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ABSTRACT

Objective: One primary consideration when developing predictive models is downstream effects on future

model performance. We conduct experiments to quantify the effects of experimental design choices, namely

cohort selection and internal validation methods, on (estimated) real-world model performance.

Materials and Methods: Four years of hospitalizations are used to develop a 1-year mortality prediction model

(composite of death or initiation of hospice care). Two common methods to select appropriate patient visits

from their encounter history (backwards-from-outcome and forwards-from-admission) are combined with 2

testing cohorts (random and temporal validation). Two models are trained under otherwise identical conditions,

and their performances compared. Operating thresholds are selected in each test set and applied to a “real-

world” cohort of labeled admissions from another, unused year.

Results: Backwards-from-outcome cohort selection retains 25% of candidate admissions (n¼23 579), whereas

forwards-from-admission selection includes many more (n¼92 148). Both selection methods produce similar

performances when applied to a random test set. However, when applied to the temporally defined “real-

world” set, forwards-from-admission yields higher areas under the ROC and precision recall curves (88.3% and

56.5% vs. 83.2% and 41.6%).

Discussion: A backwards-from-outcome experiment manipulates raw training data, simplifying the experiment.

This manipulated data no longer resembles real-world data, resulting in optimistic estimates of test set perfor-

mance, especially at high precision. In contrast, a forwards-from-admission experiment with a temporally sepa-

rated test set consistently and conservatively estimates real-world performance.

Conclusion: Experimental design choices impose bias upon selected cohorts. A forwards-from-admission ex-

periment, validated temporally, can conservatively estimate real-world performance.

ABSTRACT

LAY SUMMARY: The routine care of patients stands to benefit greatly from assistive technologies, including

data-driven risk assessment. Already, many different machine learning and artificial intelligence applications

are being developed from complex electronic health record data. To overcome challenges that arise from such

data, researchers often start with simple experimental approaches to test their work. One key component is

how patients (and their healthcare visits) are selected for the study from the pool of all patients seen. Another is

how the group of patients used to create the risk estimator differs from the group used to evaluate how well it

works. These choices complicate how the experimental setting compares to the real-world application to

patients. For example, different selection approaches that depend on each patient’s future outcome can simplify

the experiment but are impractical upon implementation as these data are unavailable. We show that this kind
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of “backwards” experiment optimistically estimates how well the model performs. Instead, our results advocate

for experiments that select patients in a “forwards” manner and “temporal” validation that approximates train-

ing on past data and implementing on future data. More robust results help gauge the clinical utility of recent

works and aid decision-making before implementation into practice.

Key words: experimental design, data science, machine learning, reproducibility of results, mortality

INTRODUCTION

When building machine learning models with electronic health re-

cord (EHR) data, we need to decide how to select patients from the

population to both learn and evaluate a predictive model. To be suc-

cessful, we want our model to perform well beyond the experiment

and into the proposed use-case. In order to estimate our model per-

formance, we should validate using an unseen dataset that closely

resembles real-world data in order to inform discussions on its po-

tential utility in practice.

First, we must select an experimental cohort to train a predictive

model. This selection process is complicated by realities of EHR

data: some patients are seen multiple times and others lost to

follow-up with uncertain outcomes. Many machine learning works

employ experimental simplifications to ameliorate such practical

data challenges. Examples include studies that use cross-sectional

data, upsample rare events, or select a desirable patient population

or phenotype. One thing each of these approaches have in common

is the careful selection of which patients to include and when. In a

literature review of recent medical informatics works including de-

velopment of at least 1 predictive model, 4 of 13 employ one of these

approaches (Supplementary Table S1). By removing patients, these

simplified experiments are helpful to assess the feasibility of new

applications, but are expected to give an optimistic impression of

performance on flawed real-world data.

Validation is the phase of model development where any experi-

mental simplifications impact performance. But not all validation is

equal. Predictive models are typically validated internally from the

same population,1 often with subsampling methods2 or explicit

“holdout” cohorts.3,4 After internal validation, some models are fur-

ther validated prospectively from a future time or externally from an

outside patient population or environment. But, more often than

not, model development only includes internal validation results.

