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SUMMARY

The Collaborative Cross (CC) is a panel of repro-
ducible recombinant inbred mouse strains with high
levels of standing genetic variation, affording an un-
precedented opportunity to perform experiments in
a small animalmodel containing controlledgenetic di-
versity while allowing for genetic replicates. Here, we
advance the utility of this unique mouse resource
for immunology research because it allows for both
examination and genetic dissection of mechanisms
behind adaptive immune states in mice with distinct
anddefinedgeneticmakeups. This approach isbased
on quantitative trait locusmapping: identifying genet-
ically variant genome regions associated with pheno-
typic variance in traits of interest. Furthermore, theCC
canbeutilized formousemodeldevelopment; distinct
strains have unique immunophenotypes and immune
properties, making them suitable for research on
particular diseases and infections. Here, we describe
variations in cellular immune phenotypes across F1
crosses of CC strains and reveal quantitative trait
loci responsible for several immune phenotypes.

INTRODUCTION

In seeking to understand the complex interactions and pathways

of the human immune response, researchers have long turned to

inbred mouse models. 99% of mouse genes are shared with hu-

mans (Boguski, 2002), and inbred laboratory mouse strains are

well characterized, reproducible, and allow for the use of unique

immunological tools such as transgenic or knockout mice. How-

ever, given the diverse breadth of clinical outcomes and immune

responses observed in the human population, any single tradi-

tional inbred mouse model cannot fully capture the range of

immune phenotypes expressed across genetically diverse

humans. Indeed, although estimates vary, there is a clear contri-

bution of genetic variation in driving diversity throughout human
Cell Repo
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immune responses (Salvetti et al., 2000), and this diversity

cannot be fully identified through study of a single gene knockout

(KO). To fully investigate these complex networks, additional

studies in a model that better captures the genetic diversity of

humans is critical.

Defining the genetic basis of immune responses and regula-

tion requires approaches and model systems that move beyond

classical genetic screens, such as targeted KOmouse strains on

a C57BL/6 (B6) background, or random N-ethyl-N-nitrosourea

(ENU) mutagenesis studies, which both typically study one

gene at a time (Gondo et al., 2010; Mountz et al., 2001; Yates

et al., 2009). The Collaborative Cross (CC) mouse genetic refer-

ence panel represents a resource that specifically models

complex genetic interactions and, therefore, expands classic

approaches within traditional (e.g., B6) mouse models. The

CC strains are a recombinant inbred (RI) panel and are derived

from eight founder strains: five classical inbred strains

(C57BL/6J, A/J, 129S1/SvImJ, NOD/ShiLtJ, and New Zealand

obese (NZO)/SH1LtJ) and three wild-derived strains (CAST/EiJ,

PWK/PhJ, and Watkins star line B (WSB)/EiJ). These eight

founder strains represent the threemajorMusmusculus subspe-

cies (domesticus, musculus, and castaneus) and capture nearly

90% of common genetic variation in laboratory mouse strains,

with this variation uniformly distributed across the genome

(Churchill et al., 2004; Threadgill et al., 2011; Threadgill and

Churchill, 2012). CC-RI strains were created by three genera-

tions of funnel breeding to incorporate genomic contributions

of all eight founder strains within each CC strain, followed by at

least 20 generations of inbreeding (Collaborative Cross Con-

sortium, 2012). The CC therefore provides a reproducible exper-

imental model of many aspects of genetic variation within the

human genome. In these studies, F1 progeny from crosses

between CC-RI strains (CC-RIX, recombinant intercross) were

used (Graham et al., 2015). These RIX lines were heterozygous

for the H-2bb major histocompatibility complex (MHC) haplo-

type, allowing for use of reagents such as tetramers to examine

T cell responses in thesemice, which is critical to enable study of

T cell-mediated immunity.

The CC provides the ability to assess the breadth of pheno-

typic differences under genetic control and can also provide
rts 21, 2313–2325, November 21, 2017 ª 2017 The Authors. 2313
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new mouse models for human diseases because screens have

identified variations in immune phenotypes and clinical disease

symptoms for infections such as influenza (Ferris et al., 2013),

Ebola (Rasmussen et al., 2014), West Nile virus (Graham et al.,

2015, 2016), and severe acute respiratory syndrome (SARS)

(Gralinski et al., 2015) as well as spontaneous colitis (Rogala

et al., 2014), cancer-related phenotypes (Reilly, 2016), and

behavioral traits (Chesler, 2014). In our studies as part of the

CC Systems Immunogenetics Group, we screened over 110

CC-RIXs for a variety of immune response parameters at steady

state in adult malemice of 8–10weeks of age. Importantly, within

the screen we found a wide variation in each immune phenotype

measured, and herewe fully describe a comprehensive screen of

CC-RIXs for cell subsets such as CD3+, CD4+, CD8+, and reg-

ulatory T cells (Tregs) as well as activation markers and inflam-

matory cytokines. Included with these data are the identity of

quantitative trait loci (QTLs) or polymorphic host genome regions

and potential candidate genes within these regions that affect

immune phenotypes. This initial proof-of-concept genetic map-

ping as well as our extensive dataset pave the way for future use

of CC mice for genetic mapping of immune traits as well as

targeted CC mouse strain selection for future immunology and

immunogenetics studies. Similar to the expansion of immune

phenotypes displayed in the so-called ‘‘pet store mice’’ or ‘‘dirty

mice’’ compared with micemaintained under specific pathogen-

free (SPF) conditions, which has allowed for an improved mouse

model that better accounts for the microbial colonization diver-

sity in humans (Masopust et al., 2017), we demonstrate here

that use of the CC can address another critical limitation of

mouse research by expanding the genetic diversity and resultant

immune phenotypes of murine study subjects tomore effectively

model human immunity.

