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Abstract

Gene set testing problem has become the focus of microarray data analysis. A gene set is a group of genes that are defined
by a priori biological knowledge. Several statistical methods have been proposed to determine whether functional gene
sets express differentially (enrichment and/or deletion) in variations of phenotypes. However, little attention has been given
to analyzing the dependence structure among gene sets. In this study, we have proposed a novel statistical method of gene
set association analysis to identify significantly associated gene sets using the coefficient of intrinsic dependence. The
simulation studies show that the proposed method outperforms the conventional methods to detect general forms of
association in terms of control of type I error and power. The correlation of intrinsic dependence has been applied to a
breast cancer microarray dataset to quantify the un-supervised relationship between two sets of genes in the tumor and
non-tumor samples. It was observed that the existence of gene-set association differed across various clinical cohorts. In
addition, a supervised learning was employed to illustrate how gene sets, in signaling transduction pathways or
subnetworks regulated by a set of transcription factors, can be discovered using microarray data. In conclusion, the
coefficient of intrinsic dependence provides a powerful tool for detecting general types of association. Hence, it can be
useful to associate gene sets using microarray expression data. Through connecting relevant gene sets, our approach has
the potential to reveal underlying associations by drawing a statistically relevant network in a given population, and it can
also be used to complement the conventional gene set analysis.
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Introduction

The interactions of genes usually take place in the signaling

pathways, networks, or other biological systems. In particular, the

interactions between or among multi-dimensional gene sets in a

given biological system have been demonstrated in a functional

network [1,2,3,4,5,6]. By taking advantage of high throughput

data and many fine algorithms, we have the opportunity to predict

many novel interactions among gene sets, which may resolve the

complexity in health and disease biology system-wide. A set of

genes with related functions can be grouped together and referred

to as a ‘gene set’. The gene sets (possibly overlapped) are usually

defined by functional categories or metabolic/signaling pathways,

and annotation resources for gene sets can be found in several

publicly available annotation databases such as the Kyoto

Encyclopedia of Genes and Genomes (KEGG) [7], Biocarta

(http://www.biocarta.com/), Gene Ontology (GO) [8], and

GenMAPP [9,10]. If the expression levels of a gene set are

significantly associated with the clinical outcomes/phenotypes,

then we can say that this gene set is ‘differentially expressed’.

Many statistical approaches, such as gene set enrichment analysis

(GSEA) methods [7,8], are used to determine whether functional

gene sets express differentially (enrichment and/or deletion) in

variations of phenotypes. Readers are referred to [9] for the review

of current GSEA algorithms.

In this study, we deal with the gene sets in a different way.

Instead of identifying differentially expressed gene sets, we aim to

exploit the dependence structure among gene sets and propose a

testing strategy for identifying gene set pairs with statistically

significant coherence by using microarray data. We refer to this

approach as ‘Gene Set Association Analysis’ (GSAA) to distinguish

it from GSEA methods. More specifically, our approach provides

a statistical framework for analyzing coherence of expression

profiles in gene sets, which measure functional module co-

regulation. Most biological systems are composed of complex

interactions of functional gene modules. In an attempt to

understand the co-expression networks, GSAA is used to study

whether gene sets with common functionality show high degrees of

co-expression or whether two gene sets show significantly

correlated expression in tumor cells but weakly correlated

expression in normal cells. Such coherent or incoherent correla-

tions between gene sets may indicate different types of gene set

interactions which play an important role in complex diseases.

Although the associations between two individual genes have been

explored in depth, to the best of our knowledge, only little

attention has been given to analyzing the association between two

gene sets. One reason may be that the statistical measures are to

pick up the most relevant associations, which are in consensus in a

given population, while most of the associations are chaotic and

only some of them are in consensus. Another reason might be the
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lack of appropriate statistical measures for two multi-dimensional

variables. The canonical correlation (see, e.g., [10]) and the

projection pursuit regression [11] are two conventional methods

for evaluating the association between two multi-dimensional

variables. However, they have several limitations. The canonical

correlation assumes normality, which is often violated in real

experimental data. Besides, the canonical correlation adopts

Galton-Pearson’s correlation coefficient, which is designed to

capture only linear relationships. The projection pursuit regression

considers more general forms of associations, but it would put too

much emphasis on numerous smoothing processes even though

the smoothing results of irrelevant ones might be disregarded in

the end.

To develop a statistical measure describing the general

dependence between two gene sets, it is reasonable to start with

the definition of independence in statistical theory. Conceptually,

when two gene sets are not related, the expressions of one gene set

provide little information about predicting the expressions of the

other gene set. That means the distribution of the expression levels

for the target gene set would not be altered much even though

additional information of another independent explanatory gene

set is provided. The pattern of the expressions for the target gene

set alone and that of the expressions for the target gene set, given

the explanatory gene set, are referred to as the marginal and the

conditional distributions, respectively. If two gene sets are

independent of each other, one can expect the marginal and the

conditional distributions would be very similar to each other.

Therefore, the dissimilarity between the marginal and conditional

distributions can serve as a measure of association between two

gene sets – a larger dissimilarity implies a higher association. This

type of measure requires neither distributional (e.g. normal) nor

functional (e.g. linear) assumptions on the observations, and it may

possibly obtain a wider range of associations between two gene sets

than the regression-based measures.

There already exist some statistics to measure the discrepancy

between two distributions, including the Kolmogorov-Smirnov

statistic [12], the Cramér von-Mises statistic [13], the Kullback-

Leibler distance [14], and the Hellinger distance [15]. Among

these conventional methods, the coefficient of intrinsic depen-

dence, or CID, has been recently proposed [16,17]. The CID

takes any real value between 0 and +1 inclusive. It is +1 in the case

of full dependence and is 0 in the case of independence. As the

level of dependence ascends, the CID value goes from 0 to 1. Our

previous work has demonstrated that the CID, as a univariate

measure of association, was capable of identifying essential features

[18,19]. By definition, the CID is also applicable in multivariate

cases. In this paper, we aim to detect the association among sets of

genes using the extension of the CID. It was shown from the

simulations that the CID outperformed the conventional methods

to detect associations in general forms in terms of control of type I

error rate and power. We further conducted GSAA using the CID

on the microarray expression datasets in the breast cancer

samples. The results showed that the associations between gene

sets changed across different clinical cohorts when using an

unsupervised learning. In the examples of the supervised GSAA,

the CID was utilized to predict the co-expressed TF(s) and

cofactor(s) that possibly form cistromes [20] which regulate a gene

set coding for a signature and a pathway, respectively. Therefore,

we concluded that the CID is an appropriate statistic which allows

one to assess the underlying system-wise nonlinear association

between two gene sets.

