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abstract

PURPOSE Brain metastasis is common in lung cancer, and treatment of brain metastasis can lead to significant
morbidity. Although early detection of brainmetastasis may improve outcomes, there are no predictionmodels to
identify high-risk patients for brain magnetic resonance imaging (MRI) surveillance. Our goal is to develop a
machine learning–based clinicogenomic prediction model to estimate patient-level brain metastasis risk.

METHODS A penalized regression competing risk model was developed using 330 patients diagnosed with lung
cancer between January 2014 and June 2019 and followed through June 2021 at Stanford HealthCare. The
main outcome was time from the diagnosis of distant metastatic disease to the development of brain metastasis,
death, or censoring.

RESULTS Among the 330 patients, 84 (25%) developed brain metastasis over 627 person-years, with a 1-year
cumulative brain metastasis incidence of 10.2% (95% CI, 6.8 to 13.6). Features selected for model inclusion
were histology, cancer stage, age at diagnosis, primary site, and RB1 and ALK alterations. The prediction model
yielded high discrimination (area under the curve 0.75). When the cohort was stratified by risk using a 1-year risk
threshold of. 14.2% (85th percentile), the high-risk group had increased 1-year cumulative incidence of brain
metastasis versus the low-risk group (30.8% v 6.1%, P , .01). Of 48 high-risk patients, 24 developed brain
metastasis, and of these, 12 patients had brain metastasis detected more than 7 months after last brain MRI.
Patients who missed this 7-month window had larger brain metastases (58% v 33% largest diameter. 10 mm;
odds ratio, 2.80, CI, 0.51 to 13) versus those who had MRIs more frequently.

CONCLUSION The proposed model can identify high-risk patients, who may benefit from more intensive brain
MRI surveillance to reduce morbidity of subsequent treatment through early detection.
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INTRODUCTION

Brain metastasis is common among patients with
lung cancer, occurring in up to 25%-50% of patients
with metastatic lung cancer.1,2 Although there are
multiple management approaches to brain metas-
tasis, they vary in associated morbidity3,4 and can be
influenced by the size and number of metastases.3-5

For example, surgical removal may be necessary
for large brain metastasis. However, given the
advent of CNS-penetrant targeted therapy, such as
osimertinib,6 surgery and even radiation may be
deferred for patients with limited burden of disease
and the appropriate sensitive driver mutations. Thus,
earlier detection of brain metastasis may potentially
prevent patient morbidity by reducing size of brain
metastasis at time of detection, thereby sparing the

patient from more invasive methods of brain me-
tastasis management.

Identifying patients at high risk for brain metastasis
could enable intervention for early brain metastasis
detection. Several previous studies have examined
factors such as tumor histology that are linked to a
higher incidence of brain metastasis.7 Tumor genomic
factors have also been shown to play a role, with higher
incidence of brain metastasis associated with lung
cancers with an epidermal growth factor (EGFR) or
anaplastic lymphoma kinase (ALK) driver mutation.8,9

Although highly informative, these individual factors
cannot be directly used to predict the occurrence of
brain metastasis in individual patients with lung cancer
who might have multiple competing risk factors.
Furthermore, most of the previous studies that
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reported EGFR or ALK as potential risk factors for brain
metastasis did not consider the potential impact of the
advent of CNS-penetrant targeted therapies that may re-
duce risk of brain metastasis in patients with an EGFR or
ALK driver mutation.10-12 Thus, there is a need to integrate
treatment, driver mutation status, and other potential key
factors for brain metastasis into a comprehensive model to
predict individual risk of brain metastasis for patients
without brain metastasis at diagnosis of metastatic lung
cancer.

In this study, we integrated clinical, demographic, and
genomic factors from a single-institution retrospective data
set in a predictive model to identify patients who are at high
risk for developing brain metastasis after initial diagnosis
with metastatic lung cancer. We considered a broad range
of potential predictors of brain metastasis, including de-
mographics (eg, age and smoking history), tumor char-
acteristics (eg, stage and tumor location), treatment history,
and tumor sequencing from a broad-based next-generation
sequencing panel. We also used the predictive model to
identify high-risk patients from our data set and evaluated
the relationship between brain magnetic resonance im-
aging (MRI) screening frequency and outcomes for patients
with brain metastasis.