RESULTS

Screening CC-RIX Lines for Immune Phenotypes
We conducted a comprehensive screen of 113 CC-RIX lines for

immune response phenotypes to gauge the diversity of re-

sponses resulting from natural genetic variation. CC-RIX lines

were bred to ensure that lines were heterozygous for the H-2b

locus, having one copy of the H-2bb haplotype and one copy

of the other various haplotypes at the MHC locus. This design

was selected so that we could examine antigen-specific T cell

responses for our parallel studies of immunogenetics of virus

infection while concurrently maintaining genetic variation

throughout the rest of the genome. Through our screen, three

to six adult, 8- to 10-week-old male mice were examined for

each CC-RIX line, and we measured and cataloged an extensive

list of T cell phenotypes within the spleen at steady state with no

experimental manipulations. The range of phenotypes included

frequency of T cell subsets, proportion of cells expressing

various activation markers, frequency of cells producing in-

flammatory cytokines, and quantity of cells expressing tissue

migration markers (Table S1; Figure S1). For each phenotype

examined, we measured abundant variability between RIX lines

(detailed below), as observed upon examination of any immune

parameter in a human population. Indeed, even body weight var-

ied extensively between RIX lines, despite careful age-matching
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(Table S2; Figure S2A). We present an extensive array of steady-

state immunity data for each animal in the screen, garnered from

our three thirteen-color flow cytometry panels as well as clinical

observations. Each immune phenotype examined resulted in a

high degree of variability by genetic background of the host

and exceeded the breadth of responses observed in the

most commonly used inbred strains, C57BL/6J and BALB/cJ

(Table S3). Importantly, because our dataset is included

(Table S4) and available on ImmPort, researchers can select

from baseline phenotypes of interest for a particular infection

or disease to perform a small subset of experiments rather

than a large, time- and resource-consuming phenotypic screen.

We anticipate that our dataset, along with these accompanying

proof-of-concept studies detailing examples of genetic mapping

of immune traits of interest, will advance the use of the CC in

immunology and genetic mapping studies.

Variation in T Cell Frequencies across CC-RIX Lines
Presents Mouse Models for Immunological Studies
Previous studies have demonstrated variation in T cell fre-

quencies based on host genetics, although these studies have

largely been restricted to a limited number of commonly used

inbred strains of mice (Chen et al., 2005; Feuerer et al., 2007;

Holler et al., 2007; Mostafavi et al., 2014; Paula et al., 2011; Pet-

kova et al., 2008; Bogue andGrubb, 2004; Grubb et al., 2004). To

put this previously described variation into context of a larger

group of mice with increased genetic variation, we examined

the frequency of T cell populations in the spleens of 113 CC-RIX

lines compared with the commonly used BALB/cJ and

C57BL/6J model strains. We found a high degree of variability

in the frequency of CD3+ T cells based on host genetics, with

average frequencies in CC-RIX lines ranging from 16%–62% of

gated lymphocytes, whereas C56BL/6J mice had an average

frequency of 36.96%, and BALB/cJ had an average frequency

of 46.4% (Figure 1A). Within these splenic CD3+ T cell popula-

tions, we further examined the frequencies of CD8+ T cells,

CD4+ T cells, and also CD4+Foxp3+ Tregs. Notably, CD8

T cell frequencies in CC-RIX lines ranged from 14.1%–65.3%

of CD3+ T cells, with C57BL/6J and BALB/cJ average fre-

quencies of 36.6%and 32.1%, respectively (Figure 1B). The vari-

ability in CD4 T cell frequency in the spleen in CC-RIX mice

ranged from 27%–73.1% of CD3+ T cells, with C57BL/6J and

BALB/cJ average frequencies of 58.96% and 64.5%, respec-

tively (Figure 1C). As expected because of this variability in

CD8 and CD4 T cell frequency, there is also extensive diversity

in the CD4/CD8 T cell ratio across CC-RIX lines (Figures S2B

and S2C). Finally, we quantified the frequency of Tregs as a per-

centage of CD4+ T cells and found that CC-RIX lines had a range

of 1.8%–25.5% Tregs compared with C57BL/6J and BALB/cJ

average frequencies of 10%and 12.5%, respectively (Figure 1D).

Importantly, the variability in Treg frequency modeled by the

CC-RIX is similar to that observed in a large human cohort (Fig-

ure 1E), suggesting that the CC improves greatly upon the ability

of two common laboratory strains to represent the diversity in

T cell frequency observed in humans. In summary, we find that

CC-RIX lines display greatly enhanced variation in the frequency

of total T cells as well as CD8+, CD4+, and Foxp3+ subsets

compared with traditional inbred models. Further, we propose
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Figure 1. Variation in Frequency of T Cell Populations at Steady State

(A–D) Frequencies of CD3+ cells (A), CD8+ cells (B), CD4+ cells (C), and Treg+ cells (D) are plotted for the 110 cohorts of CC mice screened during the discovery

phase of the experiment. The average value for the indicated phenotype of each CC-RIX line (n = 3) is plotted in black in ascending order on the x axis. B6 (red) and

BALB/c (blue) baseline values are plotted for comparison. All values represent uninfected controls.

(E) Frequency of Tregs in human blood from 244 individuals.

Error bars show ± SEM.
that this variation will be key to extend immunological mouse

models as well as QTL mapping studies to identify genes regu-

lating homeostatic T cell population dynamics and better under-

stand the role variant immune homeostasis plays in the resultant

immunological responses.

