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INTRODUCTION

The liver is a major organ that controls metabolic flux. For stud-
ies related to metabolism, liver-specific expression or inhibition 
of genes for an extended period without any adverse effects 
could be an invaluable tool. Adenovirus has been traditionally 
used to express recombinant genes in the liver. Resourceful 
protocols for the generation and purification of recombinant 
adenovirus are well-established, and various kits are commer-
cially available.1-3 Numerous experiments using adenovirus have 
been published, and most of them provided satisfactory results 
in terms of gene expression levels necessary to reach their 
goals. However, adenoviral-mediated gene expression is limit-
ed to short periods, generally less than 2–3 weeks, and there are 
safety issues in transduced animals and humans during the 

preparation procedures and experiments.1,4-6

Recently, recombinant gene expression using adeno-associ-
ated viruses (AAVs) have been used in animal studies, as they 
can mediate safe, efficient, and stable transduction and main-
tain expression of the transduced gene for several months.7 
AAVs are considered safe, cause no known human disease, and 
have been used in clinical trials as a method for delivering genes 
to humans.8,9 AAVs are nonpathogenic, replication-deficient 
single-stranded DNA viruses of the parvoviridae family. AAV2 
is the serotype that has been used most frequently. Gene ex-
pression using AAV2 is restricted to the liver when systemically 
injected in animals, though at low levels.10-12 AAV8 and AAV9 
have been subsequently introduced and have higher levels of 
hepatic expression than AAV2.13-15 However, their broad tissue 
tropism may raise problems when liver-specific expression is 
necessary,14,16 and the reported purification methods for AAV8 
and AAV9 are complicated.17 Recently, AAV-DJ has been devel-
oped using a gene shuffling method involving various AAV se-
rotypes, and the viral vector is now commercially available.18 
AAV-DJ has the advantageous characteristics of both AAV2 and 
AAV8. AAV-DJ contains heparin-binding domain in its capsid, 
similar to AAV2, which suggests that a heparin column could 
be used for purification.19 AAV-DJ has superior transduction ef-
ficiency in the liver as well as various established cultured cell 
lines, which makes AAV-DJ an attractive viral tool for liver-spe-
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cific gene expression.18 The use of AAV-DJ in animals has not 
been reported, likely for the reason that there are no established 
large-scale preparation/purification methods or protocols. 
Here, we present a simple large preparation method that can 
generate up to 3×1013 experiment-grade viral particles and 
demonstrate liver-specific gene expression via systemic injec-
tion in mice.

MATERIALS AND METHODS

Preparation of plasmids
Plasmids used included pHelper (Cell Biolabs, San Diego, CA, 
USA), pDJ (Cell Biolabs), and pAAV-CAG-GFP. pAAV-CAG-GFP 
was generated using pAAV-CMV-GFP (Cell Biolabs), pAAV-
CMV-MCS (Cell Biolabs), and pAAV-CAG-shuttle-WPRE plas-
mid (Applied Viromics, Fremont, CA, USA). Green fluorescent 
protein (GFP) was amplified via polymerase chain reaction 
(PCR) using 5’-GGATCCATGGTGAG CAAGGGCGAG 
GAGCTG-3’ and 5’-AGATCTCTACTT GAGCTCGAGATCTGAG 
TA-3’ as primers and pAAV-CMV-GFP as a template. The ampli-
fied PCR product was cut with BamHI and BglII, inserted in 
BamHI and BglII sites in pAAV-CMV-MCS, and designated as 
pAAV-CMV-GFP. The GFP fragment of SmaI and BglII from 
pAAV-CMV-GFP was ligated with a cleaved product of ApaI and 
BglII from pAAV-CAG-shuttle-WPRE, and the produced plas-
mid was designated as pAAV-CAG-GFP. The plasmid without 
GFP was designated as pAAV-CAG-control. The plasmids were 
transformed, grown in Terrific Broth overnight, and purified 
using a QIAGENE mega kit (QIAGENE, Valencia, CA, USA). The 
integrity of two inverted terminal repeats (ITRs) in pAAV is criti-
cal for the packaging of AAV. SmaI sites in ITRs and the integrity 
of ITRs were confirmed by digesting pAAV plasmids with 
SmaI.

Transfection of QBI-HEK 293A cells
QBI-HEK 293A cells were plated on 150-mm dish at a density of 
1.3×106/dish on day 0, and the cells were cultured in DMEM 
containing 5% fetal calf serum as well as penicillin and strepto-
mycin. A total of 150 150-mm dishes were prepared. The cell 
density was determined on day 3 and was 80–90% confluent. 
Plasmids pHelper (40 μg/dish), pDJ (30 μg/dish), and pAAV-
CAG-GFP or pAAV-CAG-control (30 μg/dish) were diluted in 
OPTI-MEM (Thermo Fisher, Waltham, MA, USA). Additionally, 
60 μL/dish of polyethylenimine (PEI; Polysciences, Warrington, 
PA, USA) solution (1 mg/mL) was diluted in OPTI-MEM and 
incubated for 5 min at room temperature. The diluted DNA was 
added to the diluted PEI solution and mixed by gentle vortex-
ing. The DNA-PEI complex was incubated for 30 min at room 
temperature, and the PEI-DNA complex was then added to the 
cells. The cells were incubated for 48 h before harvesting.