METHODS

Study Population and Selection

Patients diagnosed with lung cancer (any stage) between
2014 and 2019 were identified from the electronic medical
record of the Stanford Medical Center. All patients had
targeted panel sequencing of their lung cancer using
Stanford’s Solid Tumor Actionable Mutation Panel
(STAMP) as part of their routine clinical care between
January 2014 and June 2019, timing of which was de-
termined by the treating physician. Patients were excluded
if they did not have distant metastatic disease (either de
novo stage IV or recurrence) and biopsy-proven lung
cancer. Patients were further excluded if they had syn-
chronous brain metastasis, defined as diagnosis of brain

metastasis within 90 days of diagnosis with distant meta-
static disease (Fig 1). This study was approved by the
Stanford University IRB and received a waiver of informed
consent because the study presented minimal risk and
could not practicably be conducted without a waiver.

Study Outcome

The primary outcome was the time from date of diagnosis of
distant metastatic disease to time of brain metastasis,
death, or censoring, whichever occurred first, followed
through June 14, 2021. Date of diagnosis of distant met-
astatic disease was defined by the date of imaging dem-
onstrating distant metastasis (for patients with biopsy-
proven lung cancer from the primary tumor) or biopsy-
proven metastatic disease, whichever occurred first. Sim-
ilarly, we defined date of brain metastasis as the date of first
brain imaging demonstrating evidence of brain metastasis,
as determined from chart review. For imaging findings that
were equivocal, chart review was used to determine
whether the finding was a brain metastasis on the basis of
the documentation from the treating physician. Since
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FIG 1. Patient eligibility flow diagram. ICD, International Clas-
sification of Diseases.
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patients with brain metastasis at the time of their diagnosis
of distant metastatic disease were excluded from the study
population, all patients with brain metastasis had meta-
chronous brain metastasis, ie, developed more than three
months after date of distant metastasis.13

Study Variables

Demographic information including sex, race/ethnicity, age
at distant metastasis, and smoking status (ever or never)
was abstracted from the electronic medical record. Primary
tumor characteristics including histology, tumor size, pri-
mary site, and initial stage at time of diagnosis were ob-
tained from Stanford registry data. For each patient, all
cancer-directed treatment given between initial diagnosis
of lung cancer and time of distant metastatic disease (if
applicable) was included as their treatment history, in-
cluding first line of therapy for metastatic disease. First-line
metastatic therapy was defined as systemic therapy ad-
ministered within 90 days of time of distant metastasis.
Treatment data were derived from the electronic medical
record administration data for intravenous medications
(chemotherapy, immunotherapy, and anti–vascular en-
dothelial growth factor). Oral targeted therapy was derived
by chart review.

Tumor somatic mutation data were obtained from
STAMP,14 a custom panel that covers 130 genes.15,16 This
gene list includes canonical lung cancer driver oncogenes
(eg, KRAS, EGFR, BRAF, ALK, ROS1, and RET) and other
frequent alterations (eg, TP53, STK11, and RB1). Genes
were included as candidate predictors for feature selection
if they were represented at a frequency of. 3%. Individual
gene variants (such as EGFR p.L858R) were individually
represented if present at a frequency of . 3%.

Statistical Analysis

Prediction model development and feature selection. For
feature selection in prediction modeling, we applied ma-
chine learning approaches on the basis of a set of penalized
regression methods (or regularization approaches) for
competing risk data, including convex (least absolute
shrinkage and selection operator [LASSO] and adaptive
LASSO), nonconvex (smoothly clipped absolute deviation),
and the minimax concave penalty functions.17 We con-
sidered a total of 45 features for modeling, which included
demographics, tumor characteristics, and targeted panel
sequencing data. The final features were chosen on the
basis of the consensus of the four different penalty func-
tions (LASSO, adaptive LASSO, minimax concave penalty,
and smoothly clipped absolute deviation) across 20 im-
puted data sets (see the Handling Missing Data section),
that is, we chose the variables that were selected more than
70% of the time (ie, ≥ 14 of 20 imputed data sets) by at
least two of four methods to be included in the final model
(Data Supplement). EGFR and KRAS variants were binned.
ALK driver status was included in the final model because
of its established role as a risk factor for brain metastasis,6,9

including in our cohort,18 despite being represented in ,
3% of the cohort. On the basis of the selected features, we
built the final model with complete-case analysis using a
cause-specific proportional hazards model using death as
competing risks.