Variation in Conventional T Cell Phenotypes across
CC-RIX Lines
In addition to examining T cell frequencies in mice with distinct

CC-RIX genetic backgrounds, we performed an extensive

phenotypic analysis of conventional T cells to classify them

further into subtypes as well as catalog their activation and func-

tional profiles (Tables S1 and S3). Although the full dataset is

available on ImmPort (ImmPort: SDY1176), we here focus on

the frequency of Ki67+ CD8 T cells, which indicates recently or

actively proliferating cells; CD44+ CD8 T cells, indicating cells

that have experienced antigen; CD62L- CD8 T cells or activated

CD8 T cells; as well as the frequency of CD8 T cells that secrete

interferon g (IFNg) or interleukin-17 (IL-17) upon polyclonal anti-

CD3/CD28 stimulation ex vivo (Figures 2A–2E). For reference,

although C57BL/6J mice had an average of 10.8% of CD8

T cells that were Ki67+ and BALB/cJ had 7.2%, CC-RIX lines

ranged from averages of 2.5%–22.5% (Figure 2A), again

providing amuchmore diverse response that can be used down-

stream for unique mouse immunology model studies or for QTL

mapping. In addition to this heterogeneous response based

on host genetics, we additionally identified, in CC-RIX lines, a

wide range of antigen-experienced CD8 T cell frequencies (Fig-

ure 2B), activated CD8 T cells (Figure 2C), IFNg-secreting CD8

T cells (Figure 2D), and IL-17-secreting CD8 T cells (Figure 2E).

Importantly, all mice used within these studies were bred in the

same facility, and experiments were similarly conducted in

a common environment. Together, these data suggest that
homeostatic immune responses and the propensity to initiate

adaptive immunity are under strong genetic control, and this

dataset may thus inform further studies of autoimmunity and

tolerance.

Similarly, we examined awide range of conventional CD4T cell

phenotypes based on cellular expression of activation markers

and homing and effector molecules (Tables S1 and S3). As ex-

amples of the phenotypic diversity measured in CD4 T cells

across different CC-RIX lines, we demonstrate a large range of

Ki67+ CD4 T cells, from 3.8%–46.9% of total splenic CD4

T cells, whereas C57BL/6J and BALB/cJ mice had similar

average frequencies of 8.9% and 8.5%, respectively (Figure 2F).

Similarly, the fraction of CD4 T cells that were positive for the

transcription factor Tbet, and thus likely to be Th1 cells, ranged

from nearly 0% to 35.1% across CC-RIX lines, but, again,

C57BL/6J and BALB/cJ mice had similar average frequencies

of 2.5% and 2.3%, respectively (Figure 2G), underscoring the

utility of CC-RIX mice to establish unique mouse models of

immune phenotypes beyond what can be modeled using

C56BL/6J or BALB/cJ mice. Additionally, there are large differ-

ences in the frequencies of splenic CD4+ T cells able to secrete

IFNg or IL-17 following a polyclonal ex vivo stimulus (Figures 2H

and 2I) as well as antigen-experienced CD44+ or activated

CD62L� CD4 T cells (Figures 2J and 2K). In conclusion, both

this dataset and the CC-RIXs are an invaluable resource for in-

vestigators looking for an improved mouse model in which to

study phenotypic diversity in T cells as well as for use in genetic

mapping studies of T cell phenotypes.

Genetic Variation Results in Differential
Immunoregulation
Tregs, defined by the lineage marker forkhead box P3 (Foxp3),

promote self-tolerance and limit autoimmunity (Belkaid and
Cell Reports 21, 2313–2325, November 21, 2017 2315
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Figure 2. Variation in Conventional T Cell Phenotypes Across CC-RIX Lines

(A–K) Further analysis of cells subtypes, activation status, and functional profiles across CC-RIX at steady state. Frequencies of CD8+ cells that are Ki67+ (A),

CD44+ (B), CD62L� (C) IFNg+ (D), or IL-17+ (E) are shown at the top; frequencies of CD4+ cells that are Ki67+ (F), Tbet+ (G), IFNg+ (H), IL-17+ (I), CD44+ (J), and

CD62L� (K) are shown at the bottom. The average value for the indicated phenotype of each CC-RIX line (n = 3) is plotted in black in ascending order on the x axis.

B6 (red) and BALB/c (blue) baseline values are plotted for comparison. All values represent uninfected controls.

Error bars show ± SEM.
Tarbell, 2009; Campbell and Koch, 2011; Kim et al., 2007), and

altered Treg function is implicated in the manifestation of many

autoimmune syndromes (Buckner, 2010). Most severely, in the

complete absence of Tregs, as exemplified by Treg-deficient

scurfy mice or individuals carrying non-functional versions of

the Foxp3 gene, life-threatening multi-organ autoimmunity

and lymphoproliferative diseases manifest in early development

(Brunkow et al., 2001; Gambineri et al., 2003). Given the impor-

tance of Tregs in regulating conventional T cells, we extensively

examined activation and homing molecule expression patterns

on Tregs within CC-RIX lines. Most notably, there is a full range

of Treg expression levels of the immunosuppressive marker

CD73 across CC-RIX mice, from 3.5%–97.8% (Figure 3A).

Similarly, the average frequency of Tregs from CC-RIX lines

that expressed CTLA-4, a critical suppressive mechanism,

ranged from 11.2%–86.2%. Finally, there were wide ranges of

Tregs expressing CD44 and homing molecule b1 integrin

(CD29) across CC-RIX lines (Figures 3C and 3D). Thus, our
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thorough analysis demonstrates the variation in Treg-mediated

immunoregulation dependent on host genetics, thus providing

a rich resource for additional immunoregulatory and immuno-

genetics research.

Because of the large variation in frequency of Tregs we

observed in overtly healthy and age-matched mice, similar to

what has been observed in humans (Figure 1E), we further inter-

rogated for a possible relationship between the number of Tregs

and their suppressive capacity to address the question of

whether Treg function could compensate for altered Treg

frequency to maintain the overall health of the host. First we per-

formed a linear regression analysis of Treg number by CD4+ and

CD8+ T cell proliferation, as indicated by Ki67 expression, or

activation, indicated by CD44 or absence of CD62L expression.