Materials and Methods

In this section, we describe the statistical measures mentioned in

this study and the simulation settings, as well as the availability of

real microarray datasets. Throughout this section, we denote the

predictor gene set with p genes and the target gene set with q genes

as X and Y, respectively (p, q$1). Each gene set has N realizations.

More specifically, let (xi, yi) be the ith paired observation of (X, Y),

where i = 1, …, N, xi = (xi1, xi2, …, xip) and yi = (yi1, yi2, …, yiq).

The Coefficient of Intrinsic Dependence (CID)
The CID value of Y given X is defined as follows:

CID(Y jX )~

ð
Y

Var E I(Yƒy)jXð Þ½ �dGY (y)ð
Y

Var I(Yƒy)jXð ÞdGY (y)

, (1)

where GY(.) is the marginal cumulative distribution function (cdf)

of Y, and I(A) is an indicator function such that

I(A)~
1, ifA is true;

0, ifA is not true:

�

It has been shown that the CID quantifies the discrepancies

between the marginal and conditional cdfs of Y [17]. When X and

Y are nearly independent, the knowledge of X provides little

information about Y. The conditional and marginal distributions

of Y are therefore similar to each other, which makes the

numerator of the CID nearly 0. On the other hand, if two

variables are highly relevant, one can easily discriminate the object

only by using the knowledge of X. In these cases, the CID yields

values close to 1.

The estimation of the CID is demonstrated using a toy example

shown in Table 1. In the example, there are five realizations

(named r1 to r5) for p = 3 predictor variables and q = 2 target

variables. First, the CID promotes subgrouping the sample of size

N into K subgroups by hierarchical clustering based on Euclidean

distance according to the observed values of Xs (Table 1). The

options of subgrouping will be described later in the ‘Subgrouping

strategy’ section. In the toy example, (r4, r5) are closest to each

other (Euclidean distance = 0.3976) and (r1, r2) are second closest

(Euclidean distance = 0.8956). If letting the number of subgroups

K = 3, the five realizations are subject to three subgroups named

(r1, r2)-group, r3-group, and (r4, r5)-group, respectively. In each

subgroup s (s = 1, …, K), the following quantity was evaluated:

XN

i~1

½F̂Fs(yi){F̂F (yi)�
2,

where

F̂F (yi)~
1

N

XN

k~1

Pq
j~1I(ykjvyij), ð2Þ
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F̂Fs(yi)~
1

Ns

XN

k~1

Pq
j~1I(ykjvyij and xk[ the s th subgroup), and ð3Þ

Ns~
XN

i~1

I(xi [ the s th subgroup):

F̂F (yi) is the estimation of the marginal distribution of Y given

the realization, yi. For example, given yi = r1 in the toy example:

F̂F(r1)~
1

N

XN

k~1

Pq
j~1I(ykjvy1j)

~
1

5
Number of realization (s) that yk1ƒ0:17 and yk2ƒ1:88ð Þ

~
3(i:e:,r1,r3,r4)

5
~0:6:

Similarly, F̂Fs(yi) is the estimation of the conditional distribution

of Y obtained by only comparing the observations within the sth

subgroup to the given realization. Within the (r4, r5)-group, for

example, the conditional distribution of Y given the realization r1 is

F̂Fs(r1)~
1

Ns

XN

k~1

P
q

j~1
I(ykjvy1j and xk [ the s th subgroup)

~
1

2
Number of realization(s) in (r4,r5) - group that yk1ð

ƒ0:17 and yk2ƒ1:88Þ~ 1(i:e:,r4)

2
~0:5:

The estimations of the marginal and conditional distributions

given all realizations are listed in Table 1. A weighted average is

taken to account for all discrepancies measured within different

subgroups at the ith realization,

XK

s~1

Ns

N
F̂Fs(yi){F̂F(yi)
� �2

, ð4Þ

The estimate of the CID is

CID(Y DX )~
1

C(N)

XN

i~1

XK

s~1

Ns

N
F̂Fs(yi){F̂F (yi)
� �2

~
1

C(N)

XK

s~1

Ns

N

XN

i~1

F̂Fs(yi){F̂F (yi)
� �2

,

where C(N) is a denominator that ensures the CID values are

within the range [0,1]. More specifically,

Table 1. Toy example of the CID calculation.

Realizations

r1 r2 r3 r4 r5

Predictor X1 20.38 20.24 20.32 20.05 0.05

X2 0.27 0.36 20.36 0.25 0.09

X3 1.82 0.94 20.62 0.37 0.02

Target Y1 0.17 4.33 20.87 22.37 2.55

Y2 1.88 1.83 0.61 0.43 2.03

Distance r2 0.8956

r3 2.5207 1.7200

r4 1.4872 0.6108 1.1938

r5 1.8594 1.0017 0.8654 0.3976

F̂F (yi) 0.6 0.6 0.4 0.2 0.8

F̂Fs(yi) (r1, r2)-group 0.5 0.5 0 0 0.5

r3-group 1 1 1 0 1

(r4, r5)-group 0.5 0.5 0.5 0.5 1

The data consisted of the 562 target and the 563 predictor. The Euclidean distances between any two realizations, the estimations of the marginal distribution, F̂F (yi),

and conditional distributions, F̂Fs(yi)’s, were also shown.
doi:10.1371/journal.pone.0058851.t001
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C(N)~
XN

i~1

F̂F (yi)½(1{F̂F (yi)�:

In the toy example,

C(N)~(0:6)(0:4)z(0:6)(0:4)z(0:4)(0:6)z(0:2)(0:8)

z(0:8)(0:2)~1:04, and the numerator of the CID

~
2

5
({0:1)2z({0:1)2z({0:4)2z({0:2)2z({0:3)2
� �

z
1

5
(0:4)2z(0:4)2z(0:6)2z({0:2)2z(0:2)2
� �

z
2

5
({0:1)2z({0:1)2z(0:1)2z(0:3)2z(0:2)2
� �

~0:34; therefore, the CID~0:34=1:04~0:3269:

We note that the CID is asymmetric, meaning the CID(Y|X) is

not necessarily equal to the CID(X|Y). The asymmetry of the CID

may reflect uneven levels of influence of one variable (gene set) on

another. If a symmetric measure is desired, one can simply take

the average of the CID(Y|X) and CID(X|Y) as the level of

dependence between X and Y.