Model performance and validation. Overall prediction
performance was evaluated using the Brier score for
competing risk data.19 Model discrimination was assessed
via area under the receiver operating characteristic curve
(AUC) for time-to-event data.20 Model calibration was vi-
sualized as observed versus predicted risk and observed 1-
year brain metastasis incidence by deciles of estimated
risk. For validation of the final model, we performed
bootstrap cross-validation using 1,000 resamples that can
provide optimism-corrected performance metrics for dis-
crimination, calibration, and predictive accuracy.21,22

Risk stratification. We evaluated the risk stratification
ability of the prediction model. The study population was
stratified as high-risk versus low-risk using the 85th per-
centile of the estimated risk of 1-year brain metastasis risk
(ie, 1-year risk. 14.2%). For each subgroup, we estimated
the observed cumulative incidence of brain metastasis
using the Aalen-Johansen estimator,23 and the difference in
cumulative incidence across the subgroups was tested
using two-sided Gray’s test.24

Evaluation of clinical outcomes. The goal of our predictive
model was to identify patients at high risk of brain me-
tastasis so that they might benefit from an intervention,
such as increased frequency of brain MRI surveillance.
Therefore, we compared clinical outcomes for high-risk
patients (ie, predicted 1-year risk. 14.2%) who developed
brain metastases by their brain MRI imaging timing relative
to brain metastasis diagnosis, including a brain metastasis
size and a rate of surgery for brain metastasis. Brain MRI
dates, size of brain metastases, and treatment modality
were abstracted from the chart. Brain MRI images were
obtained per the local institutional protocol, which includes
T1- and T2-weighted MRI with and without gadolinium
contrast. We compared brain metastasis size and rate of
surgical intervention for patients with increased brain MRI
surveillance (last MRI, 7 months before brain metastasis)
or less frequent screening (last MRI . 7 months before
brain metastasis).

Handling missing data. We assessed the rate of missing-
ness in the included variables. Overall, the missingness rate
of demographic and clinical variables was, 5%, except for
histology (missing in 17 patients or 5.2% of the cohort) and
the following treatment variables: cytotoxic, immunother-
apy, anti–vascular endothelial growth factor therapy, and
other treatment. We examined the missingness of included
variables for correlations with other variables to confirm the
missing at random assumption (Data Supplement). Missing
data were then imputed with multiple imputation by
chained equations25 with 20 imputations with the
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assumption that data were missing at random assumption.
These imputed data sets were incorporated into the feature
selection algorithm using different regularization methods
as described in the previous subsection.

A web-based tool for risk prediction. We implemented the
proposed model into a web-based tool, called RAMBO
(Risk Assessment for Metastasis to Brain Outcome),26

which can predict an individual-level probability of devel-
oping brain metastasis within one year from the time of
distant metastasis diagnosis in patients with lung cancer.
This app will be available to public by the time that this work
is published.

RESULTS

Of 330 patients with lung cancer with distant metastasis in
the study cohort, 84 developed brain metastases over 627
person-years. The median follow-up time was 1.3
(interquartile range 0.65-2.5) years in the overall cohort
(Data Supplement). The 1-year cumulative incidence of
brain metastasis was 10.2% (95% CI, 6.8 to 13.6; Data
Supplement). Patient characteristics in the overall cohort
and by study outcome are shown in Table 1. As expected
on the basis of the demographics at our institution, a large
proportion of Asian patients was observed in the overall
cohort (36.4%). Almost half of the overall cohort never
smoked (41.6%), and the majority of patients had lung
adenocarcinoma (83.4%), with 34.8% and 2.7% of pa-
tients having an EGFR mutation and an ALK driver mu-
tation, respectively.