There was not a statistically significant correlation between Treg

number and T cell proliferation or activation (Figure S3), suggest-

ing that mice with varying numbers of Tregs are equally able to

control T cell proliferation and activation. This finding supported
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Figure 3. Differential Treg Activation across CC-RIX Lines

(A–D) Frequencies of Tregs that are CD73+ (A), CTLA-4+ (B), CD44+ (C), and CD29+ (D) across CC-RIX at steady state. The average value for the indicated

phenotype of each CC-RIX line (n = 3) is plotted in black in ascending order on the x axis. B6 (red) and BALB/c (blue) baseline values are plotted for comparison. All

values represent uninfected controls.

(E–G) Correlation between the number of Tregs and the frequency of Tregs expressing CTLA-4 (E), CXCR3 (F), or ICOS (G).

(H) Comparison of CC-RI lines (colored data points) that served as dams or sires in matings that resulted in RIX lines at the extreme ends of Treg frequency

(Figure 2D) (black data points).

Error bars show ± SEM.
our hypothesis that mice with lower Treg numbers may compen-

sate for this by having increased Treg activation or Treg-sup-

pressive capacity to control immune activation, similar to mice

with a higher number of total Tregs. Thus, we tested for correla-

tions between Treg number and the frequency of various Treg

activation or suppression markers and found that there was

indeed a statistically significant inverse correlation between

the number of Tregs and the frequency of Tregs expressing

CTLA-4, CXCR3, or inducible T cell costimulator (ICOS) (Figures

3E–3G). Thus, our data support a model in whichmice with lower

numbers of Tregs may compensate for this by having increased

activation or suppressive capacity of Tregs tomaintain tolerance

and overall health. Alternatively, mice with less functional or
suppressive Tregs may have a compensatory expansion,

perhaps because reduced suppression of T cells, mediated by

CTLA-4, for example, results in abundance of IL-2 that can

thus support expansion of the Treg population. Together, our

data demonstrate that mice on different genetic backgrounds

support a wide range of Treg frequencies while maintaining

health, at least in part by altering the suppressive function

of Tregs.

Mouse Model Development Using the CC
As demonstrated above, there is tremendous phenotypic diver-

sity generated within T cell subsets dependent on the natural

standing genetic variation available within the CC. To provide
Cell Reports 21, 2313–2325, November 21, 2017 2317



an example of the utility of the CC for development of newmouse

models for immunology research, we focused on the extreme di-

versity observed in the frequency of Tregs (Figure 1D). The vast

majority of research on Tregs over the past 15 years has used

C57BL/6J mice, which have a population of Tregs comprising

approximately 10% of the total CD4 T cell compartment within

the spleen. To identify potential mouse models with different

Treg frequencies (e.g., akin to the diversity observed in human

cohorts; Figure 1E), we further examined the frequency of Tregs

in CC-RI strains that served as dams or sires in matings that re-

sulted in CC-RIX lines at the extreme ends of Treg frequency

(Figure 1D). We found that CC-RI strains CC030/GeniUnc,

CC061/GeniUnc, CC051/TauUnc, and CC003/Unc had average

Treg frequencies of 12.03%, 7.05%, 8.47%, and 4.66%, respec-

tively (Figure 3H). Notably, none of these RI lines had Treg fre-

quencies that were elevated or decreased to the extremes

observed in the CC-RIX screen, although CC030 does have a

consistently lower frequency of Tregs and might represent a

model of decreased Treg activity. These results highlight the po-

tential for emergent phenotypes within heterozygous animals

(e.g., because of epistatic genetic interactions) and further un-

derscore the utility of assessing F1 crosses to increase both

the genetic and phenotypic diversity assessed.

QTL Mapping Using the CC
The CC was initially conceived of as a powerful resource for

genetic mapping studies and integrated systems genetics

approaches (Churchill et al., 2004). To measure the amount of

phenotypic variation attributable to genetic differences, we

calculated the intraclass correlation (ICC) (Gelman and Hill,

2007) measures as an estimate of heritability (Table S4). In addi-

tion, to demonstrate the overall immune system phenotypic

diversity among CC-RIX lines, we performed principal-compo-

nent analysis (PCA) using the flow cytometry measures listed in

Table S4 (using strain average values) and then plotted the top

two principal components (PCs) to show strain clustering within

these composite immune phenotypes (Figure S4). This analysis

demonstrates that there is tremendous overall immune system

phenotypic diversity across the CC-RIX and not just diversity

within single immune measures, as demonstrated in Figures 1,

2, and 3. Further, although there is diversity among the lines

with regard to multiple different cell populations, there are also

a number of lines with quite extreme phenotypes that may thus

be suitable for follow-up studies.

Next, to demonstrate the utility of the CC for identifying

QTLs contributing to population-wide variations in steady-

state immune phenotypes, we performed QTL mapping on

select T cell phenotypes using our flow cytometry data in com-

bination with haplotype reconstructions of the CC strains

generated from the mouse universal genotyping array (Mega-

MUGA) platform (Morgan et al., 2015). Through these proof-

of-concept studies, we identified several QTL candidates for

follow-up, and below we highlight examples chosen because

of high logarithm of the odds ratio (LOD) scores and clear

founder effects. First, we found a QTL (Host Immunity 1, HI1)

driving the frequency of CD73+ Tregs within the X chromo-

some near position 160 Mb-telomere (Figure 4A) that appears

to be driven largely by a PWK/PhJ founder effect (Figure 4B).
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Confirming this locus, CC-RIX lines with a PWK/PhJ haplotype

at position 166 Mb of the X chromosome have frequencies of

CD73+ Tregs that are on the upper end of the range we

observed across all CC-RIXs examined (Figures 3A and 4C).

This has clear implications on host immunoregulation at steady

state because there is an inverse correlation between CD73+

Treg frequency and the frequency of activated CD8 or CD4

T cells (Figure 4D).