Preparation of cell extracts
The cells and the medium were transferred to tubes, and the 
pooled cells were pelleted using a centrifuge at 3000× g for 10 
min at 4°C. The medium was discarded, and the cell pellets 
were resuspended in 300 mL of Buffer A (10 mM Tris-Cl, pH 8.0, 
0.15 M NaCl) and transferred to 10 50-mL conical tubes, with 
30 mL of extracts in each tube. The cells were disrupted by four 
cycles of freeze in a dry ice-methanol bath/thaw in a water bath 
of 37°C/vortex for 30 sec. The cell extracts were then centrifuged 
at 10000× g for 10 min at 4°C, and the supernatant was collect-
ed. Benzonase nuclease (Sigma, St. Louis, MO, USA) was added 
to the cell extracts (50 unit/mL), and the mixture was incubated 
for 30 min at 37°C. An equal volume of Buffer A (300 mL) was 
added to the cell extracts. A 10% sodium deoxycholate solution 
was added to make the final concentration of sodium deoxy-
cholate in the cell extracts 0.5%, and the solution was then in-
cubated at 37°C for 30 min. The cell extracts were centrifuged at 

Fig. 1. Generation of AAV-CAG-GFP. GFP was cloned into pAAV-CAG vec-
tor that has chicken actin promoter and designated as pAAV-CAG-GFP. 
Empty pAAV-CAG was used as a control (pAAV-control). pAAV-CAG-GFP 
or pAAV-control was co-transfected with pDJ and pHelper to QBI-HEK 
293A cells to generate AAV-DJ-GFP or AAV-DJ-control, respectively.  
GFP, green fluorescent protein.
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                              Fig. 2. Flow chart of AAV-DJ purification.
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5000× g for 15 min. The supernatant was collected and passed 
through a 0.45-μm low protein binding bottle filter.

Purification of virus using heparin column
One 5-mL Heparin column (GE Healthcare, Pittsburgh, PA, 
USA) was used for cell extracts from the 150 dishes of 150 mm. 
The Heparin column was equilibrated with Buffer A by running 
25 mL of Buffer A at room temperature using a peristaltic pump 
(the flow rate was 2 mL/min). The cell extract was loaded onto 

the column at room temperature followed by washing with 10 
mL of Buffer A. Next, the column was removed from the peri-
staltic pump and attached to a fast protein liquid chromatogra-
phy (FPLC) system (GE Healthcare) at 4°C and washed again 
with 25 mL of Buffer B [1 mM MgCl2 and 2.5 mM KCl in 
1×phosphate buffered saline (PBS)]. The virus was eluted in a 
linear gradient from 0% to 100% of Buffer C (1 mM MgCl2, 2.5 
mM KCl, 1 M NaCl in 1×PBS) over Buffer B in 50 mL. During 
the elution step, a single peak was detected via ultraviolet de-
tector when the concentration of Buffer C reached ≈50% of the 
linear gradient. The single peak was usually generated over four 
1-mL fractions, which were collected and desalted using Cen-
triprep (Millipore, Billerica, USA) with 1×PBS, 5% sorbitol. The 
final volume of the viral solution was less than 3 mL.

Determination of viral titer via quantitative PCR
Vector-specific primers that recognized the sequence in the 
poly A region were used: 5’-GGTCTCCAACTCCTAATCTCAG-3’ 
and 5’-AAAATCAGAAGGACAGGGAAGG-3’. A set of solutions 
of pAAV-CAG-GFP plasmid with concentrations of 103–107 cop-
ies/μL were prepared using 1:10 dilutions with water and used 
as a standard. Serial 10-fold dilutions of the purified viral solu-
tion were prepared. Using the diluted standard and the viral so-

Fig. 3. Liver specific expression of GFP using AAV-DJ-GFP. AAV-DJ-control and AAV-DJ-GFP were injected to mice via tail vein (1012 viral particles/
mouse). After 3 months, organs indicated in the figure were harvested and the expression of GFP protein was detected using an IVIS scanner. GFP, green 
fluorescent protein.
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Fig. 4. Dose dependent expression of GFP using AAV-CAG-GFP in mice. 
AAV-CAG-GFP virus was injected at doses of 1011, 3×1011, and 1012 viral 
particles/mouse. Three weeks after injection, liver was harvested and 
GFP expression was observed under a fluorescent microscope. GFP, 
green fluorescent protein.
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lutions, quantitative PCR was performed with SYBR Green mix 
(Thermo Fisher) as described previously.20 The viral titer was 
determined by comparing CT values of the viral solutions to the 
standards. Purity of the virus was determined by running the vi-
rus on a gel and staining with a SilverQuest silver staining kit 
(Thermo Fisher).