Regularized canonical variates for high-dimensional gene
set data

To reduce the computation complexity and to retain the

common dominant pattern within gene sets, we consider the first

few (i.e., 2 or 3) pairs of canonical variates for the CID estimation

for high-dimensional gene set data (say, p$10 or q$10). Once the

first few pairs of canonical variates are determined, they can be

used for estimation of the CID. However, when the number of

genes in the gene set is greater than the number of samples, or

genes within a gene set are highly correlated, the sample

covariance matrix is singular and ill-conditioned. In this article,

we propose a dimensional reduction method for estimation of the

CID that is based on the regularized canonical analysis of gene set

data. The regularized canonical variates proposed by Leurgans et

al. [21] are used to deal with this problem via a regularization

procedure. Consider two gene set expression matrices X and Y of

dimensions N|p and N|q respectively with the column

corresponding to standardized gene expression values (mean 0

and variance 1). We denote by SXX and SYY the sample

covariance matrices for gene sets X and Y respectively, and by

SXY ~S
0

YX the sample cross-covariance matrix between X and Y.

The kth pair of canonical variates is defined as the linear

combinations of columns Uk~a
0

kX and Vk~b
0

kY having unit

variances which maximize the correlation among all choices ak

and bk uncorrelated with the previous k-1 pairs of canonical

variates. Without loss of generality, we assume that pƒq and

g1§g2§ � � �§gp are eigenvalues of S
{1=2
XX SXY S{1

YY SYX S
{1=2
XX in

decreasing order, where the regularized covariance matrices are

defined as SXX ~SXX zl1Ip and SYY ~SYY zl2Iq. Then, the

pair of coefficient vectors of ak and bk can be estimated by

a
0

k~e
0

kS
{1=2
XX and b

0

k~f
0

kS
{1=2
YY , respectively, where the vector ek

is the eigenvector corresponding to the eigenvalue gk of

S
{1=2
XX SXY S{1

YY SYX S
{1=2
XX and the vector fk is the eigenvector

corresponding to the eigenvalue gk of S
{1=2
YY SYX S{1

XX SXY S
{1=2
YY .

The regularization parameters can be chosen to maximize the

correlation of the first pair of canonical variates via the leave-one-

out cross-validation suggested in [21].

Conventional methods of association for comparison
We compared the CID with two types of conventional measures

of associations, the regression-based methods and the distribution-

based methods. The regression-based methods included the

canonical correlation (see, e.g., [10]) and the projection pursuit

regression [11]. They were abbreviated as CanCor and PPR in

context. Both CanCor and PPR define association between X and

Y using a general form

max
a,b

R(atX ,btY )

where atX, btY are linear combinations of the original variables,

and R is a univariate association measure. The CanCor takes R for

the Galton-Pearson correlation coefficient and the PPR takes R for

the correctness of prediction by nonparametric regression such as

Friedman’s super smoother or the smoothing spline. The stat

package in freely-accessible software R [22] provides two

functions, cancor and ppr, to perform CanCor and PPR. To

compare with the CID, we recorded the largest correlation

retrieved from the output of cancor and the residual sum of

squares from the output of ppr. It is intuitive that a larger

correlation for CanCor or a smaller residual sum of squares for

PPR implies a higher level of association.

Two distribution-based methods were considered in this study.

They were the Kullback-Leibler distance [14] and the Hellinger

distance [15] (abbreviated as KLD and HD, respectively, in

context). The rationale of distribution-based methods for GSAA is

that if the predictor and the target gene sets are independent of

each other, one can expect that the marginal and the conditional

distributions of the target gene sets would be very similar to each

other. Let fX and fY be the marginal probability density functions

(pdfs) of X and Y, respectively (p, q$1). Also let fX,Y be the joint pdf

of X and Y. Then the conditional pdf of Y given X could be present

as fX|Y = fX,Y / fY. The Kullback-Leibler distance (KLD) and the

Hellinger distance (HD) were adopted to measure the dissimilarity

between the marginal and conditional distributions of the target

gene expressions. Let

KLD(Y jX )~

ð
Y

fY jX (y) ln
fY jX (y)

fY (y)

� �
dy, and HD(Y jX )~

1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fY jX (y)

q
{

ffiffiffiffiffiffiffiffiffiffiffi
fY (y)

p
 �2

dy

s
. Given N realizations, the

conditional and marginal pdfs of Y can be estimated as follows:

Each dimension of Y in the sample was discretized into r = 3

subgroups by its sample quantiles. Then the marginal pdf of Y was

estimated by

f̂fY (yi)~
1

N

XN

k~1

P
q
j~1I(ykj[Sij),

where Sij represented the subgroup that yij belonged to. To estimate

the conditional pdf fY|X, we first divided the sample into K

Gene Set Association Analysis

PLOS ONE | www.plosone.org 4 March 2013 | Volume 8 | Issue 3 | e58851



subgroups by hierarchical clustering according to the observed

values of X. Then the conditional pdf of Y given the sth subgroup

of X was estimated by

f̂fY jX (yijs)~
1

Ns

XN

k~1

P
q
j~1I(ykj[Sij)|I(xi [ the s th subgroup), and

Ns~
XN

i~1

I(xi [ the s th subgroup):

The estimates of KLD and HD were formulated as

KL̂LD(Y jX )~
XN

i~1

1

N

XK

s~1

f̂fY jX (yijs) ln
f̂fY jX (yijs)

f̂fy(yi)

 !
;

and

ĤHD(Y jX )~
1ffiffiffi
2
p

XN

i~1

1

N

XK

s~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f̂fY jX (yijs)

q
{

ffiffiffiffiffiffiffiffiffiffiffiffi
f̂fY (yi)

q� �2
 !1=2

:

Subgrouping strategy
By definition, the distribution-based methods (CID, KLD and

HD) measure the discrepancy between marginal and conditional

distributions. The estimate of distribution from the sample is called

the empirical distribution. In particular, histogram-like methods

using subgrouping are widely adopted in estimating empirical

distributions [23]. One way of subgrouping is to categorize the dth

dimension of X into rd subgroups by its sample quantiles. A

combination of p dimensions discretizes the sample into

K~ P
p
d~1rd

� �
subgroups. To equally weight all dimensions of

X, they usually set rd = r for all d and K = rp. The quantile method

considers that each subspace is equally important throughout the

range of each dimension of X and is expected to yield an unbiased

estimate of discrepancies. However, it faces the curse of

dimensionality when p increases [24]. That is, the observations

distribute sparsely and most of the combinations of the subgroups

have zero or too few observations. The quantile method has

another technical problem – the production of rd may not be the

desired number of subgroups. For example, when p = 3 and rd = 2,

K = 8; when p = 3 and rd = 3, K = 27; it is not possible to divide the

sample into K = 10 subgroups when p = 3 for any rd.

