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Abstract

Earth’s surface temperatures are projected to increase by ~1–4°C over the next

century, threatening the future of global biodiversity and ecosystem stability.

While this has fueled major progress in the field of physiological trait responses

to warming, it is currently unclear whether routine population monitoring data

can be used to predict temperature-induced population collapse. Here, we inte-

grate trait performance theory with that of critical tipping points to test

whether early warning signals can be reliably used to anticipate thermally

induced extinction events. We find that a model parameterized by experimental

growth rates exhibits critical slowing down in the vicinity of an experimentally

tested critical threshold, suggesting that dynamical early warning signals may be

useful in detecting the potentially precipitous onset of population collapse due

to global climate change.

Introduction

Climate warming exposes populations to novel environ-

mental pressures that could potentially induce a broad

suite of complex ecological responses (Walther et al.

2002; Thomas et al. 2004; Post 2013) leading to the col-

lapse of one or more species. While it is clear that rising

temperature has already played a major role in local

extinction and shifts in species distribution (Thomas et al.

2004; Parmesan 2006), it is far less clear which species are

most vulnerable to future impacts of global warming

because thermal environmental conditions modify a

broad suite of individual traits (e.g., metabolism, foraging

rates, and growth rates) that collectively determine an

organism’s demographic response to temperature change

within a complex network of interactions (Dell et al.

2014; Fussmann et al. 2014). The ability to forecast how

thermal changes might impact species, and their interac-

tions, is critical if we are to move toward the ultimate

goal of understanding the cascading effects of climate

warming on biodiversity and ecosystem function (Tunney

et al. 2012; Post 2013).

Researchers have made substantial progress in catalogu-

ing the responses of organismal traits to thermal changes

(Huey and Stevensen 1979; Huey and Kingsolver 1989;

Savage et al. 2004; Dell et al. 2011). These trait responses,

measured across thermal gradients, have been coined

thermal performance curves, describing individual perfor-

mance as a function of changing environmental condi-

tions (Huey and Stevensen 1979; Kingsolver and

Gomulkiewicz 2003). Synthesizing the set of all thermal

performance curves (e.g., metabolism, growth, foraging

etc.) for a given species provides the first steps toward an

integrated climate theory with the ability to predict cli-

mate influences on individual populations to whole

ecosystems (Gilbert et al. 2014). Although not yet consid-

ered, such empirical cataloguing of thermal performance

curves may also allow us to unite climate change
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literature with recent research on the development of

early warning signals – a body of work where ecologists

seek to identify informative statistical indicators that pre-

cede species, or ecosystem, collapses that are driven by

gradual environmental deterioration (Drake and Griffen

2010; Veraart et al. 2012).

Early warning signals use a common dynamical prop-

erty of equilibrium systems known as critical slowing

down (Boettiger and Hastings 2013), whereby a system

experiences a weak compensatory recovery toward equi-

librium following perturbation. This characteristic is often

indicative of an approach toward a local bifurcation, or

critical tipping point that represents the boundary zone

between population persistence and extinction (Fig. 1)

(Wissel 1984; Hugget 2005; Scheffer et al. 2009; Drake

and Griffen 2010; Veraart et al. 2012; Boettiger and Hast-

ings 2013). Critical slowing down is accompanied by

other related statistical signatures of an impending species

loss or ecosystem collapse, namely increased degree of

temporal autocorrelation and increasing variance in pop-

ulation densities over time (Dakos et al. 2012; Krkosek

and Drake 2014). Delayed recovery yields greater similari-

ties in population abundance between adjacent time steps

(increased autocorrelation) and additive disturbance

effects that may cause the population to deviate further

from mean densities following perturbation (i.e., variance

increases if the population is disturbed multiple times

before it has recovered to its preperturbation state).

Although the early warning signal approach has become

more widespread (Drake and Griffen 2010; Carpenter et al.

2011; Veraart et al. 2012), it has not yet been used for pre-

dicting climate-induced tipping points in populations,

which one would predict due to the temperature depen-

dence of key population traits and the perilous state of glo-

bal warming (Brown et al. 2004; Englund et al. 2011).