The features included in the final risk prediction model for
brain metastasis are shown in Figure 2. The most important
clinical and demographic variables in predicting the de-
velopment of brain metastasis were histology and stage at
diagnosis followed by age at diagnosis, alteration in RB1 or
ALK, and primary lung cancer site. Large cell histology was
associated with a higher risk of brain metastasis (Data
Supplement). A primary lung cancer site near the main
bronchus was associated with an increased risk of brain
metastasis. One of the most important genomic features in
predicting for brain metastasis development included the
presence of mutations in RB1, which was a key predictor
even when accounting for histology (Fig 2 and Data
Supplement).

The performance of the proposed model was evaluated
using internal validation on the basis of 1,000 resamples
through bootstrapping (Fig 3A), which showed good cali-
bration and high discrimination (bootstrapped AUC of 0.75;
95% CI, 0.64 to 0.84). The model was able to accurately
predict a 1-year risk of brain metastasis (Brier score 0.08;
95% CI, 0.05 to 0.11). When the study cohort was stratified
into high-risk and low-risk groups using a 1-year risk
threshold of . 14.2% (85th risk percentile), the high-risk
group had a significantly elevated observed incidence of
developing brain metastasis versus the low-risk group
(30.8% v 6.1% for 1-year incidence, P , .01; Fig 3B and

Data Supplement). The comparison of the clinical and
genomic characteristics by high-risk versus low-risk groups
is given in Figure 4. Compared with low-risk patients, pa-
tients at high risk of brain metastasis were younger and
diagnosed at a more advanced stage and their cancer was
more likely to have a central primary tumor location and
have nonadenocarcinoma histology.

The goal of developing our predictive model was to identify
patients at high risk of brain metastasis who might benefit
from a tailored intervention, such as increased frequency of
brain MRI surveillance. Therefore, we further examined
various clinical outcomes of the high-risk group identified
by the proposed model stratified by MRI frequency. Of the
48 high-risk patients, 24 patients (50%) developed brain
metastasis. Of the 24 patients with brain metastasis in this
high-risk group, 12 patients (50%) had their brain me-
tastasis detected more than 7 months after last brain MRI
(or date of metastasis, whichever was later), whereas the
rest received brain MRIs within the 7-month window.
Notably, the patients who missed this 7-month brain MRI
surveillance opportunity window showed larger brain me-
tastasis compared with those who had brain MRIs more
frequently (58% v 33% with the brain metastasis size larger
than 10 mm; odds ratio, 2.80; CI, 0.51 to 13; Fig 5).
Similarly, those patients whomissed this window weremore
likely to undergo surgery compared with the patients who
received brain MRIs within the 7-month window (17% v
8%, odds ratio, 2.2; CI, 0.22 to 34).

DISCUSSION

In this study, we developed a machine learning–based
model for predicting the risk of brain metastasis among
patients with lung cancer with distant metastasis using
comprehensive clinical, demographic, and genomic data.
We showed that the proposedmodel can identify patients at
high risk of brain metastasis with high discrimination and
accuracy. Among the patients with high-risk brain me-
tastases identified through the proposed model, those with
more frequent brain MRIs tended to have smaller brain
metastases with a reduced rate of surgical intervention
compared with those with less frequent brain MRIs. Thus,
we demonstrate the potential clinical utility of the model in
identifying high-risk patients who may benefit from more
intensive brain MRI surveillance and hence reduce mor-
bidity of subsequent brain metastasis treatment.