In this research, we propose to partition the sample by a

hierarchical clustering, while the CID algorithm remains robust to

other clustering methods (e.g., kmeans [25] or SOM [26]; see

Figure S1). Hierarchical clustering is a commonly used algorithm

for dividing the sample into more homogeneous subgroups. Our

intention of subgrouping by hierarchical clustering aimed to mimic

biological systems in which similar expression pattern may reflect

the similar biological event shared by the members within a

Figure 1. Flow chart of GSAA based on the CID and hierarchical clustering.
doi:10.1371/journal.pone.0058851.g001
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subgroup. In this study, the subgrouping preceded as follows (see

also Figure 1): First, a hierarchical clustering algorithm with

complete linkage based on the Euclidean distances between xi’s

was performed. A tree-shape diagram, or dendrogram, was then

used to further cluster the sample into the desired number of

subgroups. Figure 1B showed one example of dividing 30

realizations of a variable (gene set) with 3 dimensions (genes) into

three subgroups (marked blue, brown, and pink, respectively) by

hierarchical clustering. This method can be applied to any number

of subgroups. However, the sizes of the subgroups may be

extremely unbalanced. For example, in Figure 1B, the sizes of the

subgroups were 6, 15, and 9, respectively.

Assessment of the significance by random permutations
The null distribution of all association measures under

independence was generated by random permutations. For the

CID, we re-computed the CID value given the random permuted

labels of subgroups. For CanCor, PPR, KLD and HD, the

estimates were recorded respectively after randomly permuting the

rows (observations) of X. Random permutation was repeated 1,000

times and yielded 1,000 internal control values for each measure

under independence. Let E0 be the estimate of an association

measure from the sample, and Ei be the estimate for that measure

from the ith random permutation. The permuted p-value for each

association relationship between two variables of interest was

determined by
1

1001
1z

X1000

i~1

I(EiƒE0)

 !
for PPR, or

1

1001
1z

X1000

i~1

I(Ei§E0)

 !
for the other methods, where

I(A)~
1, ifA is true;

0, ifA is not true:

�

In this research, we claim that X and Y are significantly

dependent if the permuted p-value was less than or equal to the

nominal level of a.

Simulation methods
We evaluated the performance of our proposed method and

compared it with four conventional methods in terms of control of

type I error and power using the Monte Carlo simulation. Two

models were used to simulate correlated gene sets data: the

multivariate normal model and the non-linear model. The

multivariate normal model was formulated as

Y~XBz
1

r
E ð5Þ

where rwas a constant, Y was a N by q observed matrix of q

response variables on each of N objects in the sample, X was a N by p

matrix describing the observed values of explanatory variables X, B

was a matrix of regression parameters, and E was a matrix of

unobserved random errors whose rows for given X were uncorre-

lated, each with mean 0 and common covariance matrix S,

S~

1 s � � � s

s 1 � � � s

..

. ..
.

P
..
.

s s � � � 1

0
BBBB@

1
CCCCA, s[ 0,0:6,1:0f g: ð6Þ

Here, we considered a common intra-gene set correlation

structure with covariance s. The covariance s was set at 0, 0.6 and

1.0. To simplify the scenario, we let B be the matrix with all

elements set to 1. To model an association between a pair of gene

sets, we allowed the strength of dependence between X and Y to

vary with the inter-gene set correlation r. In this study, the

correlation r was set at 0.2, 0.4, 0.6, 0.8 and 1.0. We also

considered a null model with r~0 (independent model) to assess

the type I error rate.

The nonlinear model was motivated by the Friedman model

[27]. Suppose X = (X1, X2, …, X6)T where Xis were distributed

independently as Uniform(0,1) and Y = (Y1,Y2) was determined by

the following equation:

Y1~10 sin (pX1X2)ze1,

Y2~20(X3{0:5)2ze2=X4,
ð7Þ

where e1 and e2 were random numbers distributed as Normal with

mean = 0 and standard deviation = 1. In the model (7), (X1, X2)

and (X3, X4) were dependent on Y in two ways – the values of (X1,

X2) would change the means of Y1 nonlinearly; the values of (X3,

X4) would alter the degrees of variation of Y2. However, (X5, X6)

was independent of both Y1 and Y2. The CID values of Y given

(X1, X2), (X3, X4) and (X5, X6) were computed respectively, to see

the capability of the statistical measures to identify different forms

of association.

For each of the models (5) and (7), the simulation data were

replicated 100 times with a sample size of 100. The p-values were

based on 1000 permutations. Power was then estimated as the

proportion of significance using the nominal level of 0.05. To

estimate the CID, we set the number of subgroups to 5 in each

simulation.

Microarray expression data
All clinical data arrays used in this study were from a patient

cohort (from 2002 to 2005) collected at National Taiwan

University Hospital (NTUH). These arrays were generated using

the Human 1A (version 2) oligonucleotide microarray from

Agilent Technologies, according to the methods provided by the

manufacturer. The expression dataset can be downloaded from

the GEO database (Accession numbers GSE24124, GSE17040

and GSE9309). The dataset includes gene expression of the tumor

tissues from 181 patients as well as the gene expression from the

adjacent non-tumor tissues of 25 patients (Table S1). Microarray

raw data went through data processing which included back-

ground correction, elimination of poor quality spots, and log

transformation of RNA measures relative to a reference

(Stratagene’s human common reference RNA) using a base-2

logarithm. The average of the expression levels and of the feature

numbers of replicated probes were then taken before statistical

analysis; the average feature numbers were initialized with a

Gene Set Association Analysis
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capital letter ‘C’ to distinguish them from the original feature

numbers.