Since any application of machine learning in practice involves

learning from past patients to predict the future, estimates of model

performance should replicate this temporal process. Although pro-

spective validation is considered a higher standard than internal vali-

dation,2 it cannot be employed during model development as it

requires data to be collected live. An approximation of prospective

validation can be performed during model development with tempo-

ral validation, where the most recent experimental data are selected

for validation (rather than the typical random sample). Moreover,

since the patients included in temporal validation are different, it

can also be classified as a weak approximation of external valida-

tion.2,5 Temporal validation is a compromise between the practical-

ity of random validation and the rigor of prospective (and external)

validation as the “test set” distribution resembles that expected

upon implementation.

Unfortunately, there remains sparse empirical results describing

how different experimental and validation approaches impact model

performance when deployed into the real-world. Instead, existing

literature often focuses on the benefits of and need for secondary

studies of prospective and/or external validation. Many machine

learning works do not translate into such secondary validation stud-

ies. For many different methods and applications, the only data that

exist are that published with the first derivation work which, in

many cases, only includes random validation (Supplementary Tables

S1 and S2). With no subsequent temporal, prospective, or external

validation to evaluate the bigger picture of generalizability,1 no one

can truly assess the feasibility of such applications without reimple-

mentation on their data.

In this article, we revisit several experimental designs and valida-

tion strategies often used when constructing machine learning

experiments from retrospective patient data. Within a setting of

mortality prediction, we describe how these experimental choices

impact the model development data and ultimately affect estimated

real-world performance. We hope these results serve as an empirical

reference for practitioners and add to the discussion of pragmatic

machine learning experiments in healthcare.

End-of-life use-case
End-of-life interventions—those that are more palliative than cura-

tive—are often initiated too late in a patient’s life. Guidelines sug-

gest palliative care is appropriate for anyone living with a chronic or

serious illness that will eventually cause their death.6 However, pal-

liative care is often only initiated in the last weeks or months of

life.7 One reason for this may be that physicians are poor at estimat-

ing prognosis, typically being optimistic,8–10 ultimately influencing

care decisions.11 Practical systems that identify patients who may

benefit from palliative care, or other end-of-life interventions, are

needed.12,13

Several recent works have described various machine learning

methods to predict mortality as a proxy task for palliative care

needs.4,14,15 However, the experimental designs employed often

have limitations determined by how they apply inclusion criteria

and select prediction visits from each patient’s history. Namely, the

validation cohorts no longer resemble the real-world cohort

expected upon deployment.

OBJECTIVE

The goal of this work is to compare several candidate experimental

designs in terms of (1) their impact on model development data, and

(2) the resulting predictive performance of a machine learning

model. In particular, performance within 2 test cohorts will be com-

pared and contrasted against that of a single, uniform “real-world”

cohort that, unlike the development data, is not affected by any ex-

perimental choices.
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MATERIALS AND METHODS

Data
Prediction task

Mortality prediction is a common task, but challenges in modeling,

experimental design, and implementation have limited translation

into practice. Mortality modeling works often introduce mortality

risk as a proxy for patient appropriateness for palliative care.4,14 In

these proposed workflows, prediction timing is crucial. Inpatient

settings are promising as specialized clinicians are available to initi-

ate meaningful interventions. More specifically, prediction at, or

near, admission can aid the care team to approach the entirety of a

patient’s admission cognizant of their risk.

Machine learning-based approaches to mortality prediction of-

ten simplify “time-to-event” analyses into binary outcomes of death

within a certain time, commonly 1 year. As an objective for this

work, we build on prior work and choose 1-year mortality as a tar-

get prediction task.4

Patient cohort

Data collected in routine clinical care of 1 urban, tertiary hospital

are considered. Data are extracted from the clinical data warehouse

where data are available from 2011. Admissions starting January 1,

2013 were considered for this work to allow prior patient data to

accrue. At the time of data retrieval (March 2019), we consider

admissions up to December 31, 2017, yielding 5 consecutive years

of admissions as described in Figure 1A. However, the entire year of

2017 is held out of model development and will be used to simulate

deployment.

