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a b s t r a c t 

Objective: Incorporating spatial analyses and online health information queries may be beneficial in un- 

derstanding the role of Google relative search volume (RSV) data as a secondary public health surveillance 

tool during pandemics. This study identified coronavirus disease 2019 (COVID-19) clustering and defined 

the predictability performance of Google RSV models in clustered and non-clustered areas of the USA. 

Methods: Getis-Ord General and local G statistics were used to identify monthly clustering patterns. 

Monthly country- and state-level correlations between new daily COVID-19 cases and Google RSVs were 

assessed using Spearman’s rank correlation coefficients and Poisson regression models for January–

December 2020. 

Results: Huge clusters involving multiple states were found, which resulted from various control measures 

in each state. This demonstrates the importance of state-to-state coordination in implementing control 

measures to tackle the spread of outbreaks. Variability in Google RSV model performance was found 

among states and time periods, possibly suggesting the need to use different frameworks for Google RSV 

data in each state. Moreover, the sign of correlation can be utilized to understand public responses to 

control and preventive measures, as well as in communicating risk. 

Conclusion: COVID-19 Google RSV model accuracy in the USA may be influenced by COVID-19 transmis- 

sion dynamics, policy-driven community awareness and past outbreak experiences. 

© 2021 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious 

Diseases. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Spatial spread is one of the most important aspects in un- 

erstanding disease epidemics ( Franch-Pardo et al., 2020 ), includ- 

ng the coronavirus disease 2019 (COVID-19) pandemic. During 

he outbreak, multiple studies have discussed COVID-19 spatial 

atterns in the USA using both state- ( Cordes and Castro, 2020 ; 

aroko et al., 2020 ; Ramírez and Lee, 2020 ) and county-level anal- 

ses ( CDC COVID-19 Response Team, 2020 ; Dasgupta et al., 2020 ; 

esjardins et al., 2020 ; Mollalo et al., 2020 ; Oster et al., 2020a ,b;

nyder and Parks, 2020 ; Wang et al., 2020 ; Andersen et al., 2021 ).
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ost of these studies dealt with cluster detection analyses, a 

ecessary approach in allocating resources, implementing strict 

ontrol measures, and evaluating currently implemented policies 

 Desjardins et al., 2020 ). Disease mapping also enables targeted 

ublic health responses ( Oster et al., 2020b ) through assessment of 

he distribution of high-risk areas and their progression through- 

ut the outbreak period ( Desjardins et al., 2020 ). 

Countrywide analyses have described COVID-19 clusters in 

he USA ( CDC COVID-19 Response Team, 2020 ; Dasgupta et al., 

020 ; Desjardins et al., 2020 ; Oster et al., 2020a ,b), vulnera- 

ility assessments ( Snyder and Parks, 2020 ; Wang et al., 2020 ) 

nd spatial modelling which employed various explanatory vari- 

bles ( Mollalo et al., 2020 ; Andersen et al., 2021 ) for the first 3–

 months of the outbreak. State-level studies also characterized 

merging clusters ( Cordes and Castro, 2020 ; Maroko et al., 2020 ; 

amírez and Lee, 2020 ). However, few studies have analysed a 
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Table 1 

Dataset description. 

Dataset Data description Data unit Source Utilization 

Case data Cumulative daily cases New 

daily cases 

County-level data State-level 

data 

https://github.com/ 

CSSEGISandData/COVID-19/ 

tree/master/ 

csse _ covid _ 19 _ data/ 

csse _ covid _ 19 _ time _ series 

https: 

//covidtracking.com/data 

Hot spot analysis State-level 

correlation and prediction 

analysis 

Spatial data Spatial features and 

population numbers (of 48 

contiguous states and the 

District of Columbia) 

County-level data https: 

//hub.arcgis.com/datasets/ 

48f9af87daa241c4b267c5931ad3b226 _ 

0 

Spatial analysis and 

visualization 

Google RSV data Google RSV data ranged 

from 0 ∼100 

Country- and state-level 

data 

https: 

//trends.google.com/trends 

Country- and state-level 

correlations, state-level 

prediction analysis 

Mobility data Changes in time spent in six 

categorized places (retail 

and recreation, grocery and 

pharmacy, parks, transit 

stations, workplaces and 

residential) compared with 

baseline days (median value 

from 3 January to 6 

February 2020) 

State-level data https://www.google.com/ 

covid19/mobility/ 

State-level prediction 

analysis 

RSC, relative search volume. 
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ear of COVID-19 spatiotemporal patterns along with temporal pre- 

ictability performances of Google relative search volume (RSV) 

odels in clustered and non-clustered areas. 