Unsupervised GSAA on KEGG and BioCarta gene sets
The CID was further exercised via unsupervised learning to

identify the sets of genes that are associated with (or possibly

regulated by) a target gene set. A total of 186 gene sets from

KEGG [28] and 217 gene sets from BioCarta (http://www.

biocarta.com/) were downloaded from the GSEA website (http://

www.broadinstitute.org/gsea/index.jsp). We analyzed the expres-

sion of 25 paired tumor and non-tumor samples for the

unsupervised GSAA (Table S1). The 25 tumor samples and the

25 non-tumor samples were designated as 25T and 25N,

respectively. Only probes with no missing value in the microarray

expression dataset were considered. The online converting tool

DAVID [29,30] was used to map the Entrez ID of the genes

obtained from the GSEA website to the Agilent probe ID (Table

S2).

In the context of microarray experiments, the number of genes

in a gene set may be greater than the number of samples. In this

case, the value of the CID may not reflect the degree of

dependence due to the discreteness of the empirical distribution

function when the sample size is relatively small compared with

the dimension. Therefore, we selected up to the first three pairs of

regularized canonical variates for assessing statistical significance

of the latent correlation between the pair of gene sets. There are

two CID values for every combination of two gene sets --- the first

CID value comes from that one gene set is set to be the target

while the other is set to be the predictor, and the second CID value

from that the target and predictor gene sets are swapped.

Therefore, a total of 17,205 and 23,436 gene pairs in KEGG

and Biocarta datasets were inspected, and the analyses resulted in

34,410 and 46,872 CID values, respectively. In the unsupervised

gene set analysis, the number of subgroups was set to 3 when

estimating the CID.

Different approaches other than random permutations were

adopted to assess the significance of gene set association more

efficiently. Suppose there are G gene sets in the database (G is

equal to 186 in the KEGG database and 217 in the BioCarta

database). Let the ith gene set gi (i = 1, …, G) be the target (i.e. Y in

Equation (1)). The other G – 1 gene sets were set in turns to be the

predictor (i.e. X in Equation (1)) and yielded accordingly G – 1

CID values. Given a predictor gene set gj (j = 1, …, G and j?i) we

computed the adjusted values of the CID by

CIDadj(gijgj)~
CID(gijgj){mj

madj

where mj and madj was the median and median absolute deviation

(MAD) of CID(g1|gj), …, CID(gR|gj), respectively. The adjusted

Table 2. List of transcription factors and target genes in the second example of supervised GSAA.

Name of TF subnetwork TFs (gene set 1) Subnetwork target genes (gene set 2)

EE1a ESR1(5561) ACTR10(17602)

E2F1(7852) ADAMTS5(11603)

AGGF1(9464)

AGGF1(10316)

BUB3(19468)

CD44(14592)

CNOT4(6977)

SFRS1(16354)

EE1b ESR1(5561) ALG8(14180)

E2F1(7852) ATAD2(C11227.3)

CD44(14592)

DTL(C10948.8)

IVNS1ABP(11136)

RACGAP1(2299)

RFC3(18703)

YBX1(4742)

EG ESR1(5561) CCT5(815)

GATA3(14967) CPSF2(15856)

DHFR(18343)

GART(11131)

KPNB1(9017)

EGE1 ESR1(5561) KIF2C(19023)

GATA3(14967) CDCA8(9984)

E2F1(7852)

Four subnetworks have been analyzed. The transcription factors (TFs) of interest were set as gene set 1 and the target genes in the subnetwork regulated by the
transcription factors were set as gene set 2.
doi:10.1371/journal.pone.0058851.t002

Gene Set Association Analysis

PLOS ONE | www.plosone.org 7 March 2013 | Volume 8 | Issue 3 | e58851



values of the CID greater than 3.5 were potential outliers [31] and

were declared to be significant in this research.

Supervised GSAA to select the signaling transduction
pathways relative to the set of transcriptional regulators
in a population

Different patterns of gene set associations may provide an

insight into the analysis of transcriptional regulation. In the

supervised GSAA, the transcription factors of interest were

designated as gene set 1, and the genes in the selected signal

transduction pathways were designated as gene set 2. Note that the

signal transduction pathway is normally only partially regulated by

the TFs. This could reduce the sensitivity of a bottom-up

approach. However, this bottom up approach may provide an

instant biological insight in a semi-blind experiment, before

running a more sensitive top-down analysis. Figure 2 provides a

flow chart representing the general steps of performing analysis of

the association between the signaling transduction pathways and

the set of transcriptional regulators in a given population in this

study. We first designed the cohorts of interest with their

counterparts. The analyses were then performed on the micro-

array data from each cohort with their counterparts. The cohorts

under study and their counterparts for the supervised GSAA were

listed in Table S3. In each cohort, only the arrays containing no

missing values for all genes in gene sets 1 and 2 would be adopted

for further use. In the supervised gene set analysis, the number of

subgroups was set to approximately one-tenth of the cohort size

Figure 2. Flow chart for running a supervised GSAA in a selected cohort. Three major steps are included as follows. First, one has to select a
gene set containing transcription factors and/or cofactors of interest in this study. Another gene set is selected from the selected feature (signaling
transduction pathway (STP) or subnetwork (SNET)) of interest. Second, a hierarchical clustering is made to divide the similar gene expression patterns
of gene components in the STP or in the SNET into subgroups. Third, if the co-existing event is true, the p-value for GSAA would be small. A color
scale bar represents the color gradient for a series of p-values from GSAA to assist in the visualization of GSAA results when they are presented in a
diagram.
doi:10.1371/journal.pone.0058851.g002
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when estimating the CID. The p-values for the CID estimates for

our supervised GSAA were determined through the same random

permutations described in the ‘Assessment of the significance by

random permutations’ section. We claimed that the TFs were

significantly associated with the genes in the signal transduction

pathway if the p-value # 0.05.