Outcome data

Mortality data are innately noisy as both the mechanism of death

and effect of any life-preserving interventions vary between patients.

Moreover, data collection is complicated by the inability to observe

deaths beyond our hospital system. Three sources of data are com-

bined to form a composite measure: (1) internal medical center

death data, (2) purchased death data (derived from the Social Secu-

rity Administration’s Master Death File), and (3) hospice discharges.

None are perfect data capture mechanisms but together provide an

“end-of-life” label where the majority of patient outcomes are

affirmed by at least 2 sources.

Data categories

The same broad data categories as prior works4,11 are considered as

predictors: demographics, encounters, diagnoses, medications, pro-

cedures, and laboratory results. Each of these categories, except

demographics and encounters, has structured ontology-based vocab-

ularies (ICD-10 diagnoses, RxNorm medications, CPT procedures,

and LOINC laboratory tests). Data of this type can be problematic

as there are a very large number of highly specific codes where only

a few codes are attributed to each encounter. From a modeling per-

spective, code-based data produce many sparse features which limits

the number of feasible methods. Further details on the methods

employed to mitigate these data challenges can be found in the Sup-

plementary Material.

Experimental factors to compare
Design of a retrospective experiment requires numerous choices. In

this study, we introduce 2 particularly important decisions and com-

pare 2 common approaches within each. Although intuitive argu-

ments are often made, quantitative results from each of the 4

combinations will be presented similarly to enable direct compari-

sons.

Cohort selection: by outcome or admission?

Due to the complexity of hospital admission data, machine learning

practitioners often subset the complete dataset to form a model de-

velopment cohort using inclusion and exclusion criteria. The result

is simplified and sanitized data that mitigate known challenges.

Here, 2 contrasting approaches are presented: one that selects

(instances) backwards from outcome and another that selects for-

wards from admission. Further details of both selection methods can

be found in Supplementary Figure S1.

Backwards-from-outcome cohort selection refers to a simplifying

strategy that starts from a known outcome and works backwards to

identify an appropriate prediction instant for each patient, in effect,

a retrospective case-control study. This design is also known as

right-censoring and is commonly employed in some medical ma-

Figure 1. Schematic representation of available data and selected patient cohorts. (A) Seven years of available data leaves 5 calendar years of admissions. (B)

Backwards-from-outcome cohort selection that only includes 1 admission per patient. (C) Forwards-from-admission cohort selection that includes readmissions

within each set but excludes readmissions into another set. The thin horizontal lines inside the training cohort depict cross-validation folds employed for parame-

ter tuning.
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chine learning applications.16 Model development is relatively sim-

ple with such a design as the raw clinical data is cleansed by exclud-

ing 2 particular challenges of the medical domain: (1) uncertain

labels, due to patients who are lost to follow-up, and (2) multiple

admissions per patient, where the 1-year mortality outcome may flip

from negative to positive. The result is model development data that

have less label noise.

Avati et al4 employ a backwards-from-outcome design to select

one prediction instant per patient by working backwards from either

(1) their known death, or (2) their last encounter. However, the

authors enforce other criteria, namely, requiring 1 year of patient

history. With such a design, Avati et al4 select a cohort of 221 284

patients from a population of approximately 2 million. These selec-

tion criteria are reproduced in this work.

Forwards-from-admission cohort selection refers to a design-

oriented forwards from each admission, analogous to recruitment of a

prospective cohort study, sometimes referred to as a retrospective cohort

study or left-censoring. The result is a cohort followed from their admis-

sion date without foresight of their outcome. Naturally, some patients

are lost to follow-up within the 1-year observation period, or are subse-

quently readmitted. One advantage of forwards-from-admission selec-

tion is the more intuitive inclusion of readmissions, enabling a patient’s

risk to evolve over time. While selecting forwards-from-admission is

more realistic of deployment of medical applications, it does add experi-

mental complexity which may discourage practitioners.

Test set selection: random sample or temporal separation?