As a first step toward the long-term goal of uniting

thermal performance curves with ecological theory and

predicting population dynamics and species loss, here we

explore the simplest experimental scenario of a producer

population (algae; Chlorella vulgaris) growing on a limit-

ing nutrient and induce a transcritical bifurcation (i.e., a

bifurcation that has some special “nonlinearities” at the

Figure 1. Critical tipping point and example thermal performance curves. Hypothetical depiction of a critical tipping point and thermal

performance curves with temperature warming. (A) The critical tipping point, or transcritical bifurcation, exists where the stabilities of two

different fixed points switch, such that a stable equilibrium (N*) of a positive density is replaced by a stable equilibrium of zero density. Arrows

indicate the direction of nearby trajectories, where they are attracted to stable (solid lines) equilibria and repelled by unstable (dashed lines)

equilibria. Here, as demonstrated in plot (B) the critical tipping point is reached when rT < 0, which is determined by the temperature sensitivity

of this key parameter, r (C) (but note that a critical tipping point can occur with any change in conditions that affects underlying parameters).

When rT ≤ 0, the population cannot recover from a perturbation, and beyond this point, the carrying capacity is undefined and extinction is

inevitable. The gray boxes in (A) and (C) indicate the conditions – after a threshold has been breached – where populations can no longer persist.
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point of bifurcation as opposed to the generic form,

which is effectively two lines of equilibria crossing and

exchanging stability properties). Our approach is to first

derive thermal performance curves empirically for growth

rate (r) and carrying capacity (K), two easily measurable

biological parameters that match those of classical single-

species models. We then apply these parameter responses

to a discrete time logistic growth model to predict how

algal population dynamics should change across a relevant

gradient in temperature. These predictions are then com-

pared to five replicated experiments spanning a range of

temperature conditions to explicitly test (1) whether cli-

mate warming leads to algal extinction and (2) whether

populations on the verge of extinction displayed the early

warning signals predicted by the theoretical model.

Specifically, we compare theoretical patterns of autocorre-

lation, recovery rates, and coefficient of variation with

those of the experimental population replicates. This pro-

cedure allows us to document the existence of early warn-

ing signals in response to climate warming that are

completely consistent with well-established thermal per-

formance curves of key organismal traits, suggesting excit-

ing new potential for the prediction of temperature-

induced tipping points of impending collapse.

Materials and Methods

We estimated the thermal performance curves for r and K

from the time series data of a simple quasi-chemostat

algae-nutrient experimental system exposed to tempera-

tures of 15, 20, 25, 30, and 35°C (eqs. 2 and 3, respec-

tively). These thermal performance curves were used to

parameterize a Ricker logistic population growth model in

discrete time (Ricker 1954), making the model tempera-

ture dependent (eq. 1a). We felt the Ricker model in dis-

crete time nicely matched the simplicity of our

experiment. It reasonably mimics single-species microcosm

experiments (chemostat models regularly yield logistic

dynamics, Kooi et al. 1998), yields a range of bifurcations

and importantly, like almost all biologically motivated

dynamic models readily begets a transcritical. Thus, the

Ricker model always has a trivial equilibrium at N* = 0.

This model constraint, biologically driven, thus makes the

transcritical bifurcation generic (i.e., the interior equilib-

rium collides and passes through the trivial equilibrium,

which remains and drives a transcritical bifurcation).

The model-generated time series were perturbed every

seventh time step (eq. 1b) and then analyzed to estimate

recovery rates, autocorrelation structure, and the coeffi-

cient of variation to make predictions about the behavior

of these statistical indicators in the proximity of a critical

tipping point. Model predictions were then compared to

the observed patterns of autocorrelation, return time, and

coefficient of variation of algal population densities ana-

lyzed from the experimental time series data.