Google RSVs are emerging digital data that are being used as a 

econdary public health surveillance tool during the COVID-19 pan- 

emic. These data are collected during information-seeking activi- 

ies on Google search engines that are normalized during a speci- 

ed period ( Google, 2020 ). These online search data potentially de- 

ict patterns of information-seeking behaviours that represent the 

ublic’s concerns, awareness or restlessness ( Ayyoubzadeh et al., 

020 ; Husnayain et al., 2020a ). This approach was part of 

n infodemiological study that examined the determinants and 

istributions of health information for public health purposes 

 Eysenbach, 2006 ). It may capture wider population events than 

onventional surveillance systems ( Milinovich et al., 2014 ), as peo- 

le who are ill may not contact local healthcare facilities, but they 

ay still search for online health information. 

In the case of COVID-19, various studies in the early phase of 

he outbreak suggested that Google searches peaked earlier than 

ewly confirmed cases ( Effenber ger et al., 2020 ; Strzelecki, 2020 ) 

nd correlated well with the rise of COVID-19-related data 

 Husnayain et al., 2020a ,b; Li et al., 2020 ; Ortiz-Martínez et al.,

020 ). Similar results were also reported by several studies in 

he USA ( Bento et al., 2020 ; Panuganti et al., 2020 ; Yuan et al.,

020 ). Certain studies also assessed the predictability performance 

f Google RSVs at national and regional levels, which resulted in 

igh correlations (the highest correlation coefficients were 0.71 

nd 0.88) ( Kurian et al., 2020 ; Mavragani and Gkillas, 2020 ). More-

ver, a high accuracy of Google search models was also found in 

n earlier state-level analysis ( Cousins et al., 2020 ). However, all of 

hese studies were undertaken in the first 3 months of the out- 

reak, which potentially resulted in high performance of the mod- 

ls. Thus, an extensive study covering a longer-term assessment of 

he predictability of the Google RSV model, specifically in clustered 

reas, is needed urgently. Such a study is necessary to understand 

he role of Google RSV data as a secondary public health surveil- 

ance tool during a pandemic, and to be better prepared for fu- 

ure outbreaks. Therefore, this study aimed to identify COVID-19 

ot and cold spots of disease clustering, and define the predictabil- 

ty performance of the Google RSV model in clustered and non- 
lustered areas of the USA. 

270 
aterials and methods 

tudy area and data acquisition 

County-level data of cumulative daily COVID-19 cases from 

8 states (all US contiguous states except Alaska and Hawaii) 

nd the District of Columbia were collected from Johns Hop- 

ins University’s Center for Systems Science and Engineering 

IS dashboard ( Dong et al., 2020 ), along with new state-level 

aily COVID-19 cases from the COVID tracking project ( The At- 

antic, 2021 ). Data from 20 January to 31 December 2020 were 

sed. Google RSV data were retrieved from the Google Trends 

ebsite ( Google Trends, 2020 ) for the USA at country and sub- 

egional level for health categories and web search type. Data were 

ueried for COVID-19-related terms, topics and disease; the top re- 

ated queries; and most-searched COVID-19 terms in 2020 with 

 lag of 7 days. This dataset gives the number of search activi- 

ies made through Google search engines. Data were retrieved for 

he overall time period (on a weekly basis) and in monthly pe- 

iods (on a daily basis) for the time frame of the entire study. 

he daily data were adjusted with weekly-based data to obtain ad- 

usted daily data for the overall study period, as used in previous 

pproaches ( Bewerunge, 2018 ; Rengasamy et al., 2019 ). In addition, 

oogle mobility data were used in constructing Google RSV mod- 

ls. These mobility data represent changes in time spent in catego- 

ized places. Data were queried with a lag of 7 days from COVID-19 

ommunity Mobility Reports ( Google, 2021 ). The datasets used for 

his analysis are listed in Table 1 . All datasets were aggregated into 

onthly subsets to describe epidemic progression patterns over 

ime. 

ata analysis 

Getis-Ord General G and local G statistics were utilized to iden- 

ify monthly hot and cold spots for COVID-19 incidence rate clus- 

ering patterns. G statistics are a distance-based approach ( Ord and 

etis, 1995 ) that estimate a z-score from observed and expected 

patial clustering patterns. The general G statistic was calculated 

s follows: 

 = 

∑ n 
1=1 

∑ n 
j=1 w i, j x i x j 

∑ n 
i =1 

∑ n 
j=1 x i x j 

, ∀ j � = i 

https://www.github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series
https://www.covidtracking.com/data
https://hub.arcgis.com/datasets/48f9af87daa241c4b267c5931ad3b226_0
https://trends.google.com/trends
https://www.google.com/covid19/mobility/
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here x i and x j are attribute values for features i and j, w i, j is 

he spatial weight between features i and j, n is the number of 

eatures in the dataset, and ∀ j � = i indicates that features i and j

annot be the same feature ( Esri, 2021 ). 