In our model, we observed that several factors were sig-
nificant contributors to the development of brain metas-
tasis. In particular, the histology and stage of primary lung
cancer were significant drivers of brain metastasis risk.
Tumor primary location was important as well, suggesting
that a more central location may lead to more frequent
dissemination to the brain. Individual genomic factors
found to be significant included previously known drivers of
brain metastasis, such as mutations in RB1. Concurrent
RB1-TP53 is associated with small-cell differentiation and

4 © 2022 by American Society of Clinical Oncology

Wu et al



TABLE 1. Patient Characteristics Stratified by Outcome Status and Overall
Characteristic Overall (N = 330) Censored (n = 124) Brain Metastasis (n = 84) Death (n = 122)

Demographics

Age at distant metastasis, years, mean (SD) 67.2 (12.1) 68.2 (12.1) 63.9 (11.0) 68.3 (12.5)

Male, No. (%) 155 (47.0) 60 (48.4) 40 (47.6) 55 (45.1)

Race/ethnicity, No. (%)

Non-Hispanic/Non-Latino White 150 (45.5) 60 (48.4) 33 (39.3) 57 (46.7)

Asian 120 (36.4) 38 (30.6) 37 (44.0) 45 (36.9)

Others 50 (15.2) 21 (16.9) 10 (11.9) 19 (15.6)

Unknown 10 (3.0) 5 (4.0) 4 (4.8) 1 (0.8)

Ever smoking, No. (%) 192 (58.4) 73 (59.3) 44 (52.4) 75 (61.5)

Primary tumor characteristics

Primary tumor histology, No. (%)

Adenocarcinoma 261 (83.4) 101 (87.8) 65 (80.2) 95 (81.2)

Large cell 4 (1.3) 0 (0) 4 (4.9) 0 (0)

Non–small-cell carcinoma, NOS 8 (2.6) 2 (1.7) 5 (6.2) 1 (0.9)

Squamous and transitional cell 26 (8.3) 8 (7.0) 4 (4.9) 14 (12.0)

Other specified carcinomas 14 (4.5) 4 (3.5) 3 (3.7) 7 (6.0)

Primary tumor size, mean (SD) 42.7 (24.9) 40.3 (26.2) 45.9 (23.8) 42.6 (24.6)

Primary tumor stage, No. (%)

I 33 (10.0) 20 (16.1) 4 (4.8) 9 (7.4)

II 26 (7.9) 11 (8.9) 4 (4.8) 11 (9.0)

III 49 (14.8) 23 (18.5) 15 (17.9) 11 (9.0)

IV 210 (63.6) 68 (54.8) 55 (65.5) 87 (71.3)

Others 12 (3.6) 2 (1.6) 6 (7.1) 4 (3.3)

Primary tumor site, No. (%)

Lower lobe 96 (29.1) 45 (36.3) 22 (26.2) 29 (23.8)

Main bronchus 13 (3.9) 4 (3.2) 5 (6.0) 4 (3.3)

Middle lobe 19 (5.8) 8 (6.5) 9 (10.7) 2 (1.6)

Overlapping lesion 42 (12.7) 13 (10.5) 8 (9.5) 21 (17.2)

Upper lobe 160 (48.5) 54 (43.5) 40 (47.6) 66 (54.1)

Days from distant metastasis to outcome, mean (SD) 564 (447) 632 (462) 542 (381) 511 (467)

Mutations, No. (%)

EGFR 115 (34.8) 42 (33.9) 37 (44.0) 36 (29.5)

ALK rearrangement 9 (2.7) 1 (0.8) 6 (7.1) 2 (1.6)

First-line systemic treatment, No. (%)

Cytotoxic 131 (55.5) 41 (50.6) 37 (54.4) 53 (60.9)

First-generation EGFR TKI 48 (14.5) 13 (10.5) 17 (20.2) 18 (14.8)

Next-generation ALK TKI 6 (1.8) 3 (2.4) 2 (2.4) 1 (0.8)

Immunotherapy 61 (25.8) 27 (33.3) 13 (19.1) 21 (24.1)

Osimertinib 24 (7.3) 10 (8.1) 5 (6.0) 9 (7.4)

Anti-VEGF 14 (5.9) 3 (3.7) 4 (5.9) 7 (8.0)

Crizotinib 9 (2.7) 2 (1.6) 5 (6.0) 2 (1.6)

Other treatment 20 (8.5) 9 (11.1) 4 (5.9) 7 (8.0)

