized material parameters (blue). 
The RMSE value for this specific sample is 1.18 MPa. a Strain pro-
file � that was prescribed in the experiments and used as input sig-
nal for the two-layer model, plastic strain in the two-layer model �p 
(which is equal to the equivalent plastic strain � in this special case 
of monotonous positive plastic deformation), viscous strain �v . b 
Stress response as measured experimentally �exp and as calculated by 
the two-layer model �mod . The stress in the Prandtl layer �pr , Maxwell 
layer �mx and the evolution of the elastic range is shown. c Stress–
strain relationship comparing experiments and two-layer model and 
the identified material parameters for this sample

Fig. 8  Sensitivity of the objective function RMSEw to variations in 
the material parameters, shown exemplary for the sample of Fig.  7. 
Each line shows the effect of scaling one specific material parameter, 
while the others were left constant at their optimum q∗

i
 ( ̂= scaling fac-

tor of 1.0)
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To the authors knowledge, no study investigated this 
property on wet single trabeculae. One lengthscale above, at 
the level of compact bone, Garner et al. (2000) did torsional 
and bending tests on human specimens in wet conditions 
and obtained values between 0.01 and 0.03 for tan(�) at 1 
Hz. Similar values of 0.013 for torsional tests on wet bovine 
bone at 1 Hz are reported by Lakes et al. (1979). Yamashita 
et al. (2001) obtained an result of tan(�) = 0.042 ± 0.006 
from DMA on wet, millimeter sized, human femoral cortical 
bone samples at 1 Hz. In summary, the loss tangent obtained 
in this study on individual trabeculae is in good accordance 
with experiments performed on compact bone.

Model performance The challenge of parameter identifi-
cation increases with the number of parameters to optimize. 
Some elasto-visco-plastic rheological models for bone exist 
that are more complex than the proposed two-layer model, 
e.g., Peric and Dettmer (2003), Schwiedrzik et al. (2014); 
Schwiedrzik (2014). Due to a larger parameter count, they 
allow for more flexibility. However, having a low number 
of parameters is crucial to minimize computational expense 
and finding as unique solutions as possible. This leads to the 
question if the proposed two-layer topology of Fig. 1 is the 
simplest form to reflect the trabecular tensile characteristics 
or if it could be simplified further while keeping the good-
ness of fit. This was addressed qualitatively by switching of 
constitutive elements of the two-layer model in alternation 
and investigating the changes in its response. Figure 9 shows 
that exemplary for the sample of Fig. 7 (id: A2439_T15). 
It can be seen that locking plastic deformation leads to an 
overestimation of stress. On the other hand, using perfect 
plasticity instead of exponential hardening misses the grad-
ual stress increase for each loading cycle. When omitting 
the viscous layer, the hysteresis loop that occurs in each 
loading cycle cannot be modeled. As displayed for another 
selected sample (id: A2439_T21) in Fig. 10, switching from 
exponential hardening to linear hardening downgrades the 
model fit. The latter effect varies among the samples and is 
stronger for higher post-yield strains.

Despite the few rheological elements in the model, a good 
fit could be reached for the presented difficult microtensile 
tests. It is therefore concluded that the proposed two-layer 
topology is sufficiently complex—but not more—to repro-
duce the elasto-visco-plastic mechanical response of bone 
trabeculae.

The used cyclic loading protocol attempted to make the 
constitutive effects of elasticity, plasticity, and viscosity 
visible and to ease the optimization procedure. Preliminary 
optimization trials with an unweighted objective RMSE 
function, where the weight factors are wi = 1.0 at all data 
points, lead often to a bad fit. Although the obtained RMSE 
values were similarly low as in Table 2, the model response 
was often not reproducing the characteristic corner points 
of the loading cycles but showed an indistinct and diffuse 

profile. The implementation of the weighted RMSEw where 
wi = 1.0 at the corners and wi = 0.0 otherwise, forced the 
model response to cover the corner points of the loading 
cycles and improved the optimization results significantly. 
On the downside, this indicates that the material parameter 
identification results are depending on a proper selection of 
the objective function and are not robust in this regard.