A positive z-score indicates spatial clustering in the dataset, 

hereas negative values represent low clustering patterns. In ad- 

ition, a z-score close to zero may represent a random spatial pat- 

ern in the observation ( Getis and Ord, 1992 ). In this study, the

onthly COVID-19 incidence rate was used as an input feature, and 

patial relationships between spatial features were determined as 

ontiguity edge corners. Furthermore, an optimized hot spot anal- 

sis of local G values was used to identify distributions of monthly 

OVID-19 hot and cold spots. P < 0.05 was considered to indicate 

tatistical significance. A clustered state was defined as the pres- 

nce of hot spot counties, cold spot counties or both. 

Monthly country-level correlations between new daily COVID- 

9 cases and Google RSVs were assessed using Spearman’s rank 

orrelation coefficients due to the small numbers of observations 

nd non-normal distributions of the response variables. P < 0.05 

as considered to indicate statistical significance. A moderate cor- 

elation was determined as Spearman’s rank correlation coeffi- 

ient of ≥0.5, with ≥0.7 considered a strong correlation. The term 

COVID testing’ (search term) was chosen to assess monthly state- 

evel correlations. This term was used as it may reflect the impor- 

ant issue of COVID-19 testing during the research period. 

Moreover, Google RSV models employing highly correlated 

earch data with a lag time of 7 days were calculated using Poisson 

egressions in a generalized linear model to predict current state- 

evel new daily COVID-19 cases. A Poisson regression was used 

s a response variable for count data that did not follow a nor- 

al distribution ( Johnston, 1993 ). Models were constructed using 

oogle RSVs and mobility data (with the highest correlation coef- 

cient with case data). Model performance in the in-sample data 

as determined by root mean squared error (RMSE) values, Akaike 

nformation criterion (AIC) and Bayesian information criterion (BIC) 

o compare the performance between models. Multi-layer maps 

ere also created to define monthly predictability performances of 

oogle RSV models in clustered and non-clustered areas of the USA 

or a 1-year analysis. All spatial analyses and visualizations were 

onducted using ArcGIS Pro Version 2.6.1 (ESRI, Redlands, CA, USA), 

nd statistical analyses were performed using SAS Version 9.4 (SAS 

nstitute, Cary, NC, USA). 

esults 

OVID-19 spatial clusters in the USA 

In the early stage of the disease outbreak, country-level inci- 

ence rates were 0.0 02~0.0 05 per 10 0,0 0 0 population, with higher

ncidence rates in county-level data, which ranged from 0.129 to 

.370 per 10 0,0 0 0 population, as shown in Table 2 . However, start-

ng in March 2020, huge increases in cases raised the country-wide 

ncidence rate to 57.110 per 10 0,0 0 0 population and the county- 

evel incidence rate to 1011.124 per 10 0,0 0 0 population. This in- 

reasing trend led to a massive national incidence rate, reaching 

ore than 10 0 0 cases in November 2020. Furthermore, counties 

ith the highest incidence rates differed from month to month, 

ndicating the rapid spread of the disease throughout the country. 

The Getis-Ord General G test ( Table 3 ) showed clustered pat- 

erns in all months during the study period, except in January 

020 due to the limited case count and distribution. Local G ex- 

ibited the first cluster identified in California in February 2020 

 Figure 1 ). Afterwards, clusters appeared in neighbouring states, in- 

luding Washington, Idaho and Colorado, as well as a cluster in the 

astern part of the country that grew until May 2020. During this 

eriod, two clusters were also found in counties in the southern 
271 
SA that expanded into large clusters from April to August 2020. 

owever, beginning in September 2020, clusters were circulating 

n counties in the central USA, and then progressed into more- 

ortherly parts of the country. In contrast, cold spots formed con- 

tantly in eastern counties from June to December 2020. 

redictability performance of Google RSV models 

During the study period, low to high significant correlations 

etween new daily COVID-19 cases and Google RSVs were found 

n country-level data ( Table 4 ). Strengths of correlations were 

ncreased to the highest point in June 2020 and decreased as 

he outbreak progressed. For the state-level analysis ( Table 5 ), 

ignificant correlations began to emerge in March 2020 (38.78%) 

nd this was the highest point. Percentages of significant cor- 

elations fluctuated and increased in June 2020 (22.45%) and in 

ovember 2020 (26.53%). While the number of states with clus- 

ered areas increased, numbers of significant correlations were 

nly found in low percentages, ranging from 4.08% to 24.49%. 

Strong significant correlations were found in several states with 

lustered and non-clustered counties during the research period, 

ncluding California, Florida, Illinois, New York and Texas in March 

020, and Texas and South Carolina in June 2020 ( Figure 2 ). These

ndings suggest that strong correlations were rarely found in clus- 

ered areas in the USA during the COVID-19 outbreak. Moreover, 

he strength of the correlations tended to decrease as the outbreak 

rogressed. 