In the first example of supervised GSAA, gene set 1 contained

two transcription factors (TFs), STAT3 and MYC. The genes in

two signal transduction pathways (STPs), proteasomes (containing

43 genes) and PDGFRB (containing 65 genes), were in turn set to

be gene set 2. Table S4 provided the complete list of genes in the

two STPs. We designed two tumor cohorts with their counterparts

(Table S3) based on two commonly used clinical pathological

indices, ER and HER. The two tumor cohorts were designated as

LumA (ER(+) and HER(2)) and LumB (ER(+) and HER(+)),

respectively. The counterpart of the tumor cohorts were 18 arrays

from the adjacent non-tumor tissues collected from the ER+
patients. Therefore, the cohort sizes were 60 and 48, and numbers

of subgroups were 6 and 5 for LumA and LumB, respectively. In

the second example of supervised GSAA, gene set 1 contained

transcription factors of interest and gene set 2 contained the target

genes in the subnetwork regulated by the transcription factors

(Table 2) [19]. The designed cohort (152A) consisted of 61 Group

IE (ER(+), PR(+)) arrays and 91 arrays from ER(2) patients (Table

S3). The number of subgroups was set to 15 in this example.

Results

Simulation results
In the simulation study, we explore the performance of our

proposed method in identifying the enriched correlation between

two gene sets through observing their mRNA expression levels. Let

the p by N matrix X be the expression levels of a set of p genes and

the q by N matrix Y be the expression levels of another set of q

genes, where N is the sample size. The goal of GSAA is to quantify

the dependence between X and Y using a single number. Five

statistical measures were evaluated for this purpose through the

simulation study. They were the coefficient of intrinsic dependence

(CID), the canonical correlation (CanCor), the projection pursuit

regression (PPR), the Kullback-Leibler distance (KLD) and the

Hellinger distance (HD). CanCor and PPR were classified as

regression-based measures because regression analysis is involved

in both methods. Furthermore, CID, KLD and HD were classified

as distribution-based statistics because they account for discrep-

ancy between marginal and conditional distributions (see the

‘Materials and Methods’ section).

Two experimental designs were simulated according to the

multivariate normal model (5). The first design was an experiment

with small-size gene sets with p = 5 and q = 2. In the second design

we considered a larger-size gene sets, each with 30 genes

(p = q = 30). We compared the performance of these statistical

methods to identify different levels of linear association between

the p-dimensional predictor variable X and the q-dimensional

target variable Y in terms of type I error rate and power. The

model used the constant r to represent the level of association and

the constant s to represent the possible dependency within Y

(Equations (5) and (6) in the ‘Materials and Methods’ section). For

each combination of r and s, 100 replications were performed for

each statistical measure with a sample size of 100. Table 3 showed

the empirical type I errors using the nominal levels of 0.01 and

0.05 for each scenario. The type I errors from the CID and

CanCor were reasonably close to or below the nominal level. PPR

appeared to have an inflated type I error rate in most cases.

CanCor, KLD and HD showed slight anti-conservatism in the

case of small-size gene sets when p = 5 and q = 2. Next, we

compared the power of the CID with the other four approaches to

detect a significant association. Figure 3 illustrated the empirical

powers using the nominal level of 0.05 for r = 0.2, 0.4, 0.6, 0.8 and

1.0. As expected, CanCor had a greater power if the data was

normally distributed, especially for smaller intra-gene set correla-

tion (s#0.6). In the case of small-size gene set, PPR performed

slightly better than the CID while PPR was unable to adequately

control the type I error rate. The other two distribution-based

methods, KLD and HD, had the least power in all cases in the

multivariate normal model (Figure 3A). The power of all methods

increased gradually with increasing inter-gene set correlationr. On

the other hand, the power of the CID and CanCor was

comparable and both outperformed other approaches when the

gene set size was modest with p = q = 30 (Figure 3B).

To explore the robustness of our proposed method with regard

to non-linear association data, we simulated non-linearly associ-

ated gene set data according to model (7). Figure 4 showed the

Table 3. Type I errors of five methods for the linear model at levelsa = 0.01 and 0.05.

Gene set sizes Intra-Correlation (s) Nominal levels Methods

CID CanCor PPR KLD HD

p = 5;q = 2 s = 0.0 0.01 ,0.01 0.01 0.02 0.01 0.01

0.05 0.08 0.06 0.08 0.08 0.06

s = 0.6 0.01 ,0.01 0.03 0.02 0.05 0.01

0.05 0.03 0.08 0.06 0.08 0.05

s = 1.0 0.01 ,0.01 ,0.01 ,0.01 ,0.01 0.01

0.05 0.03 0.07 0.07 0.04 0.06

p = q = 30 s = 0.0 0.01 0.02 0.03 0.01 0.02 0.02

0.05 0.05 0.08 0.07 0.03 0.03

s = 0.6 0.01 ,0.01 0.01 ,0.01 ,0.01 0.01

0.05 0.03 0.03 0.03 0.03 0.05

s = 1.0 0.01 0.01 0.02 0.02 ,0.01 ,0.01

0.05 0.05 0.03 0.07 0.06 0.08

doi:10.1371/journal.pone.0058851.t003
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average power over 100 simulations for each method using the

nominal level of 0.05. Under the null hypothesis, the type I errors

of all methods were close to the nominal level of 0.05 (0.07 for

CanCor, 0.06 for CID, 0.08 for PPR, 0.06 for KLD, and 0.05 for

HD) when testing on (X5, X6). Under the alternative hypothesis of

association, the CID appeared to be the most powerful method in

detecting the non-linear association in either (X1, X2) or (X3, X4)

(both had power equal to 1), whereas CanCor and PPR had power

less than 0.4. If we considered the scenario to detect both (X1, X2)

and (X3, X4) at the same time (denoted ‘INT’ in Figure 4), the

power of the CID was also equal to 1; whereas PPR and CanCor

had power 0.03 and 0.01, respectively. Both KLD and HD had

poor performance in detecting non-linear associations; the true

positive rates were all close to 0 regardless of detecting (X1, X2),

(X3, X4), or their intersection. As a result, the CID provided a more

powerful test than the other methods to detect the non-linear

association between gene sets.