Expression of GFP in mice
C57BL/6J, 7-week-old male mice were purchased from Jackson 
Laboratory. The purified AAV-CAG-control and AAV-CAG-GFP 
viruses were injected into the mice at doses of 1×1011, 3×1011, 
and 1×1012 viral particles/mouse via the tail vein. Three weeks 
after injection, one group of mice were terminally anesthetized 
with pentobarbital (80 mg/kg body weight) and perfused trans-
cardially with 10% formalin (Sigma). Livers were harvested and 
incubated in 10% formalin overnight, followed by incubation in 
20% sucrose in PBS for 6 h and a brief rinsing with PBS. The liv-
er was frozen in Tissue-Tek O.C.T. compound (Sakura Finetek, 
Torrance, CA, USA) and sectioned using a freezing sliding mi-
crotome (Leica Biosystems, Buffalo Grove, IL, USA). The slides 
were examined under a fluorescent microscope. A second 
group of mice were sacrificed 3 months after injection, and var-
ious organs were harvested and examined to determine the ex-
pression level of GFP using an IVIS scanner (Perkin Elmer, 
Waltham, MA, USA). All animal studies were approved by the 
University of Texas Southwestern Institutional Animal Care 
and Use Committee.

RESULTS AND DISCUSSION

AAV of different serotypes display different capsid proteins and 
different purification methods. The recently developed AAV-DJ 
has a hybrid capsid with a heparin-binding domain that may 
bind to heparin columns strongly enough for purification.19 In-
stead of using a helper adenovirus, packaging the AAV virus was 
achieved via co-transfection of a pHelper plasmid that con-
tained E2A, E4, and VA RNA of adenovirus. AAV-DJ virus ex-
pressing GFP was produced by the co-transfection of three 
plasmids (pHelper, pDJ, and pAAV-CAG-GFP) in QBI-HEK 293A 
cells (Fig. 1). At the end of the 48-h incubation, as the cells pro-
duced AAVs, the majority of the cells became round, and some 
cells detached from the dishes. Using the methods presented in 
this paper (Fig. 2), approximately 3×1013 viral particles calculat-
ed by genome copy number were produced and purified from 
150 150-mm dishes. The cell density on the day of transfection 
was the most important factor in obtaining high yields of virus. 
The highest yield was achieved at the occurrence of transfec-
tion, when the cells were 85–90% confluent. Although transfect-
ing cells at lower densities resulted in a higher transfection ef-
ficiency, it ultimately resulted in a lower yield of total viral 
particles. Transfection of cells at a density higher than 90% re-
duced transfection efficiency and also resulted in low yields. 

When AAV-DJ was produced in QBI-HEK 293A cells, ≈40% of 
the newly assembled virus was secreted into the medium, and 
60% of the virus remained in the cells. The protocol presented 
in this paper was not useful in purifying AAV-DJ from the cul-
ture medium, as other proteins in the serum presented in the 
culture medium also bound to the heparin column, which con-
taminated the viral fractions from purification. While losing 40% 
of the total virus produced was not ideal, purifying the virus 
from a large volume of medium using other methods was more 
laborious, time consuming, and required the use of expensive 
reagents. Therefore, we found that using only the cell extracts to 
obtain pure AAV-DJ was easier, faster, and less expensive.

The purified AAV-CAG-GFP virus was injected into mice via 
the tail vein (1012 viral particles/mouse), and the expression lev-
els of GFP in various organs were imaged and measured 3 
months after injection. The liver was the only organ where GFP 
was detected despite the use of the ubiquitously active chicken 
actin promoter (Fig. 3). To determine the titer that expressed 
GFP protein in 100% of hepatocytes, AAV-CAG-GFP virus was 
injected at doses of 1×1011, 3×1011, and 1×1012  viral particles/
mouse. Three weeks after injection, GFP expression in the liver 
was examined histologically using a fluorescent microscope. 
Fig. 4 shows dose-dependent GFP expression in hepatocytes. 
Approximately 90% of hepatocytes expressed GFP protein at 
the 3×1011 dose, whereas expression was detected in 100% of 
the hepatocytes following the 1×1012 dose. We suggest that 
≈3×1011 viral particles/mouse be used for general experiments. 
For secretory proteins, injection doses can be adjusted based 
on the plasma level of the expressed proteins.
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