In terms of correlation signs (positive or negative), weak nega- 

ive correlations were found in several clustered areas, as shown in 

able 5 . A negative correlation in this study illustrates a declining 

rend in information searches as the number of cases increased. 

urthermore, to understand the pattern of correlations over time 

nd time series of cases, data from three states are presented in 

igure 3 as examples. This figure shows time series patterns of 

ew daily COVID-19 cases per 10 0,0 0 0 population in Florida, Illi- 

ois and Maryland, along with their monthly correlations with 

oogle search volumes during the study period. Their cluster char- 

cteristics as a hot spot, cold spot or non-significant area were de- 

ermined based on Table 5 . Figure 3 demonstrates that linearity 

etween the strength of the correlation and the increase in cases 

nd cluster characteristics differed between states. Significant cor- 

elations only tended to be found in the early stages of the out- 

reak. This finding suggests diverse performance of Google RSV 

ata among states and outbreak periods. 

Furthermore, the performance of the Google RSV models in 

trongly correlated areas ( Table 6 ) resulted in RMSE values in un- 

lustered areas ranging from 81.94 to 95.87, while in clustered ar- 

as (hot spots, cold spots and both), RSME values ranged from 

1.92 to 1629.92. These findings suggest that Google RSV models 

ay have performed slightly better in clustered areas, but model 

erformances tended to be unstable, as illustrated by the large 

MSE range. In addition, mobility variables, particularly transit sta- 

ions, workplaces and parks, were identified as important variables 

n model development. However, huge RMSE values may suggest 

he absence of other important explanatory variables in the mod- 

ls. 

iscussion 

patial heterogeneity of COVID-19 cases at state level 

As of 27 December 2020, new cases of COVID-19 in the USA 

ccounted for 68% of all new cases in the Americas, placing the 

SA as the country with the highest number of new cases and 

eaths ( World Health Organization, 2020 ). The rapid spread of this 
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Table 2 

Monthly incidence rates of coronavirus disease 2019 in the USA. 

Month, 2020 

Country-level incidence 

rate a 
Counties with the highest incidence rate 

(state) 

County-level 

incidence rate a 

January 0.002 Suffolk (MA) 0.129 

Santa Clara (CA) 0.051 

King (WA) 0.046 

Cook (IL) 0.038 

Orange (CA) 0.031 

February 0.005 San Benito (CA) 3.370 

Humboldt (CA) 0.720 

King (WA) 0.231 

Washington (OR) 0.170 

Sacramento (CA) 0.132 

March 57.110 Westchester (NY) 1011.124 

Blaine (ID) 886.508 

Rockland (NY) 872.079 

Nassau (NY) 624.511 

Richmond (NY) 596.974 

April 271.981 Lincoln (AR) 5764.018 

Bledsoe (TN) 3951.936 

Nobles (MN) 3403.514 

Marion (OH) 3324.470 

Dakota (NE) 3081.114 

May 218.057 Trousdale (TN) 15,385.550 

Colfax (NE) 5159.589 

Dakota (NE) 4729.698 

Lake (TN) 4616.770 

Buena Vista (IA) 3776.787 

June 253.575 Lee (AR) 6528.712 

Buena Vista (IA) 4421.604 

East Carroll (LA) 3797.139 

Lake (TN) 3549.383 

Chattahoochee (GA) 3132.424 

July 581.399 La Salle (TX) 4373.808 

Madison (TX) 4331.901 

Crockett (TX) 3847.181 

Chicot (AR) 3320.243 

Columbia (FL) 3153.315 

August 440.344 Lafayette (FL) 13,001.420 

Wayne (TN) 6234.385 

Issaquena (MS) 5811.321 

Chattahoochee (GA) 4909.811 

Chicot (AR) 4069.975 

September 362.574 Emmons (ND) 4612.707 

Woodward (OK) 4565.296 

Chattahoochee (GA) 4522.657 

Rosebud (MT) 4075.067 

Pawnee (KS) 3717.633 

October 577.555 Bon Homme (SD) 12,994.680 

Norton (KS) 12,112.020 

Sheridan (KS) 6856.455 

Faulk (SD) 6250.000 

Buffalo (SD) 6200.787 

November 1351.011 Crowley (CO) 20,244.420 

Lee (KY) 10,434.420 

Childress (TX) 10,114.060 

Foster (ND) 8712.459 

Jones (IA) 8642.276 

December 1926.729 Bent (CO) 14,336.190 

Lincoln (CO) 11,687.610 

Pershing (NV) 11,075.760 

Alfalfa (OK) 9086.337 

Lassen (CA) 8743.610 

a Incidence rate per 10 0,0 0 0 population. 

d

f  

p

i  

t

m

p

t  

T

d

m

b

2

J

t

o

c

isease was observed from geographic variations of the most af- 

ected counties in Table 2 , which is in line with a previous re-

ort ( Oster et al., 2020b ). In addition, COVID-19 spatial clusters 

n the USA began to emerge in March 2020 ( Figure 1 ) as a na-

ional emergency was declared and widespread testing was imple- 

ented ( Taylor, 2020 ). However, some clusters continued to ex- 

and with the rise of protests, social distancing restrictions, and 

he re-opening of public facilities in April 2020 ( Hauck et al., 2020 ;

aylor, 2020 ). Conditions worsened with the end of national social 
272 
istancing guidelines on 30 April 2020, which led to the imple- 

entation of re-opening policies in various states in May 2020, 

ut conditions varied between counties and cities ( Hauck et al., 

020 ). As a consequence, multiple new clusters began to arise in 

une 2020, as the highest numbers of new daily cases occurred in 

he south, west and midwest regions of the country ( Taylor, 2020 ). 