Unsupervised gene set association analysis using the CID
The CID was used to further identify associated gene sets by

using microarray expression data. The microarray expression data

consists of 50 samples, 25 from tumor samples and 25 from non-

tumor samples; they were designated as 25T and 25N, respec-

tively. The pairwise associations of the gene sets in KEGG [32]

and BioCarta (http://www.biocarta.com) were analyzed for 25T

and 25N and the numbers of significantly associated gene-set pairs

Figure 3. Power analysis of five methods in the multivariate normal model at level a = 0.05. (A) True positive rate under different levels of
association for p = 5 and q = 2. (B) True positive rate under different levels of association for p = q = 30. From top to bottom panels, the intra-gene set
correlation coefficients were s = 0, 0.6, and 1, respectively.
doi:10.1371/journal.pone.0058851.g003
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were shown in Figure 5. We observed that the significant gene-set

pairs were very different in tumor and non-tumor samples. There

were 890 out of 17,205 (5.17%) pairs of gene sets declared

significant in the KEGG database; 0.45% (4 out of 890) were

significant in both 25T and 25N, 44.27% (394 out of 890) were

significant only in 25T, and 55.28% (492 out of 890) were

significant only in 25N. In the BioCarta database, we examined

23,436 pairs of gene sets and 1,419 (6.05%) of them were

significant; 2.40% (34 out of 1,419) were significant in both 25T

and 25N, 48.77% (692 out of 1,419) were significant only in 25T,

and 48.83% (693 out of 1,419) were significant only in 25N. The

result implied that the relation between gene sets might be altered

along with the development of breast cancer.

Tables S5 and S6 presented the pairs of gene sets that were

significantly related in the KEGG and BioCarta databases,

respectively. Columns corresponded to the target gene sets, X,

and rows to the predictor gene sets, Y. To emphasize the outcomes

in different cohorts, significantly associated gene-set pairs in the

tumor sample were labeled in red; significantly associated gene-set

pairs in the non-tumor sample were labeled in green, and

significantly associated gene-set pairs in both samples were labeled

in yellow in Tables S5 and S6. In the KEGG database, there were

154 of 186 target gene sets associated with at least one predictor

gene set; 20 and 24 out of these 154 gene sets had associations only

in 25T and in 25N, respectively. In the BioCarta database, there

were 193 of 217 target gene sets associated with at least one

predictor gene set; 16 and 21 out of these 193 gene sets had

associations only in 25T and 25N, respectively.

Figure 6 provided examples for our attempt at relating the

statistical significance of the CID to possible biological meanings.

In these examples, the set of 13 genes in the graft versus host

disease pathway in the KEGG database was used as the target (Y).

We compared the CID results when the twenty-eight genes in the

amyotrophic lateral sclerosis als pathway (Figure 6A) and the

forteen genes in the selenoamino acid metabolism pathway (Figure

6B) were set to be the predictor (X), respectively. The former

pathway (hereafter referred to as ‘related pathway’) yielded the

largest value of the adjusted CID (i.e., 4.350, corresponding to a

CID value 0.399) and the latter pathway (hereafter referred to as

‘unrelated pathway’) had a relatively small adjusted CID (i.e., -

1.539, corresponding to a CID value 0.053). The expression of

genes in related pathways showed the splits of the cohort into three

subgroups of 19, 3, and 3 arrays, respectively, by hierarchical

clustering (labeled as brown, blue, and pink in Figure 6A), whereas

expression of genes in unrelated pathways divided 25T into three

subgroups of 21, 3, and 1 arrays (labeled as brown, pink, and blue

in Figure 6B). To reduce the computational complexity, we

consider up to the first three canonical variates from both gene sets

for the CID estimation.

Heatmaps for the first three canonical variates of the target gene

set and those of the predictor gene set in each subgroup were

shown in Figure 6. The marginal and conditional distributions of

the target gene sets were evaluated accordingly. The weighted

squared discrepancies between the marginal and conditional cdfs

(i.e., Equation (4) in ‘Materials and Methods’ Section) evaluated

for one sample were indicated by the widths of the bars in the right

panel of Figure 6. The discrepancy was noticeably large if the

predictor gene set was claimed to be associated with the target

gene set (Figure 6A, right panel). However, for the unrelated

pathway, most of the conditional cdfs were similar to the marginal

cdf and resulted in a small discrepancy and, therefore, a small CID

value (Figure 6B, right panel). In the related pathway, the

subgroup labeled in blue contributed 75.82% to the CID value

(Figure 6A, right panel). By observing the heatmap of three arrays

in this subgroup (Figure 6A, left panel), one can see that the

expression levels in this subgroup were relatively homogeneous

with regard to genes; that is, the three canonical variates in Array

ID 1507, 1261, and 4405 were all relatively low. When evaluating

such homogeneous subgroups using Equation (3), larger values of

the conditional cdf were usually produced. This kind of

homogeneity was not obvious in unrelated pathways.

Supervised gene set association analysis using the CID
Here, the CID was adopted for identifying the functional

expression of a whole set of signaling molecules (gene set 2) to be

significantly associated with the given transcription factors (gene

set 1). The analytical flowchart has been outlined in Figure 2 (see

the ‘Materials and Methods’ section).

Two examples were illustrated in this study. The first example,

performing the GSAA analysis using the CID (Figure 7A),

demonstrated that a significant dynamical change of a signaling

transduction pathway (STP) could possibly be due to the co-

existence of two transcription factors (TFs). The predictor consists

Figure 4. Comparing the performance of five methods in the
nonlinear model. The height of the bars shows the true positive rate
under different levels of association. The dashed line showed the
nominal level of 0.05 for detecting (X1,X2)\(X3,X4) (denoted as ‘INT’),
(X1, X2), and (X3, X4).
doi:10.1371/journal.pone.0058851.g004

Figure 5. Venn diagrams for the number of significant gene-set
pairs in analyses. (A) KEGG database; (B) BioCarta database.
doi:10.1371/journal.pone.0058851.g005
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of two transcription factors, MYC and STAT3, while the gene sets

in the proteasomes_STP and PDGFRB_STP were the targets.

When a specific population with low expression levels of MYC and

STAT3 appears to be the counterpart of cancer subtypes, such as,

ERBB2+, we observed that PDGFRB_STP co-expressed with

aberrantly expressed MYC and STAT3 in two tumor subtypes,

luminal A and luminal B (p-values # 0.001 in Figure 7A left

panel). When the tumor subtypes without a counterpart were

analyzed via GSAA, we observed PDGFRB_STP co-expressed

with aberrantly expressed MYC and STAT3 only in luminal A

(Figure 7A right panel). The GSAA between the protea-

somes_STP and two transcription factors, MYC and STAT3, was

performed simultaneously by using the cohort with a counterpart

or without a counterpart for two cohorts, respectively. Luminal A

has relatively higher mRNA levels of both MYC and STAT3 than

luminal B does. Therefore, the co-expression event between these

two gene sets is hypothesized to be primarily in luminal A. GSAA

results suggest that the most relevant proteasomes_STP will be co-

expressed with MYC and STAT3 in luminal A not in luminal B

(Figure 7A).