To narrow our QTL regions to likely candidate genes, we uti-

lized whole-genome sequence information from the 8 founder

strains of the CC (Keane et al., 2011). Guided by the allele ef-

fects underlying the QTL analysis (estimates of in which founder

haplotype(s) causative genetic variants occur), we sought to

identify genetic variants within the QTL regions that were

consistent with allele effects underlying the QTL and also had

an effect on the amino acid sequence and/or splice forms of

a gene because these variants would be the highest-priority

candidates for altering protein function. Accordingly, within

the QTL, a total of 102,596 SNPs and 20,432 insertions or de-

letions (indels) segregate across the CC population. Of these,

248 SNPs and 14 indels cause coding or splice differences

across 43 genes. Because a PWK/PhJ allele was the sole allele

contributing to phenotypic differences, we focused on private

PWK/PhJ variants. We identified 36 private PWK/PhJ SNPs

and 2 indels within 22 genes (Table 1) as potential causal

candidates.

In addition to this QTL, we also identified a highly significant

QTL (HI2) within the X chromosome at position 100–106 Mb

driving the frequency of CXCR3+ Tregs (Figure 5A), CXCR3+

CD4+, and CD8+ T cells (data not shown). When we examined

the founder effects, we found that PWK/PhJ again was a signif-

icant driver of this QTL for all three phenotypes (Figure 5B and

data not shown), with a clear trend toward low levels of CXCR3

expression on all three subsets of T cells of CC-RIX lines when

there were PWK/PhJ variants at position 105.5Mb on the X chro-

mosome (Figures 5C and 5D and data not shown). However, this

QTL had a more complex pattern of allele effects depending on

the phenotype. Although, in all cases, a PWK/PhJ allele drives a

decreased frequency of CXCR3+ T cells for any of the three sub-

sets of T cells, there is additional evidence for phenotype-spe-

cific allele effects leading to increases in frequency of each of

these specific cell types. Specifically, there is a WSB/EiJ haplo-

type associated with increased CXCR3+ CD8+ T cells and also

an NZO/HILtJ haplotype increasing CXCR3+ Tregs (Figures 5B

and 5E). In this 6-Mb region, a total of 55,082 SNPs and

12,377 indels segregate within the CC. This includes 149 nonsy-

nonymous SNPs and 11 indels across 42 genes. PWK has 35 pri-

vate SNPs and 5 private indels in 26 genes; NZO has 4 SNPs and

1 indel in 4 genes (Table 1). WSB/EiJ has no private SNPs or in-

dels within this region, suggesting that the effects of theWSB/EiJ

haplotype may be due to regulatory variation. Of note, genes

within this X chromosome QTL driving the low frequency of

CXCR3+ T cells include Cxcr3 itself (Table 1), likely demon-

strating novel gene variants that result in altered expression

levels within T cells. CXCR3 is a critical chemokine receptor

used by T cells and other immune cells to migrate to tissue sites

of infection and sites of autoimmune reactions, and Tbet+

CXCR3+ Tregs have been shown to provide protection from
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Figure 4. QTL Mapping Using the CC

(A and B) A QTL driving the frequency of CD73+ Tregs found within the X chromosome near position 160 MB-telomere that appears to be driven largely by a

PWK/PhJ founder effect (B). In (A), the solid red line indicates the LOD score threshold for p = 0.05, and the dashed line indicates p = 0.01.

(C) With the frequency of CD73+ Tregs on the x axis, we see that CC-RIX lines with PWK/PhJ variants at position 166Mb of the X chromosome have CD73+Treg

frequencies at the upper end of the range observed across all CC-RIX examined.

(D) Implications on host immunoregulation at the basal state because there is an inverse correlation between CD73+ Treg frequency and the frequency of

activated CD8 or CD4 T cells.
autoimmune diabetes (Tan et al., 2016). Further study of CC-RI

or CC-RIX with the PWK/PhJ haplotype in this region could bet-

termodel human disease associatedwith altered T cell migratory

activity and also be used to study the importance and function of

this chemokine receptor itself.

Finally, we identified a third candidate QTL within the X chro-

mosome at position 140–145 Mb (HI3) driving the frequency of

ICOS+ Tregs in the spleen (Figure 6A). Although this ICOS+

Treg result does not meet the threshold for statistical signifi-

cance in our analysis, the allele effects are clear, and we include

it here as an example of the diverse allele effects seen in the RIX

population. An examination of the founder allele effects at this lo-

cus revealed that the PWK/PhJ haplotype was associated with

an increased frequency of ICOS+ Tregs (Figures 6B and 6C),

accounting for the extreme frequency at the higher ranges (Fig-

ure 6D). However, there also appeared to be a second, NZO/

HILtJ allele that had an intermediate increase in ICOS+ Tregs

relative to the other six haplotypes (Figure 6B). Within this region,

there are a total of 51,137 SNPs and 10,884 indels segregating in

the CC. Of these, 58 SNPs and 5 indels cause coding or splice

differences in 18 genes. PWK/PhJ has 17 private SNPs and 2 pri-

vate indels across 11 genes (Table 1). In contrast, NZO/HILtJ has

no SNPs or indels, either private or shared, with PWK/PhJ in this

region, suggesting the potential for regulatory variants to play a

role in this locus. In summary, we highlight examples of QTL

analysis for immunoregulatory phenotypes at homeostasis,
with several potential candidate genes under the QTL identified

for follow-up studies.

DISCUSSION

The highly genetically diverse CC was conceived as an experi-

mental system that could be used to understand how genetic

variation could affect a variety of complex traits while still

maintaining the benefit of reproducibility and the legion of other

advantages of a small animal model, such as a controlled envi-

ronment, diet, age, sex, and pathogen exposure. An early study

using individual mice from 66 strains from incipient lines of the

CC or pre-CC demonstrated diversity in the steady-state fre-

quency of subsets of lymphocytes and antigen-presenting cells

that was larger than that detected in the eight founder strains

(Phillippi et al., 2014); here, we use the completed CC to extend

these initial observations using replicate animals and awider and

comprehensive range of phenotypic analyses. A number of

studies have shown that genetic variants circulating within the

CC population can lead to divergent responses to pathogens

(Elbahesh and Schughart, 2016; Ferris et al., 2013; Graham

et al., 2015, 2016; Gralinski et al., 2015; Leist et al., 2016; Lorè

et al., 2015; Rasmussen et al., 2014), inflammatory diseases (Ro-

gala et al., 2014), and drug responses (Nachshon et al., 2016).