The US Government also loosened travel restrictions at the end 

f June 2020 ( US Department of Defense, 2021 ). During this period, 

lusters were found in southern and western counties, as reported 
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Table 3 

Results of the global spatial autocorrelation test. 

Month, 2020 Observed General G z-score P -value Result 

January 0.002 0.659 0.510 Random 

February 0.011 3.247 0.001 Clustered 

March 0.002 49.168 < 0.001 

April 0.001 30.914 < 0.001 

May 0.001 14.150 < 0.001 

June 0.001 28.119 < 0.001 

July 0.001 51.984 < 0.001 

August 0.000 36.725 < 0.001 

September 0.000 34.670 < 0.001 

October 0.000 49.418 < 0.001 

November 0.000 49.154 < 0.001 

December 0.000 27.123 < 0.001 

Figure 1. Distribution of coronavirus disease 2019 hot and cold spots in the USA. 
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reviously ( Oster et al., 2020b ). Massive clusters continued to grow 

n those areas as positive tests increased in older age groups, lead- 

ng to higher numbers of hospitalizations, severe outcomes and fa- 

al cases ( Oster et al., 2020a ). The high COVID-19 incidence rate 

ontinued to cause huge clusters in southern counties, which then 

irculated into central US counties and progressed into northern 

arts of the country. In addition, better control measures imple- 

ented in eastern counties may have been responsible for cold 

pots arising in those areas. 

Research findings showed that small clusters in one or several 

eighbouring states in the early stage of the outbreak began to de- 

elop into larger clusters, involving multiple states, as the outbreak 

rogressed. These results demonstrate the importance of state-to- 

tate coordination in implementing control measures to tackle the 

pread of new infectious disease outbreaks. Having various preven- 

ive policies in neighbouring areas may have promoted the mas- 

ive growth of clusters. As control measures at state and local lev- 

ls directly influence the disease incidence and cluster magnitude 

 CDC COVID-19 Response Team, 2020 ; Desjardins et al., 2020 ), co- 

rdinated responses are needed urgently. Moreover, this study il- 

ustrates that spatial analyses provided clear spatial patterns of 

isease spread, which could lead to the timely implementation of 

ontrol measures before high-level community transmission has 

ccurred. Therefore, this type of analysis should be considered as a 

rucial approach in public health surveillance during outbreak sit- 
e

273 
ations to implement focused public health actions. However, spa- 

ial clusters may not be induced by the time variable alone, and 

ncorporating other explanatory variables would be beneficial in 

nderstanding differences in spatial patterns. 

actors that may affect the predictability performance of Google RSV 

odels 

Furthermore, as described in the Results section above, cor- 

elations between RSVs and COVID-19 varied in space and time, 

nd the strength of the correlations also tended to decrease as 

he outbreak progressed. Similar results were found in a previ- 

us study, which reported that COVID-19 Google searches did not 

orrespond with actual disease dynamics in 40 European coun- 

ries ( Szmuda et al., 2020 ). Diverse performances of Google RSV 

odels found in this study suggest that the model performance in 

redicting new cases can be affected by several aspects, including 

OVID-19 transmission dynamics, policy-driven community aware- 

ess, and past outbreak experiences. 

COVID-19 transmission dynamics may affect how the accu- 

acy of the Google RSV model differed month to month as the 

utbreak progressed. In the early phase, high correlations may 

ave appeared as a result of massive searches from affected com- 

unities and groups of people who were concerned about the 

merging outbreak. However, with the extensive spread of the dis- 
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Table 4 

Correlations between new daily cases of coronavirus disease 2019 (COVID-19) and Google relative search volumes of county-level data in the USA. 