The two-layer model disregards the constitutive effect of 
damage in the sense of stiffness reduction induced by plastic 
deformation (Burr et al. 1998; Garcia et al. 2010). Compact 
bone on the microscale appears to show hardly any damage 
(Schwiedrzik et al. 20140, whereas on the tissue level of 
trabecular bone, damage evolves with the amount of frac-
tured trabeculae (Keaveny et al. 1994b; Zysset and Curnier 
1996). At the lengthscale of single trabeculae, damage is 
associated with microcracks whose size and density were 
shown to increase with plastic strain (Jungmann et al. 2011; 
Frank et al. 2018). The damaged zones are thereby observed 
as whitening. Ridha and Thurner (2013) quantified the dam-
age factor and -exponent for single trabeculae in 3 point 

(a) (b) (c)

Fig. 9  Three cases, showing the consequences of switching off con-
stitutive effects of the two-layer model, each based on the model 
response shown in Fig. 7c. a No plasticity ( �Y = ∞ ), b no hardening 
( �u = �Y ) and c omitted Maxwell layer ( Emx = 0 , � = 0)

(a) (b)

Fig. 10  Consequences of switching from exponential hardening (a) to 
linear hardening (b), demonstrated for the model response for sample 
id: A2439_T21. The linear hardening coefficient was also optimized 
to fit best. The RMSE value increases from 2.17 MPa (a) to 5.67 MPa 
(b)
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bending conditions. Applying these damage parameters on 
the average plastic strains observed in this study, the reduc-
tion in stiffness would be below 1%. Therefore it seems justi-
fied to neglect the effect of damage in the current work. For 
the same reason, the two-layer model should be suitable to 
be applied on other sufficiently small bone specimens like 
micro pillars or millimeter sized compact bone samples.

Strain-rate-dependent apparent properties Multiple stud-
ies showed that the apparent Young’s modulus of bone as 
well as the levels of apparent yield stress and apparent ulti-
mate stress are positively correlated with strain rate (McEl-
haney 1966; Currey 1975; Hansen et al. 2008; Johnson et al. 
2010). The two-layer topology is in general able to capture 
that behavior: In Fig. 11 the two-layer model configured 
with the material parameters from the demonstration sample 
of Fig. 7 is subjected to a ramp loading at different strain 
rates. The apparent Young’s modulus, indicated by the initial 
slope, as well as apparent yield stress, indicated by the stress 
level of the kink in the curve are increasing with strain rate. 
Interestingly, the highest changes are observed within the 
range of physiological strain rates between 0.001 and 0.1 
1/s (Hansen et al. 2008).

This positive correlation between strain rate and appar-
ent stiffness and -yield stress of bone tissue could not yet be 
confirmed at the level of individual bone trabeculae. To the 
authors knowledge, only Szabó et al. (2011a) attempted to 
shed some light on this question and tested hydrated trabecu-
lae in three point bending mode at different speeds spanning 
almost three orders of magnitude. Contrary to expectations, 
the obtained Young’s moduli were almost not affected by the 
variations in strain rate.

Limitations First, the formulation of the two-layer model 
is valid for geometrically linear problems only. An approach 
for elasto-visco-plastic rheological models at large strains 
is covered in Kiessling et al. (2016). In the outlined form, 
the two-layer model is utilizing the measures of engineer-
ing stress and strain and is limited to geometrically linear 

deformations. However, strains up to 9% were applied on 
some of the trabeculae, Fig. 6. For this strain level and an 
estimated Poisson’s ratio of 0.25 for bone micro-structural 
units, taken from Reisinger et al. (2010), the engineering 
stress is underestimating the true stress by approx. 4%. The 
conjugated logarithmic strain would give 8.6% vs. 9% of 
engineering strain at that stage. These errors increase with 
even larger strains.

Second, the proposed optimization approach utilized a 
multi-start method in order to increase the chance of finding 
the global solution of the optimization problem. In addition, 
the loading profile attempted to accentuate viscosity and 
plasticity to ease the numerical evolution of the optimiza-
tion process and to increase the uniqueness of the solution. 
In the course of this, 46 = 4096 solutions for each sample 
were obtained from which the one with the lowest RMSEw

-value was picked. The question of uniqueness was not fur-
ther addressed. However, solutions with a slightly worse 
RMSEw-value and a significantly different set of material 
parameters q might exist, that should be further investigated.

5  Conclusion

A two-layer elasto-visco-plastic rheological model is pre-
sented, capable of reproducing the stress response of single 
trabeculae subjected to uniaxial cyclic loading. The model 
is applied on stress–strain data in an inverse approach, to 
identify stiffness, yield, and viscous material parameters. 
These are—where comparable—in meaningful accordance 
with conventionally obtained parameters and results from 
similar studies.

The presented procedure is supposed to be applicable on 
other materials as well if they show a similar elasto-visco-
plastic behavior.

It was shown, that the proposed two-layer model along-
side with the optimization approach can be of great advan-
tage when multiple constitutive effects shall be quantified 
based on a single mechanical measurement. This is espe-
cially useful in the field of bone mechanics, where each 
specimen is unique and is usually tested only once.