Here we advance and expand this growing body of work with a

demonstration of the unique benefits for immunology research.
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Table 1. Candidate Genes Driving Select Phenotypes of Interest

Phenotype QTL Region Founder Effects Candidate Genes in Region

Frequency of CD73+ Tregs ChrX: 160-Mb telomere PWK high Arhgap6, Asb11, Ctps2, Egfl6, Figf, Frmpd4, Gemin8, Gja6,

Gp464, Map3k15, Mospd2, Nhs, Ofd1, Phka2, Piga, Reps2,

Rnf138rt1, Syap1, Tceanc, Tlr7, Tlr8, Zsr2, Zrsr2

Frequency of CXCR3+ Tregs ChrX: 100–106 Mb PWK low 1700011 M02Rik, 8030474 K03Rik, Abcb7, Atrx, Awat1, C77370,

Cxcr3, Dgat2l6, Dmrtc1b, Gm5166, Gm9112, Itgb1bp2, Kif4,

Magee1, Otud6a, Phka1, Rps4x, Taf1, 170031F 05Rik, Zrsr2

Frequency of CXCR3+ Tregs ChrX: 100–106 Mb NZO high Nhsl2, Kif4, Rgag4, Nhsl2, Asmt

Frequency of ICOS+ Tregs ChrX: 140–145 Mb PWK high Ammercr1, Col4a5, Col4a6, E230019M04Rik, Gucy2f, Irs4, Nxt2,

Rgag1, Tmem164, Vsig1, Prps1
CC-RI and CC-RIX lines can provide exciting new and reproduc-

ible models for cellular immunology research and provide uswith

a critical resource for mapping immune phenotypes to genetic

loci and genes.

Importantly, each cellular immune phenotype we examined as

part of our screen resulted in a wide range of responses at ho-

meostasis, with increased diversity beyond the most commonly

used laboratory inbred strains of C56BL/6J and BALB/cJ. This

consistent range of differences between CC recombinant inbred

lines extends our ability to model human diversity in T cell fre-

quency and phenotype and, potentially, the unique resultant

infection or disease outcomes, such as autoimmunity. For

example, CC-RIX lines or CC-RI strains at the tails of the pheno-

typic distribution plots are useful for elucidating the underlying

mechanisms of the high or low phenotype of interest. For

example, as identified in Figure 3H, CC-RI strain CC003/Unc

and CC-RIX lines CC003xCC062 and CC070xCC003 all have

splenic Treg frequencies that are about half of that measured

in C57BL/6J mice (Figure 1D), although these lines are all overtly

healthy and display no signs of autoimmunity within the 8- to

10-week age range. It has been previously noted that BALB/c

mice have more CD4+CD25+ Tregs compared with C57BL/6

mice, including greater suppression of their CD4+CD25�
responder T cells (Chen et al., 2005), but the genetic loci regu-

lating this difference were not identified. Here we confirm this

finding of differential Treg frequency between Balb/cJ and

C57BL/6J as well as within the CC-RIX (Figure 1D), although,

because of the large and high-throughput nature of our screen,

we cannot draw conclusions about the suppressive capacity of

the Tregs across the CC-RIX lines because in vitro suppression

assays were not performed for each of the lines screened.

Important follow-up studies include an examination of Treg sup-

pressive capacity through use of standard suppression assays

to determine whether any of the CC-RIX lines represent unique

mouse models of extreme immunoregulation mediated by Treg

suppression. Further, such studies could be used to map the

gene(s) responsible for differential Treg activity, which could

have critical downstream implications for susceptibility to infec-

tion, autoimmunity, and tumorigenesis.

In addition to provision of mouse models for cell type- and

disease-specific research, we demonstrate that the T cell

phenotypic diversity present within the CC affords us an unprec-

edented ability to perform genetic mapping to identify loci con-

trolling adaptive immune phenotypes and responses. Through

the proof-of-concept QTL analyses performed by our group (Fig-
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ures 4, 5, and 6), we identified 3 QTLs underlying distinct immu-

noregulatory phenotypes at steady state. Our ability to identify

effects on the X chromosome was increased compared with au-

tosomes because our mapping population consists of males

only. In this case, significance thresholds for the X chromosome

are somewhat lower than for autosomes because of the hemizy-

gous genotypes of males because there are no heterozygotes.

Notably, a candidate gene under the X chromosome QTL driving

very low expression of CXCR3 on Tregs, CD4, and CD8 T cells is

Cxcr3 itself, suggestive of a deleterious allele resulting in lowered

levels of protein expression. Because CXCR3 is a chemokine re-

ceptor important for lymphocyte migration toward chemokines

CXCL9, CXCL10, and CXCL10, which are generally expressed

in tissue regions of inflammation (Groom and Luster, 2011),

mouse lines with this allele may represent a unique model in

which to study the importance of this signaling pathway in

various disease or infection states. In humans, CXCR3 polymor-

phisms have been associated with the risk of asthma (Cheong

et al., 2005), pointing to a potential future use of the CC-RIX to

improvemousemodels of asthma research to better recapitulate

human disease states. Additionally, the list of candidate genes

provided in Table 1 requires follow-up studies to narrow in on

the particular gene or genes causing the phenotypes of interest.