In the second example, we picked four subnetworks to be

analyzed by GSAA to show the co-expression of the network

components with selected TFs. This example demonstrated GSAA

to be powerful in hunting for the potential regulators of a given

gene signature. ESR1 (E), GATA3 (G) and E2F1 (E1) were the three

transcription factors of choice based on their combinatorial co-

expression relationships with the published gene sets (Table 2)

[19]. The TFs were found relevant to the previously predicted

network components in all subnetworks using the subcohort of 61

group IE (ER(+) and PR(+)) and 91 ER(-) breast cancer patients

(152A) but not using the subcohort of 18 and 7 non-tumor samples

(NT) from ER(+) and ER(-) patients, respectively (Figure 7B). The

p-values were all less than 0.001 in 152A whereas the p-values in

NT were all greater than 0.05. Both 152A and NT, which

combined part of the ER(+) and ER(-) subcohorts, were

heterogeneous in nature.

Discussion

The main goal of this study is to identify differential association

between the pair of gene sets based on a predefined collection of

gene sets using the gene expression data. In our previous work,

gene expression relationship between a transcription factor and a

target gene has been established by combining both univariate

Figure 6. Example of GSAA using the CID. Heatmaps for the first three canonical variates of genes in the predictor gene set (X) and those of
genes in the target gene set (Y) (i.e., the graft versus host disease pathway) for each subgroup were shown in the left and center panels. The
weighted squared discrepancies between the marginal and conditional cdfs evaluated for one sample were indicated by the widths of the bars in the
right panel. (A) Biosynthesis of amyotrophic lateral sclerosis als (related) pathway. (B) Selenoamino acid metabolism (unrelated) pathway.
doi:10.1371/journal.pone.0058851.g006
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CID and the correlation coefficient [17]. We further developed a

bivariate CID as a simple version of the multivariate space of the

transcriptional regulatory network [19]. In this study, the CID

serves as a statistical measure to quantify partial linear and non-

linear relationship between two gene sets. From the numerical

results of the synthesized data set, we found that the proposed

method provides a robust and powerful statistical framework for

identifying linear or non-linear association between gene sets.

The distribution-based methods, CID, KLD and HD, adopt a

similar concept of dependence by measuring discrepancy between

the marginal and conditional distributions. However, KLD and

HD were much less powerful than the CID. This might be due to

the fact that more information loss had occurred during the

estimation of the probability density functions (pdfs) for KLD and

HD than during the estimation of the cumulative distribution

functions (cdfs) for the CID. For each observation in the sample,

the estimation of cdfs was independent, whereas the estimation of

pdfs relying on subgrouping produced only one estimate for all

observations in the same subgroup. The former introduced

variability into the estimation from which the CID can more

precisely differentiate different levels of association. Therefore,

results showed that the CID has a higher power than KLD and

HD. The estimation of cdfs is technically easier to compute than

the estimation of pdfs, whose precision might also be altered by

using different methods of subgrouping.

When applied to a breast cancer microarray dataset, the results

reveal that our approach could discover pairs of gene sets with

enriched associations hidden in the data. In addition, the identified

gene set associations may be useful in the regulation or network

construction of gene sets, and they can also be used to investigate

different co-expression patterns found in different clinical cohorts.

Here, the GSAA using a multivariate CID suggested a bottom-up

approach for identifying the functional expression of a whole set of

signaling molecules (gene set 2) to be significantly associated with

the given transcription factors (gene set 1) (Figure 7). In the first

example of supervised GSAA, we had demonstrated that the

PDGFRB signal transduction pathway (PDGFRB_STP) was

differentially regulated by STAT3 and MYC in non-tumor and

tumor components (Figure 7A), which was supported by our

previous studies ([33] and unpublished data of ours). In the second

example, the results suggested that expression profiles of the target

gene sets follow a consensus pattern of dynamical changes in NT

(Figure 7B). However, the consensus feature was not found in

152A.

This GSAA could be less hypothesis driven and less steps

required in uncovering the potential interactions between two

gene sets of interest. The proposed CID aims to discover the target

gene sets whose expression patterns follow a consensus pattern of

dynamical changes in a population. Therefore, GSAA may not be

sensitive to those populations with little dynamical changes in the

gene expression patterns of two gene sets. In addition, the

heterogeneous nature of cancer is more likely to make difficulties

in finding the consensus feature in a cohort to be reproducible in

another cohort. Therefore, it is recommended to combine a tumor

cohort with its counterpart to enrich the expression patterns so

that the false detection rate can be significantly reduced by

eliminating the confounder effect.

In conclusion, we have developed a methodology for extracting

multivariate associations by using the coefficient of intrinsic

dependence (CID). It is more powerful especially when the type

of association was present in a form of non-linearity or variation.

To date, most of the methods developed for GSAA have focused

on the statistical tests of association of phenotypes rather than on

the inter-gene set correlations. Our approach has the potential to

construct a statistically relevant network from microarray data,

and it can be used to complement the conventional gene set

Figure 7. Supervised GSAA on two selected gene sets that show potential gene co-expression relationship in a given population.
Panel A shows the first example for the co-existing gene expression relationship between transcription factors and a signal transduction pathway of
interest. MYC and STAT3 are the two chosen transcription factors. Both proteasomes and PDGFRB signal transduction pathways were selected for
predicting their gene co-expression relationship with MYC and STAT3 via GSAA in a cohort, respectively. Lumial A and luminal B are the two cohorts.
Panel B shows the second example for the co-existing gene expression relationship between transcription factors and a subnetwork of interest.
ESR1(E), GATA3(G) and E2F1(E1) are the three transcription factors of choice based on their combinatorial co-expression relationships with the
published gene sets [19]. The designation for each co-expression relationship is indicated next to the results. For instance, the final labeled names for
the gene sets of subnetworks a, b and transcription factors ESR1 and E2F1 (EE1) have been designated as EE1a, EE1b. 152A stands for the dataset
from a cohort including 61 group IE and 91 ER(-) breast cancer patients. NT stands for another sample including 25 non-tumor parts of the breast
cancer patient sample.
doi:10.1371/journal.pone.0058851.g007
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analysis which is only interested in identifying gene sets associated

with the studied phenotypes.
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