Term Month, 2020 

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec 

A 0.568 0.497 0.476 0.909 0.547 

B 0.698 0.848 0.442 0.401 0.907 0.543 0.539 

C 0.568 0.512 0.484 0.897 0.568 -0.386 0.433 

D 0.831 0.945 0.429 0.370 0.910 0.478 0.524 0.376 

E 0.671 0.714 0.471 0.874 0.430 0.615 

F 0.568 0.512 0.458 0.902 0.522 0.422 

G 0.768 0.902 0.408 0.405 

H 0.773 -0.460 0.929 0.531 0.509 0.747 

Terms for data query Strength of correlation 

A: Coronavirus (virus) Weak correlation ( r = 0 ∼≤0.49) 

B: ‘Coronavirus disease 2019’ (disease) Moderate correlation ( r = 0.50 ∼≤0.69) 

C: coronavirus (search term) Strong correlation ( r = 0.70 ∼≤1) 

D: covid (search term) All reported correlations were significant at 

P ≤0.05 

E: covid-19 (search term) 

F: coronavirus + ‘coronavirus update’ + ‘coronavirus 

G: symptoms’ (search terms) 

H: ‘covid symptoms’ (search term) ‘covid testing’ (search term) 

Figure 2. Correlations between new daily cases of coronavirus disease 2019 and Google relative search volumes in clustered and unclustered areas in the USA. 
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ase, people may have been overwhelmed by the enormous vol- 

mes of circulating information, and stopped searching COVID-19- 

elated issues. This may have decreased the volume of information 

earches and the correlation strength, as observed in earlier stud- 

es ( Husnayain et al., 2020a ,b). At this point, the Google RSV model

hould have been built based on specific terms rather than using 

eneral keywords. This study showed that the use of general terms 

f COVID-19 may have been robust only in the first 5 months af- 

er the outbreak began (February–June 2020), as shown in Table 4 . 

eginning in July 2020, the more specific term of ‘covid testing’ 

search term) had an increasing correlation coefficient. This possi- 

ly illustrates that more specific terms, such as vaccines, current 

ontrol measures and preventive measures, should be used to bet- 

er represent the public’s current concerns, awareness or restless- 

ess. Consequently, routine keyword identification is important to 

nsure precise analyses when utilizing Google RSV data. 

The performance of the Google RSV model may also have been 

ffected by policy-driven community awareness. This means that 
274 
olicies implemented in response to COVID-19 may have influ- 

nced public awareness towards the growing outbreak. As state- 

evel policies are primarily affected by governors’ decisions, gover- 

ors’ perceptions will contribute directly to the formation of com- 

unity perceptions and reactions. However, these may also be 

nfluenced by the governor’s political affiliation, which has been 

iscussed in several previous articles ( Green and Tyson, 2020 ; 

iang et al., 2020 ; Adolph et al., 2021 ). Hence, public percep- 

ions and reactions may have altered COVID-19 online information 

earches to a certain degree. A previous study showed that COVID- 

9 queries in the USA increased more slowly than they did in other 

ountries ( Husain et al., 2020 ), which may also describe how the 

ublic responded to the degree of the emergency. 

Finally, past experience with an outbreak may affect the robust- 

ess of the Google RSV model. As COVID-19 was a new outbreak 

hat had global impacts, the public may have responded in diverse 

anners. Countries which were highly affected by the previous se- 

ere acute respiratory syndrome and Middle Eastern respiratory 
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Table 5 

Correlations between new daily cases of coronavirus disease 2019 and Google relative search volumes of state-level data in the USA. 

State Month, 2020 

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec 

Alabama 0.443 

Arizona 0.567 0.557 0.440 

Arkansas 0.461 0.374 

California 0.704 0.577 0.525 0.421 

Colorado 0.590 -0.470 0.462 

Connecticut 0.427 

Delaware 0.480 -0.369 

Florida 0.746 0.592 

Georgia 0.461 0.442 

Idaho 0.383 

Illinois 0.716 0.448 

Indiana 0.430 0.449 

Iowa 

Kansas 0.445 

Kentucky 0.383 

Louisiana 0.547 

Maine 

Maryland 0.668 

Massachusetts 0.405 0.427 

Michigan 0.502 -0.361 0.541 

Minnesota 

Mississippi 0.572 

Missouri 0.443 

Montana 

Nebraska 0.402 

Nevada 0.612 

New Hampshire 

New Jersey 0.435 0.509 

New Mexico 

New York 0.753 0.590 

North Carolina 0.480 0.366 -0.383 

North Dakota 

Ohio 0.544 0.418 0.409 0.525 

Oklahoma -0.377 0.649 

Oregon -0.463 0.385 

Pennsylvania 0.643 0.373 0.532 

Rhode Island 

South Carolina 0.740 

South Dakota 

Tennessee 0.470 

Texas 0.756 0.769 0.400 0.377 0.401 

Utah 0.570 

Vermont 

Virginia 0.500 0.699 

Washington 0.408 

West Virginia 0.416 

Wisconsin 0.392 0.380 0.416 

Wyoming -0.365 

District of Columbia -0.358 -0.436 

Number of states with a 

significant correlation [ n 

(%)] 

0 (0.000) 0 (0.000) 19 (38.776) 2 (4.082) 3 (6.122) 11 (22.449) 5 (10.204) 5 (10.204) 3 (6.122) 9 (18.367) 13 (26.531) 4 (8.163) 

Number of states with 

clustered counties a [ n (%)] 

1 (2.041) 17 (34.694) 35 (71.429) 30 (61.224) 36 (73.469) 49 (100) 44 (89.796) 48 (97.959) 45 (91.837) 46 (93.878) 48 (97.959) 

Number of states with a 

significant correlation and 

clustered counties a [ n (%)] 

0 (0.000) 6 (12.245) 2 (4.082) 3 (6.122) 10 (20.408) 5 (10.204) 4 (8.163) 3 (6.122) 8 (16.327) 12 (24.490) 4 (8.163) 

Note: Hot spot areas. 