The experiment

Setup

Chlorella vulgaris is a freshwater species of unicellular

green algae that is common in North America (Beyerinck

1890) (Fig. 2). A stock population of C. vulgaris (strain

#90) was obtained from the Canadian Phycological Cul-

ture Centre (CPCC) in Waterloo, Ontario. This culture

was maintained at the University of Guelph, in COMBO

growth medium (Kilham et al. 1998) at 20°C in an incu-

bator (Fisher Isotemp� Low Temperature Incubator

Model 307C). All subsequent algal growth experiments

were conducted in a closed chamber at the Hagen Aqua-

lab at the University of Guelph lit with fluorescent lights

(955 lux, measured at a uniform distance across contain-

ers) operating on a 12:12 light/dark cycle, and consisting

of 15 replicate algae cultures grown in 150-mL flasks.

Prior to temperature trials, each flask was inoculated with

125 mL of algae from the common batch culture, yielding

starting densities (t = 0) of ~4.65 9 106 cells/mL3 (Rip

et al. 2010). Each flask was then randomly assigned to

one of five temperature treatments (three replicates per

treatment) consisting of water baths (five 45-L coolers)

that were held at a constant temperature of either 15, 20,

25, 30, or 35°C (�1°C) using thermostat-regulated hea-

ters. These temperatures were chosen to represent optimal

and suboptimal temperatures for algal growth (Ahlgren

1987), as well as annual temperature variation that recog-

nizes an expected 1–7°C increase with global warming in

freshwater lakes (Ficke et al. 2007).

Experimental population estimates

Time series data were obtained by measuring the fluores-

cence of 3 mL of algal samples every 1–4 days for the 64-

day experimental period. Samples were mixed thoroughly,

withdrawn from flasks selected in random order and then

returned to the flask to avoid significant changes in volume

by the end of the study. Fluorescence data (e.g., values of

620, 750, 380, 220, 2.4 for temperatures 15, 20, 25, 30, and

35°C, respectively) were normally distributed and were

regressed against algal cell counts (obtained using a hemo-

cytometer in preliminary experiments), allowing us to con-

vert fluorescence to cell density for subsequent time series

analyses (y = 11985x + 261290; R2 = 0.925504). Using the

program ImageJ1.42 (NIH), images of algal cells on the

hemocytometer were used to measure cell diameter, noting

that cell volume did not vary significantly with temperature

over the duration of preliminary experiments.
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Adding experimental perturbations

Chlorella vulgaris populations were perturbed to observe

how a population responds to a disturbance under

increasing thermal pressure, and thus, how certain statis-

tical indicators (recovery rates, autocorrelation, and coef-

ficient of variation) change in the vicinity of a

temperature-driven critical tipping point. Growth rate is a

property of the population that is only seen when the

population is pulled away from the equilibria. By adding

targeted perturbations, we were able to compare more

uniform rates of increase across temperature treatments,

and calculate growth estimates from a wider range of Nt.

In total, there were nine perturbation events that took

place on day 8, 15, 21, 29, 37, 43, 49, and 55 (every 4–
7 days). These events were chosen based on balancing the

time required for the populations growth rates to saturate

and avoiding nutrient depletion. Preliminary work sug-

gested this range was reasonable. Experimental popula-

tions were perturbed by replacing 50 mL of algae in

solution (~40% of the population density) from each cul-

ture with COMBO made with 50% of its prescribed

nutrient content (i.e., only 0.5 mL/L of K2HPO4, NaNO3,

and Na2EDTA2H2O instead of 1.0 mL/L) (Kilham et al.

1998). Using the prescribed nutrient concentration

resulted in algal growth that yielded densities beyond that

which could be accurately measured by our fluorometer

and hemocytometer.

Uniform and stationary data

To perform time series analyses, some basic assumptions

must be met. First, time series data are required to be

uniform, such that successive data points are equally

spaced in time. We analyzed our data with missing obser-

vations and interpolated data, but we present statistics

without interpolation to avoid the potential influence of

autocorrelation coefficients. Second, the time series must

be stationary, where its statistical properties remain con-

stant over a given time. This is crucial to ensure that the

patterns in variance and autocorrelation tested here are

signatures of critical slowing down and not an effect of

time (or any other external process) (Chatfield 2014).

Although our populations were disturbed, our methods

ensured to our best ability that there were no underlying

processes driving nonstationary dynamics. We performed

analyses on the raw data for all temperatures. A linear,

quadratic, and null model were compared for all tempera-

ture treatments to test for stationarity.