Genetic variants driving phenotypic differences can be due

to both coding and regulatory differences. Indeed, many of the

most significant human genome-wide association study

(GWAS) hits occur in regulatory regions (Zhang and Lupski,

2015). Here we present an initial analysis where we instead

focused on variants affecting protein sequence. Many studies

in the CC have shown that differences in coding sequence can

have large effects on phenotypic outcomes (Ferris et al., 2013;

Gralinski et al., 2015). Furthermore, regulatory variants are noto-

riously difficult to identify because of their condition and cell

type-specific effects on gene expression, which itself does not

always lead to differences in protein levels (Chick et al., 2016).

Nevertheless, differentiating between protein functional and

expression level differences in phenotypic responses provides

critical hypotheses to address in future studies of the functions

of variant regions on immune homeostasis.

Our study and the power of our dataset have several limita-

tions. First, we cannot determine a role for distinct microbiota

within CC-RIX lines or animals in driving some of the divergent

immune phenotypes. Mice of different lines were not co-housed

or co-fostered, although they were all bred in the same room of

the same facility by the same technician across the entire study.
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Figure 5. A Highly Significant QTL within the X Chromosome Drives the Frequency of CXCR3+ Tregs

(A–E) A QTL was identified within the X chromosome at position 100–106 Mb (A), driven by PWK/PhJ (B) in all cases with a trend toward lower levels of CXCR3

expression on T cell subsets of CC-RIX lines with PWK/PhJ variants at position 105.5 Mb on the X chromosome (C and D). Phenotypic-specific allele effects lead

to increases in a single phenotype because there is an NZO/HILtJ effect associated with increased frequency of CXCR3+ Tregs (B) and a WSB/EiJ effect

associated with increased frequency of CXCR3+ CD8+ T cells (E). In (A), the solid red line indicates the LOD score threshold for p = 0.05, and the dashed line

indicates p = 0.01.

Error bars show ± SEM.
Similarly, experiments were conducted in a consistent facility, so

together, these factors should minimize the effect of a variety of

environmental factors. However, the microbiome could explain

some of the observed variation, and although a study of this

magnitude, performed over the course of 4 years, did not allow

for an extensive examination of the microbiome as well, future

studies will likely investigate the role of host genetics on micro-

biome colonization as well as downstream effects of distinct

microbial communities on immune phenotypes. An additional

limitation of our study is that haplotype blocks are fairly large

within this CC-RIX population. However, in contrast to classical

2-allele mapping populations, the multiple founder haplotypes

do allow us to reduce large haplotype blocks to much fewer

numbers of candidate features, which we did here as an illustra-

tive example of the use of this resource and dataset.

In conclusion, we advance that the CC is an invaluable

resource for many types of immunology, immunogenetics,

and disease research, as we have specifically demonstrated

in the context of steady-state T cell phenotypes and fre-

quencies. This dataset will be useful for individuals seeking to

identify new mouse models with increased diversity of T cell

phenotypes more akin to human diversity as well as for addi-

tional QTL mapping studies. Finally, the data presented here

provide a gateway for CC strain selection for future studies of

cancer immunity, autoimmune conditions, and various infec-

tions because investigators can tailor selection of strains based
on the frequencies of particular T cell subsets as well as their

activation status, steady-state cytokine expression, and other

phenotypic selection parameters (Tables S1–S4). As the need

for mechanistic studies of immunity and disease persists,

including the genetic mechanisms underlying such states, we

propose that the CC represents an outstanding and unique

model that incorporates genetic diversity while at the same

time retaining beneficial features of mouse models, such as

reproducibility, low cost, and ubiquity and availability of re-

agents and tools.

EXPERIMENTAL PROCEDURES

Mice

CC RI mice were obtained from the Systems Genetics Core Facility at

the University of North Carolina, Chapel Hill (UNC) (Welsh et al., 2012). For

the screen, CC-RIX lines were bred at UNC under SPF conditions. 6- to

8-week-old F1 hybrid male mice were transferred from UNC to the University

of Washington and housed directly in a BSL-2+ laboratory within an SPF bar-

rier facility. Age- and sex-matched 8- to 10-week-old mice were used for all

experiments. All animal experiments were approved by the University of

Washington Institutional Animal Care and Use Committee. The Office of Lab-

oratory Animal Welfare of the NIH approved UNC (A3410-01) and the Univer-

sity of Washington (A3464-01), and this study was carried out in strict

compliance with the Public Health Service (PHS) Policy on Humane Care

and Use of Laboratory Animals. Genotypes of interest in this study, H2b,

were obtained from the Systems Genetics Core Facility at UNC (Welsh

et al., 2012).
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Figure 6. A QTL Driving the Frequency of ICOS+ Tregs in the Spleen

(A) A third QTL within the X chromosome at position 140–145 Mb drives the frequency of ICOS+ Tregs in the spleen. The solid red line indicates the LOD score

threshold for p = 0.05, and the dashed line indicates p = 0.01.

(B–D) An examination of founder effects revealed that the PWK/PhJ allele at position 141.71 Mb drives a high frequency of ICOS+ Tregs (B and C), accounting for

the extreme frequency at the higher ranges (D).

Error bars show ± SEM.
Cell Preparation for Flow Cytometry Assays

Following euthanasia, mice were perfused with 10 mL PBS to remove any re-

sidual intravascular leukocytes. Spleens were homogenized, treated with

ammonium chloride potassium (ACK) lysis buffer to remove red blood cells,

washed, and resuspended in fluorescence-activated cell sorting (FACS) buffer

(13 PBS, 0.5% fetal bovine serum [FBS]). Cells were counted by hemacytom-

eter using trypan blue exclusion.