Cold spot areas. 

Hot and cold spot areas. 

Non-significant areas at P ≤0.05. 

a States with hot spot counties, cold spot counties and both. 
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yndrome outbreaks may have exhibited high numbers of searches 

nd strong predictability performance of Google RSV models, par- 

icularly China ( Li et al., 2020 ), Taiwan ( Husnayain et al., 2020a )

nd South Korea ( Husnayain et al., 2020b ). 

In brief, as the accuracy of the COVID-19 Google RSV model 

ay be influenced by these three major aspects, the Google RSV 

odel derived from general terms in the USA was only valid for 

se in the first 5 months of the outbreak. More specific keywords 

hould be used in later stages of the outbreak. Moreover, because 
275 
f the limited strong correlations found in clustered areas, the 

oogle RSV model in the USA may be better utilized for design- 

ng risk communication rather than for predictive purposes. The 

ign (positive or negative) of correlations can be utilized to under- 

tand public responses to control and preventive measures, as well 

s for communicating risk. Negative correlations could be used as 

n alert, indicating the need for intensive risk communication and 

 campaign of preventive measures. 
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Figure 3. Time series of new daily cases of coronavirus disease 2019 (COVID-19) per 10 0,0 0 0 population in Florida, Illinois and Maryland. 
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In addition, this study may be subject to several limitations re- 

ulting from errors in reporting case data and limited terms used 

or the data query. This study only used English terms, and did 

ot consider Spanish or other indigenous languages which are also 

sed in the USA. Future studies could incorporate spatial mod- 

lling tasks for predicting active clusters that combine distribu- 

ions of Google RSVs with other significant explanatory variables. 

uch variables might include income inequalities, median house- 

old incomes, the proportion of black females, the proportion of 

urse practitioners ( Mollalo et al., 2020 ), age, disability, language, 

ace, occupation, urban status ( Andersen et al., 2021 ) and crowded 

ousing conditions ( Dasgupta et al., 2020 ). However, more dy- 

amic variables may be required to increase the performance of 

he model. 

This study found that mobility variables are important variables 

n model development. Transit stations, workplaces and parks be- 

ame the most common variables included in the models for a 

ew months in the early stage of the outbreak, as working from 

ome was widely implemented. However, the model should be 

onstructed carefully to prevent the introduction of biases when 

esigning the models. Furthermore, this study only used Google 

SVs and mobility data with a lag of 7 days for analysis. This 

eriod was chosen to prevent a mass media reporting effect on 

oogle searches over longer lag periods. Further analysis in defin- 

ng the best lag period is needed to increase the accuracy of the 

tudy. 

everal considerations when utilizing Google search data as a public 

ealth surveillance tool 

Utilizing Google RSV data as a secondary public health surveil- 

ance tool is promising for the future. Google search data are pub- 

icly available at low cost, and potentially cover online information- 
276 
eeking behaviours of the majority of people as most people 

se the Internet to search for specific terms in search engines 

 Mavragani, 2020 ; Schneider et al., 2020 ). Therefore, internet 

earch data could potentially provide patterns unreported by tra- 

itional surveillance measures, such as the number of ill peo- 

le who did not seek medical treatment but searched for health- 

elated information ( Barros et al., 2020 ). This method can poten- 

ially be used as an online surveillance tool in countries with 

imited resources ( Schneider et al., 2020 ). Online queries also of- 

er anonymous data that can potentially assess a large population 

 Mavragani, 2020 ). These opportunities make this infodemiologi- 

al method a valuable approach in understanding the occurrence 

f illnesses circulating in the general population that can be in- 

pected promptly. However, the findings of this study suggest the 

ariability of Google RSV model performance between states and 

ime periods ( Figures 2 and 3 ; Tables 4 −6). Different states may 

tilize Google RSVs in different frameworks. In highly correlated 

tates, Google searches may be used for prediction tasks, while 

ther states may use them to understand public responses and de- 

ign risk communication. 

Although promising, some issues need to be considered when 

mploying information search data. Changes in online information 

nd communication patterns that reflect user-generated data in in- 

odemiology need to be validated to distinguish a true epidemic 

rom an epidemic of fear ( Eysenbach, 2011 ). People searching for 

u information do not always reflect people suffering from flu, and 

an be affected by sudden incidents or events ( Barros et al., 2020 ;

ysenbach, 2011 ; Mavragani, 2020 ). Recent studies have shown 

hat Google Trends data cannot distinguish whether searches rep- 

esent public concern or interest ( Springer et al., 2020a,b ), and the 

urge in online information searches related to coronaviruses for 

articular terms was irrespective of the time occurrence of the 

utbreak, which indicates that Google Trends data were closely af- 
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Table 6 

Performance of the Google relative search volume (RSV) models in strongly correlated areas (with Spearman’s 

rank correlation coefficients of ≥0.7). 