The model

Theoretical population predictions were generated using

the Ricker logistic growth model

Ntþ1 ¼ Nte
rT 1� Nt

KT

� �
þ p (1a)

where Nt is the population size at time t, Nt+1 is the pop-

ulation size at the next time step, rT is the temperature-

dependent growth rate, KT is the temperature-dependent

carrying capacity, and p is the perturbation given every

seventh time step (t) (4- to 7-day time steps produced

similar results).

The model was perturbed by removing a constant por-

tion of the algal population before restoring to a constant

volume;

p ¼ �0:4Nt if tmod 7 ¼ 0
0 otherwise

n
(1b)

After each perturbation, the population’s ability to

recover is determined by the growth term,

rT 1� Nt=KTð Þ, where rT and KT are the temperature-

dependent maximum exponential rate of increase (r) and

carrying capacity (K), respectively. For any given popula-

tion, the growth term determines its dynamical character-

istics; Nt approaches KT at a rate, rT, such that at

relatively low values of rT (rT < Nt/KT) the entire growth

term will approach zero (i.e., growth of the population

slows as the carrying capacity is reached) and at relatively

high values of rT (rT > Nt/KT) the population will exceed

its carrying capacity (i.e., overshoot) and the growth term

becomes negative. Therefore, population size decreases

(Nt > Nt + 1) over time if Nt > KT, increases over time if

Nt < KT, and stays the same when Nt = KT. For the latter,

there is no change in population size from one time step

to the next (Nt + 1 = Nt), and the system has reached

equilibrium (N*).

Figure 2. Chlorella vulgaris. This is a photograph of our experimental

organism under 203 magnification using a compound microscope.
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Temperature dependence of intrinsic rate of
increase and carrying capacity estimated
from an experimental population

Estimating r and K

Intrinsic rates of population increase (or instantaneous

per capita growth rates), rt, were calculated using the

exponential growth rate equation, rt ¼ loge Ntþ1=Ntð Þ=s,
where s is the number of days between consecutive den-

sity measurements (Fryxell et al. 2014). The exponential

growth rate equation is convenient when the time

between measurements is irregular, as was the case with

our population data (Fryxell et al. 2014). rt for each time

series (each replicate) were estimated between consecutive

measures of population density at a given time (Nt). We

then plotted rt for each time interval against the corre-

sponding Nt (density at the beginning of said interval)

and used a linear model to describe the relationship of

population growth with increasing abundance, assuming

normal distribution (Fig. 3). It is assumed that maximum

population growth (denoted here as r) occurs at densities

close to zero; thus, we estimate r to be rt when Nt = 0.

Further, the carrying capacity (K) exists at the maximum

density that can be sustained by limiting resources, such

as nutrients (the x-intercept of the regression line for rt
vs. Nt; i.e., Nt when rt = 0).

It is important to note that there are three different sce-

narios in which temperature can affect r and K (see

Fig. S1). Temperature variation can cause changes to either

both parameters simultaneously (Fig. S1A) or to one

parameter with no effect on the other (Fig. S1B and C). We

found that r changed with rising temperatures, but that K

was unaffected until thermal thresholds. Beyond threshold

temperatures, estimates of r become negative, the popula-

tions experience extinction, and equilibrium exists at zero

density. K could not be estimated confidently because

actual nutrient levels were not measured, and thus, it

remains unclear whether temperature affected the amount

of available nutrients or the ability of C. vulgaris to utilize

the nutrients (due to physiological limitations). Therefore,

K was kept constant in the model time series analyses.