NOTE. Percentages for categorical characteristics are calculated of the number of nonmissing values.
Abbreviations: EGFR, epidermal growth factor; NOS, not otherwise specified; SD, standard deviation; TKI, tyrosine kinase inhibitor; VEGF, vascular

endothelial growth factor.
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transformation, which carries a significant risk of brain
metastasis.27,28 Interestingly, we did not see a significant
contribution from EGFR. This may be due to cohort se-
lection, as many EGFR-positive patients present with brain
metastases, and the advent of CNS-penetrant EGFR-di-
rected therapy such as osimertinib that can potentially help
reduce the incidence of brainmetastasis.29 Or at aminimum,

such therapymay delay brainmetastases development such
that these patients were not identified as having brain me-
tastases in this analysis. As we only included the first line of
metastatic treatment in this model to better approximate the
information available to a treating clinician at the time of
utilization of this tool, the potential effect from osimertinib in
later lines of therapy may be obscured.

Comprehensive predictionmodeling, as used in the present
study, holds great promise to aid clinical decision making in
the management of patients with cancer. As the data from
the present study are from a real-world data set, the pa-
tients included in this study are representative of those seen
in clinic and the predictive model on the basis of these data
would therefore be expected to have high external validity.
Furthermore, we have built a free access online tool to aid
clinicians in identifying patients who may benefit from in-
terventions such as increased brain MRI surveillance. As
clinical information is increasingly digitized, the relevant
variables in our predictive model could be readily extracted
from electronic health records, with the predictive risk score
for a patient and surveillance recommendation displayed
for the treating clinician. The framework that we have built
is readily generalizable to other institutions and data sets.

Strengths of the present study include the comprehensive
data using genomic, clinical, and demographic factors and
thorough statistical modeling approaches that incorporate
competing risks of death, penalized regression methods for
feature selection, and validation through bootstrapping. To
our knowledge, this is the first comprehensive prediction
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model to incorporate multiple risk factors into a single
predictive score to determine brain metastasis risk for a
given patient. Machine learning classifiers, in contrast to
traditional regression-based classifiers, can account for
multiple high-dimensional features, including compre-
hensive next-generation sequencing results. In addition, we
evaluated the potential clinical utility of the model by
comparing outcomes for patients identified to be at high

risk for brain metastasis, stratified by brain MRI screening
frequency.

Limitations of our study include its retrospective nature and
limitation to a single institution. The patients seen in a San
Francisco Bay Area academic center may not be repre-
sentative of patients at other institutions. Brain MRI sur-
veillance patterns may vary by institution and influence
timing of brain metastasis detection. Some risk factors or
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genomic alterations are only present in a small subset
(, 3%) of the cohort, such asRET, andROS1 driver fusions
or other clinical variables may not be fully captured. In
developing a prediction model, we chose a single starting
time point, ie, diagnosis of distant metastatic disease, and
used patient information collected at a given time to predict
brain metastasis risk. However, risk may be dynamic and
dependent on changing treatment. Incorporating changing
risk profiles over time and additional prognostic variables,
such as performance status, remains an interesting di-
rection for future studies. Regarding the potential appli-
cation of the model, the clinical utility of brain MRI

surveillance in asymptomatic patients must be weighed
against the economic cost of additional scans and potential
patient anxiety around more frequent scans.

In summary, we developed a predictive model for the risk
of brain metastasis in lung cancer using comprehensive
clinical and genomic features that can aid clinical decision
making. This can help identify patients with lung cancer at
high risk of developing brain metastasis, who can benefit
from more intensive brain MRI surveillance at earlier
stages to reduce morbidity of subsequent brain metastasis
treatment.
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FIG 5. Comparison of clinical outcomes in
the high-risk subgroup that developed BN
(n = 24): (A) brain metastasis size at di-
agnosis and (B) surgery at brain metastasis
diagnosis. A high-risk subgroup was de-
fined as patients whose predicted 1-year
risk was larger than 14.2% (ie, 85th per-
centile of the estimated risk using the
proposed model). Subsets shown are those
high-risk patients who developed BN. BM,
brainmetastasis; MRI, magnetic resonance
imaging.
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