Flow Cytometry Analysis

Following preparation of single-cell suspensions, cells were plated at 1 3 106

cells/well and stained for surface markers for 15 min on ice. Cells were

subsequently fixed, permeabilized (Foxp3 fixation/permeabilization concen-

trate and diluent, eBioscience) and stained intracellularly with antibodies for

30 min on ice. Flow cytometry was performed on a BD LSRII machine using

BD FACSDiva software. Analysis was performed using FlowJo software. The

following directly conjugated antibodies were used: CD3-ECD (145-2C11),

CD4-BV605 (RM4-5), CD8-BV650 (53-6.7), Foxp3-Alexa 700 (FJK-16S),

CD44-FITC (IM7), CD62L-Alexa 700 (MEL-14), IFNg-PerCP eFluor710

(XMG1.2), IL-17-fluorescein isothiocyanate (FITC) (TC11-18H10.1), Tbet-

PECy7 (4B10), CD73-BV421 (TY/11.8), CTLA-4-antigen presenting cell (APC)

(UC10-4B9), ICOS-PECy5 (7E.17G9), CD29-APC Cy7 (HMb1-1), CXCR3-

PerCP eFluor710 (CXCR3-173), and Ki67-FITC (SolA15). AmCyan live/dead

stain (Invitrogen) was used in all panels for identification of live cells. Gating

schemes and trees used for flow cytometry analysis are shown in Figure S1.

To measure the amount of phenotypic variation attributable to genetic differ-

ences, ICCvalueswere calculated for all flowmeasures (GelmanandHill, 2007).
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Measurement of Human Treg Frequency

Cryopreserved peripheral blood mononuclear cells (PBMCs) were obtained

from individuals participating in the Partners PrEP Study (ClinicalTrials.gov

number NCT00557245). Study procedures have been described previously

(Baeten et al., 2012). For the present analysis, samples were selected from

men and women who were HIV-negative. The procedures of the Partners

PrEP Study, including collection of samples for immunologic assays, were

approved by the institutional review boards of the University of Washington

and collaborating site institutions; participants provided written informed

consent.

PBMCs from 244 individuals were thawed and cultured in R10. Counts and

viability were acquired using the TC-20 automated cell counter (Bio-Rad).

Tregs were stained with the Live/Dead Fixable Aqua Dead Cell Stain Kit

from Molecular Probes (OR, USA), followed by cell surface staining with the

appropriate cell panel. Surface markers examined for phenotype staining pro-

tocol included CD3 (OKT3 and HIT3a), CD4 (OKT4), CD25 (BC96), and CD127

(A019D5) from BioLegend (CA, USA) and CD8 (SK1) from eBioscience(CA,

USA). Intracellular markers examined included FoxP3 (236 A/E7) from

eBioscience (CA, USA). Immediately following staining, samples were

analyzed using a LSRII flow cytometer (BD Biosciences, CA, USA) with FlowJo

software (Tree Star OR). Tregs were considered to be CD3+CD4+CD25hi

Foxp3+CD127dim cells, as published previously (Pattacini et al., 2016).

Statistical Analysis

When comparing groups, two-tailed unpaired Student’s t tests were con-

ducted, with p < 0.05 considered significant. Error bars show ± SEM or ± SD.

http://ClinicalTrials.gov


Principal Component Analysis

PCA was performed using all measures listed in Table S4. For all measures,

average values for each CC-RIX line were calculated. The proportion of

missing values was examined for each CC-RIX line and each flow cytometry

measure. CC-RIX lines and measures with more than 15% missing values

were excluded from the analysis. The remaining missing values were replaced

with the average value across all lines. Finally, each measure was scaled and

centered before performing PCA.

Calculation of ICC (Estimate of Heritability)

A random effects model was fit for each flow variable,

yij =m+aj+ εij;

where yij is the i-th observation for the j-th group, m is the overall mean, aj is a

random effect, and εij is the error. ICC is defined below, where s2a is the vari-

ance explained by the grouping factor (RIX line), and s2
ε is the variance not ex-

plained by the grouping factor:

ICC= s2s
��

s2s+ s2
ε

�
:

QTL Mapping

QTL mapping was done as described previously (Aylor et al., 2011; Ferris

et al., 2013). Briefly, the haplotypic makeup of each CC-RIX was deter-

mined based on the consensus most recent common ancestor (MRCA)

for each CC-RI line. Because each RIX is an F1, the haplotype probabilities

were averaged between the two strains for each of the autosomes,

whereas the X chromosome for each RIX was determined solely with the

mother strain’s haplotypic makeup (because these CC-RIX were males,

they all have one copy of the X chromosome inherited from their dam).

The DOQTL package conducts an eight-variable (the probability of each

of the eight founder haplotypes at a locus) regression on probabilities

framework at each marker of interest, looking to find significant associa-

tions between the founder haplotype probabilities at a marker with the

associated phenotypes present within the RIX. Genome-wide significance

is determined by permutation testing (randomly shuffling the phenotypic

values across the CC-RIX and asking for the most significant response

value). Allele effects at each locus are determined by taking the effect es-

timate for each of the eight founder haplotypes (the b within a linear regres-

sion framework).

To determine likely causative variants at a locus, we used the allele ef-

fects to identify the largest split between effects at a QTL. When there

were two splits of roughly equal magnitude, then we assumed that there

were 3 allele groups with a more complex SNP pattern. We took all of the

called genetic variants within the QTL based on the Sanger whole-genome

sequences of the eight founder strains and looked at the variant distribution

pattern. As described in the results, we filtered these variants based on po-

tential effect on protein sequence to derive lists of higher-priority candidate

genes.

An additive haplotype regression model implemented in the DOQTL R

(Team, 2016) package was used for QTL mapping analyses (Gatti et al.,

2014). Briefly, QTL genome scans are performed by regressing the

phenotype on genotype probabilities for each of the eight founder strains.

A random-effect term is included in the model to account for kinship among

animals. The DOQTL software also requires sex to be included as a covariate

in the regression model, although all of our samples are male. An LOD score

for each marker is calculated from the likelihood ratio comparing the regres-

sion model described above to a regression model without the founder ge-

notype probabilities. The statistical significance of LOD scores is determined

via a permutation test. A threshold of p % 0.05 was used to select significant

associations.
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