Estimating thermal performance curves

The thermal performance curve for r was determined by

separately fitting curves through the five data points

(mean of three replicates across five temperatures) and

the curve with the lowest AIC score determined the fitted

model that best represented the r-temperature dataset

(eq. 2). K was kept at a constant value represented by the

mean carrying capacity of the 15, 20 and 25°C treatments

(eq. 3) (selected models did not perform the null model;

see Table S1 for AIC scores). The temperature

dependencies of r and K (denoted as rT and KT) were

implemented in the population model (eq. 1a) to gener-

ate theoretical time series data using the parameter values

that were estimated for each temperature treatment. In

doing so, we produced theoretical time series data using

experimentally determined parameter estimates.

rT ¼ �0:847þ 0:1033T � 0:003T2 (2)

KT ¼ 6:016� 106 (3)

Analyzing early warning signals from a
temperature-parameterized model

We used three statistical indicators of critical slowing

down as early warning signals of an approaching tipping

point. We conducted simulation experiments by parame-

terizing a Ricker logistic growth population model with

the experimentally derived thermal performance curves

for r and K (see above subsection), and then examined

the model dynamics of corresponding time series data.

Recovery rate

We estimated recovery rates – the return of a population

to its preperturbation state – as the slope of ln(abun-

dance) for each uninterrupted period between perturba-

tion events (i.e., the population density immediately after

one perturbation to the density just prior to the next per-

turbation). The mean recovery rate of the seven perturba-

tions was calculated for each temperature.

Autocorrelation

Autocorrelation was analyzed across the entire time series

for each replicate. Patterns in lag-1 autocorrelation were

measured using autoregressive coefficients of the autore-

gressive model (or process; AR(1)). This model is a sim-

ple linear difference equation (Chatfield 2014) (eq. 4)

whose coefficient, q, is calculated based on past density

observations, Nt, and an estimate of the residual error, et
(for model analyses, et has a mean of 0).

Ntþ1 ¼ qNt þ et (4)

For each temperature at which populations persisted, we

normalized the model time series datasets by dividing by

mean abundance and plotting Nt against Nt+1. The auto-

correlation coefficient, q, is the slope of the fitted line.

Coefficient of variation

Lastly, the coefficient of variation in algal population den-

sity was determined using the entire algal time series to
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encompass all deviations from the mean population

density in response to multiple perturbations under wors-

ening conditions, using the formula CV ¼ r=l , where r
is the standard deviation and l is the mean population

size.

Early warning signals directly estimated for
population time series

Experimental time series data were stationary (i.e., the

distribution of the time series is not time-dependent) and

Figure 3. Linear regressions for estimating r and K from experimental data. Here, we show the linear models fit to exponential rate of

increase (rt) and algal cell density (Nt) data for each temperature treatment (15°C (A), 20°C (B), 25°C (C), 30°C (D), 35°C (E)). It should be

noted that the r and K for 30°C and 35°C treatments cannot be accurately estimated from these regressions because it can be argued that

these temperatures are beyond the thermal tolerance of the algae populations, in which case population growth rate is no longer limited by

density, but rather physiological constraint. Only one of three regressions is displayed for each treatment temperature; however, the mean of

three replicate r and K estimates were used to construct corresponding thermal performance curves. In the above plots, r is the y-intercept

and K is the x-intercept.
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analyzed from days 8 to 56 (Chatfield 2014). Recovery

rates, autocorrelation coefficients, and coefficient of varia-

tion in algal density were then estimated from the experi-

mental time series, using the same metrics as earlier

applied to the deterministic model.

Results

Our experimentally derived thermal performance curve

for the maximum exponential growth rate (rT) was uni-

modal in shape (Fig. 4A), such that r increased between

15°C and 20°C, peaked at 20°C, fell at temperatures

exceeding 20°C, and crossed zero at 27°C; after which

further warming resulted in negative growth rate esti-

mates. On the other hand, our results showed that algal

carrying capacity (K) showed no statistically detectable

change (P > 0.05) (~8.0 9 106 to 1.1 9 107 cells/mL)

across trials with a positive maximum rate of growth (15,

20 and 25°C; Fig. 4B). By definition, ecological carrying

capacity is only meaningful in systems with positive r, so

it was not possible to estimate effects on algal carrying

capacity at higher environmental temperatures. The ther-

mal performance curves accordingly suggest that the max-

imum rate of increase for C. vulgaris is temperature-

dependent, whereas carrying capacity is not.