Acknowledgements The authors acknowledge TU Wien University 
Library for financial support through its Open Access Funding Pro-
gramme. Full IRB and ethics approvals were obtained for the study 
(LREC 194/99/1; 210/01; 12/SC/0325) from Southampton and South 
West Hampshire Research Ethics Committee.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 

Fig. 11  The stress response of the two-layer model at different strain 
rates between �̇� =  0.0001–1.0 1/s. The model is set to the material 
parameters of Fig.  7. The graph is to be related to similar figures 
from, e.g., McElhaney (1966) or Johnson et al. (2010)
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Appendix: Solution of the Prandtl layer

The problem to be solved in the following, consists of deter-
mining the stress in the Prandtl layer �pr for a given strain 
signal � . We sum up the problem in the form of a system of 
ODEs

with g being a vector function, comprising of Eqs. 3, 4, 5, 
6, 11.

The ODE in Eq. 23 is stiff in nature due to the discon-
tinuous Eq. 11. Nevertheless, it can be solved by a standard 
ODE solver, using e.g. the Backward Differentiation Formula 
(BDF) (Byrne and Hindmarsh 1975), and by allowing f (�pr, �) 
to take ’small’ values greater than 0. However, this is highly 
inefficient.

More favorably, the return mapping algorithm for the incre-
mental solution of �pr is employed (Simo 1998). Therefore, 
time and strain are discretized

with the time increment �t and strain increment �� advanc-
ing time and strain from a state i to the state i + 1 ( i ∈ ℕ ). 
Solving the problem of Eq. 23 then reduces to finding the 
model state y

i+1
 coming from a known solution y

i
 . The new 

state y
i+1

 can be approximated by different integration 
schemes, from which the backward (implicit) Euler algo-
rithm is used for the reason of its unconditional stability 
(Hairer et al. 1987). In that framework, the discrete version 
of Eq. 23 reads

The algorithmic counterparts of Eqs. 3, 4, 5, 6 are

alongside with the discrete version of the Kuhn–Tucker 
conditions

(23)ẏ(t) = g(t, y(t)) with y =

[
𝜎pr
𝛼

]

(24)ti+1 = ti + �t and �i+1 = �i + ��

(25)y
i+1

= y
i
+ �t g(ti+1, y

i+1
)

(26)

�pr,i+1 = Epr(�i+1 − �p,i+1),

�p,i+1 = �p,i + �� sign(�pr,i+1),

�i+1 = �i + �� ,

fi+1 = |�pr,i+1| − [�Y + (�u − �Y)(1 − exp(−�i+1p))]

where �� = �i+1�t is a Lagrange multiplier.
The return mapping strategy involves conducting an elastic 

trial step while freezing plastic flow, defined by

In case, the trial step is admissible in the sense that f trial
i+1

≤ 0 , 
the trial step is in fact the solution to the problem (Eqs. 26, 
27). This step is called a purely elastic step and �� = 0 , 
giving

In the other case, where the trial step resides outside the 
yield surface (indicated by f trial

i+1
> 0 ) the step under consid-

eration is not admissible in the sense of Eq. 27. The solution 
to this plastic step needs to be obtained by ’correcting’ the 
trial step by

Finally, breaking down the requirement fi+1 ≡ 0 gives the 
implicit relationship

or, in short, with Eq. 4

from which the only remaining unknown 𝛥𝛾 > 0 can be 
obtained numerically via, e.g., the Newton–Raphson 
algorithm.

(27)

fi+1 ≤ 0,

�� ≥ 0,

�� fi+1 = 0

(28)

�trial
pr,i+1

= Epr(�i+1 − �p,i),

�trial
p,i+1

= �p,i,

�trial
i+1

= �i,

f trial
i+1

= |�trial
pr,i+1

| − [�Y + (�u − �Y)(1 − exp(−�trial
i+1

p))]

(29)

�pr,i+1 = �trial
pr,i+1

,

�p,i+1 = �trial
p,i+1

,

�i+1 = �trial
i+1

,

fi+1 = f trial
i+1

⎫
⎪⎪⎬⎪⎪⎭

if f trial
i+1

≤ 0

(30)

𝜎pr,i+1 = 𝜎trial
pr,i+1

− 𝛥𝛾 Epr sign(𝜎
trial
pr,i+1

),

𝜀p,i+1 = 𝜀trial
p,i+1

+ 𝛥𝛾 sign(𝜎trial
pr,i+1

),

𝛼i+1 = 𝛼trial
i+1

+ 𝛥𝛾 ,

fi+1 ≡ 0

⎫
⎪⎪⎬⎪⎪⎭

if f trial
i+1

> 0

(31)
fi+1 = |�trial

pr,i+1
| − �� Epr

− [�Y + (�u − �Y)(1 − exp(−p(�i + ��)))] ≡ 0

(32)f (�trial
pr,i+1

, �i + ��) − �� Epr = 0

http://creativecommons.org/licenses/by/4.0/
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