Model Coef. (95% CI) P- value RMSE AIC BIC 

February 

California a 

Intercept 3.582 (3.518 ∼3.647) < 0.001 81.942 1244.475 1248.777 

Google RSVs 0.056 (0.029 ∼0.083) < 0.001 

Mobility (transit stations) -0.063 (-0.065 ∼-0.063) < 0.001 

Florida b 

Intercept 3.673 (3.611 ∼3.734) < 0.001 61.920 1295.194 1299.496 

Google RSVs -0.235 (-0.284 ∼-0.185) < 0.001 

Mobility (transit stations) -0.072 (-0.074 ∼-0.070) < 0.001 

Illinois a 

Intercept 3.822 (3.764 ∼3.880) < 0.001 95.865 2010.341 2014.643 

Google RSVs 0.193 (0.151 ∼0.235) < 0.001 

Mobility (transit stations) -0.050 (-0.051 ∼-0.048) < 0.001 

New York b 

Intercept 6.259 (6.242 ∼6.276) < 0.001 1629.921 27386.572 27390.874 

Google RSVs -0.152 (-0.160 ∼-0.145) < 0.001 

Mobility (transit stations) -0.055 (-0.056 ∼-0.055) < 0.001 

Texas a 

Intercept 2.665 (2.565 ∼2.766) < 0.001 84.144 1367.539 1371.841 

Google RSVs 0.325 (0.285 ∼0.366) < 0.001 

Mobility (workplaces) -0.086 (-0.089 ∼-0.082) < 0.001 

June 

South Carolina b 

Intercept 5.876 (5.839 ∼5.914) < 0.001 294.305 3182.487 3186.691 

Google RSVs 0.030 (0.028 ∼0.032) < 0.001 

Mobility (parks) 0.012 (0.011 ∼0.013) < 0.001 

Texas c 

Intercept 10.458 (10.401 ∼10.514) < 0.001 961.395 8381.994 8386.198 

Google RSVs 0.020 (0.019 ∼0.020) < 0.001 

Mobility (transit stations) 0.101 (0.099 ∼0.103) < 0.001 

Coef., coefficient; RMSE, root mean squared error; AIC, Akaike information criterion; BIC, Bayesian information 

criterion. 
a Non-significant areas. 
b Hot spot areas. 
c Hot and cold spot areas. 
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ected by media coverage ( Sousa-Pinto et al., 2020 ). Therefore, this 

roxy should be used with caution because it could be affected by 

alse-positive events, such as in the case of an infodemic where 

oogle searches may more closely represent the public’s fear in- 

tead of disease dynamics. 

Regular updates of keywords used in search query monitoring 

re necessary proxies to maintain the validity of emerging trends 

nd changes in a population’s health-seeking information be- 

aviours. Other issues in the infodemiological approach are related 

o internet penetration and access problems, preferences used by 

ertain age groups, and transparency in how internet search data 

re collected ( Barros et al., 2020 ). In addition, information search 

ata may leak from future to past observations in the case of ret- 

ospective analyses. Thus, future research should consider weekly 

ata retrieval during the season to prevent information leaks from 

uture to past observations ( Schneider et al., 2020 ). Other emerging 

ata sources, including Twitter, websites/platforms, blogs/forums, 

acebook, reviews, mobile apps, Instagram, news/media, Wikipedia, 

ealth records and online surveys, are also important in conduct- 

ng digital surveillance. 

onclusions 

Small clusters in one or several neighbouring states in the early 

tage of the outbreak triggered larger clusters involving multiple 

tates as the outbreak progressed. In the later phase of the out- 

reak, clusters circulated in counties located in the middle of the 

ountry, and progressed into northern parts. These results demon- 

trate the importance of state-to-state coordination in implement- 

ng control measures to tackle the spread of new infectious disease 
277 
utbreaks. In addition, better control measures may have been per- 

ormed in eastern counties based on the rise of cold spots in those 

reas. 

Variabilities in Google RSV model performances were found 

mong states and time periods. This suggests that different frame- 

orks need to be implemented in each state when utilizing Google 

SV data. In addition, mobility variables were identified as im- 

ortant variables in predicting new daily COVID-19 cases. Google 

earches may be used in prediction tasks in highly correlated 

tates, while they can be used in other areas to understand public 

esponses and design risk communication. Moreover, the sign (pos- 

tive or negative) of the correlation can be utilized to understand 

ublic responses to control and preventive measures, as well as in 

ommunicating risk. 
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