Our central assumption is that increasing temperatures

beyond thermal optima should push populations toward

collapse. The temperature-dependent Ricker model, based

on thermal performance curves, predicts that C. vulgaris

populations should be able to persist at temperatures up

to 25°C, but collapse at 30°C and higher (Fig. 4C). In

general, the model also predicts that algal populations

should show increasingly faster recovery from perturba-

tion at temperatures between 15 and 20°C, but

Figure 4. Thermal performance curves and time series data. Left panel: Thermal performance curves for (A) maximum intrinsic rate of increase, r,

and (B) carrying capacity, K, at each temperature estimated from experimental time series data. Each point represents the estimated value of r

and K from one replicate. Right panel: Time series data for the model (C) and experimental (D) populations. For the experimental time series, lines

represent mean densities (cells mL�1) of three replicate cultures grown at each of the five temperature treatments (15, 20, 25, 30, 35°C) over the

64-day experiment. Dashed vertical lines indicate perturbation events. Time series analyses were performed on data from days 8–56, or until a

given replicate culture went extinct. Recovery rates were measured between vertical dotted lines, while and autocorrelation coefficients and

coefficients of variation was measured across the entire time series.

ª 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 6103

L. Jarvis et al. EWS Detect Critical Impacts of Warming



increasingly slower recovery at higher temperatures. If

populations do not return to preperturbation densities

before the next disturbance, those that recover more

quickly should reach higher densities between perturba-

tion events, leading to fluctuations of greater amplitude.

Beyond 25°C, increasingly warmer temperatures should

lead to shorter times to extinction. Further, algal popula-

tions are predicted to be unsustainable at temperatures

exceeding ~28°C (due to negative growth rates; Fig. 4A).

As predicted, experimental populations of C. vulgaris at

the three lowest temperature treatments (15, 20, and

25°C) persisted for the duration of the experiment

(Fig. 4D). The populations grown at 15°C appeared to be

the most “well-behaved,” displaying minor fluctuations in

density, while algal populations subjected to the 20°C
treatment demonstrated faster growth following perturba-

tions, and thus slightly more variable dynamics. Consis-

tent with this pattern, 25°C treatments persisted for the

duration of the experiment, but were highly variable in

density. Once perturbed, these populations reacted more

slowly than algal cultures at lower temperatures, leading

to delayed recovery to a preperturbation state. It should

be noted that one of the three 25°C replicates started to

rapidly decline in density at ~day 58. Similar to our

simulated populations, experimental replicates subject to

higher temperatures collapsed just before the conclusion

of the experiment. Populations subjected to the 30°C
treatment persisted until day 15, but inadequate recovery

from perturbations resulted in population extinction by

day 48. All experimental populations exposed to 35°C
conditions experienced negative growth rates from the

first day of experimentation until they reached extinction

on day 18.

The simulated data suggest that early warning signals

can be used to anticipate a thermally driven critical tip-

ping point (Fig. 5); however, more data representing a

wider spectrum of temperatures between optimal and

critical points are required to evaluate the presence of

CSD in an experimental population (Fig. 5D–F). Lag-1

autocorrelation (AR(1)) coefficients of the model time

series (Fig. 5B) were lowest around 20°C, where popula-

tions tended to recover more quickly from a perturbation.

With warming beyond the apparent optimum tempera-

ture of 20°C (Fig. 4A), recovery rates decreased (Fig. 5A)

and AR(1) coefficients increased as temperatures climbed

toward 30°C. The concavity seen here alludes to a second,

cold-temperature threshold that was not tested in our

study but further implies that CSD is a phenomenon that

Figure 5. Early warning signals of a critical

tipping point. Plots A, B and C represent

model predictions for patterns in the recovery

rate, lag-1 autocorrelation (AR(1)) coefficient,

and coefficient of variation. Plots D, E, and F

represent corresponding patterns of the same

statistical indicators for experimental

observations. For plot D, each point represents

the mean value of eight perturbation events

for a given replicate. For plots E and F, each

point is the AR(1) coefficient and coefficient of

variation (respectively) for one replicate time

series at a given temperature. Observed data

for 30 and 35°C were not included in the

curve fitting because they exceeded thermal

tolerance. Best fit curves were selected using

the Akaike information criterion (AIC). All best

fit models outperformed the null model

(slope = 0).
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can be detected near temperature-induced transitions on

either end of the spectrum.

Finally, our model predictions of coefficient of varia-

tion were qualitatively similar to observed patterns near

the thermal threshold (Fig. 5C and F). The coefficient of

variation of our experimental population showed a more

steady increase with warming, while our model predicted

relatively constant variability in algal density, with higher

coefficient of variation at 30°C. Hence, our model predic-

tions were consistent with observations of AR(1) and

recovery rates at ambient temperatures below 26°C,
beyond which point subsequent increases in coefficient of

variation with warming were more apparent. Recall that

this was when we started to see population collapse,

whereby populations deviate further from the mean and

approach zero. While it is well known that increases in r

can drive a period-doubling cascade (experimentally

determined parameters do not yield such a result), the

results of our experiments come from the fact that the

Ricker model also readily, like all population models,

yields a transcritical bifurcation. It should also be noted

that similar patterns in AR(1) coefficients and CV were

observed when a stochasticity was added to our discrete

model.

Discussion

For the first time, we have observed the phenomenon of

CSD due to temperature warming. Further, we document

the existence of an early warning signal before a tempera-

ture-induced critical transition in a model population

parameterized by experimentally derived organismal traits,

and we explicitly show the implications of warming on

population function (i.e., stability; population persistence).

We have also reported unimodal patterns in growth

rates across a temperature gradient, and a potentially dis-

continuous response in carrying capacity, a result that has

been overlooked in previous climate studies yet empha-

sizes the asynchronous effect of temperature on biological

rate responses (Savage et al. 2004; Dell et al. 2011). To

further this point, we see extreme value in studying how

the shape of certain thermal performance curves dictates

when CSD may be detected, and thus, whether or not

some traits might have more or less utility as early warn-

ing indicators. For example, the thermal performance

curve of one trait might be more left-shifted than

another, and thus provide us with an earlier signal of an

approaching transition point. Though beyond the scope

of our study, it would also be intriguing to investigate the

role of phenotypic plasticity in an organism’s response to

climate change and if subsequent changes to trait perfor-

mance might potentially mask indicators of CSD before a

thermally induced critical transition. Nonetheless, our

work shows promise in mechanistically linking thermal

performance theory with early warning signal theory to

predict the onset of species extinction.

Growth rate and carrying capacity are potential param-

eters that could be used to indicate steady state transi-

tions. In our study, slower growth rates mean higher risk

of extinction; however, if we move up to more complex

systems, faster growth at the consumer level may in fact

lead to extinction due to stronger consumer–resource
interactions (driving overshoot dynamics and oscillations

that can collapse a population). Moving forward, studying

early warning indicators will inevitably include the inter-

play of multiple performance curves in order to under-

stand the general patterns that arise in a system exposed

to external pressures (Englund et al. 2011; Fussmann

et al. 2014). Like all early warning signal theory, it is

about knowing your system’s “normal” and being able to

interpret deviations under various stressors in order to

detect a transition. What we have shown here is how

thermal performance theory closely maps to more com-

mon statistical indicators, and thus, the mechanistic

underpinnings of critical slowing down with regard to the

key biological rates associated with lost resilience. Further,

in cases where it might be difficult to know certain vital

rates (e.g., growth r) in more complex systems, other

early warnings can still be reliably used.

One benefit of statistical early warning signatures in

time series is the opportunity to detect an oncoming

transition in an ecological system without knowledge of

the specific variables driving the collapse. If a goal of cli-

mate research is to ameliorate the impacts of warming on

species loss, however, then it may be important to be able

to differentiate between temperature effects near critical

points rather than those of other environmental variables.

We have shown that early warning indicators, such as

increased variability, autocorrelation, and recovery rate,

can provide a dynamic signature of an impending ther-

mally induced population collapse. By linking trait perfor-

mance and climate research with knowledge of how

demographic parameters generally respond to warming,

early warning frameworks may ultimately prove to be a

useful diagnostic tool in predicting temperature-driven

shifts in ecosystem structure and function.
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