To evaluate how a model performs on unseen patients during model

development (i.e. internal validation), a test set must be selected

from the complete population before model training. How the test

set is separated from the population determines how test set perfor-

mance estimates generalizability. Here, 2 common methods of

selecting a test set are compared:

Random test set. A random test set includes patients randomly

sampled from the same population and time period as the training

data. In doing so, this test set measures generalizability. This design

assumes sampling will ensure that the testing and training distribu-

tions are similar, which may not hold in practice. Several recent

mortality prediction works employ a random test set in their

work.4,14,15

Temporal test set. A temporal test set includes patients from the

same population but selects patients that are separated temporally

from the training data. In doing so, this type of test set also measures

the historic transportability2 of the model into the near future, likely

more challenging than generalizing. This test set is more closely

aligned with the deployment process of training on prior data and

deploying on new patients at some future time.

Combining cohort selection and test sets

Both backwards-from-outcome and forwards-from-admission

experiments enable random and temporal test sets. As evidenced by

a literature review of recent works, most rely on random test sets re-

gardless of their selection method (see Supplementary Material).

The approach to select a test set often represents the practitioner’s

experimental goals: complex applications often benefit from the rel-

ative simplicity of backwards-from-outcome selection with a ran-

dom test set. However, this simplicity complicates generalization to

a real-world application, hindering decision-making. To compare

approaches, both random and temporal test sets are utilized leaving

1 training cohort for each selection method, as depicted in Figure 1.

Each individual patient should only exist in 1 cohort to mitigate

data “leakage” from training to testing. Backwards-from-outcome se-

lection is simple as it yields 1 prediction per patient, whereas forwards-

from-admission selection is more complex. In this work, only new

patients in 2016 are recruited to the temporal test set. Excluded admis-

sions are depicted in Figure 1B, C and detailed in Supplementary Figure

S1. Backwards-from-outcome selection removes all but one admission

(the nearest to 12 months prior to death or last censor). In contrast, se-

lection forwards-from-admission removes a smaller set of readmissions

from the temporal set to mitigate data leakage.

Experimental factors consistent across designs
Feature construction and modeling

We fix the feature construction and modeling for each experimental

design, by adapting that of Avati et al4 to include lab results and

employing a random forest classifier. Further details can be found in

the Supplementary Material.

Thresholding criteria and simulating deployment

Typically, only metrics of overall model performance are reported—

most commonly area under the receiver operating characteristic

(AUROC) and, increasingly, area under the precision recall curve

(AUPRC). However, in many applications, an operating threshold is

selected within a test set by imposing a criterion on 1 particular mea-

sure. Since our outcome of interest, mortality, is rare but very im-

portant, we are most concerned with systems operating at a

clinically acceptable, typically high, precision (positive predictive

value)4 while maximizing recall (sensitivity). Together, these metrics

can assist thresholding and inform how a model could be incorpo-

rated into an existing clinical workflow to recommend an interven-

tion.

Deployment typically requires 1 operating threshold to separate

patients at high risk of dying from those at low risk. We simulate

this process by selecting a variety of potential operating thresholds

by requiring precision to exceed some criterion (namely, the median

selected threshold under bootstrapped subsampling conditions). We

select 8 precision values spanning the range of realistic choices: 20–

90%. Each threshold is “deployed” by predicting in the real-world

cohort and identifying patients who exceed the threshold. Notably,

the real-world set is identical across experiments as it is not con-

strained to the same criteria as the development sets and is intended

to represent the real-world where:

1. Patients are readmitted,

2. Patients have varying degrees of clinical history available,

3. Patients die within days of admission with no recent hospitaliza-

tions, and

4. Some patients are lost to follow-up and thus do not have a reli-

able outcome.

The first 3 factors are incorporated as sources of realistic noise

but the last issue is difficult to overcome without introducing bias.

For this cohort, patients lost to follow-up within 1 year are omitted.

As each threshold is applied, the performance criterion selected

for within the test set produces a corresponding real-world perfor-

mance. Direct comparison of model performance across test sets is

unfair, as the groups are dissimilar, but the degree of “migration”

from test to real-world performance is reported and compared.

Moreover, since the real-world cohort is consistent across experi-

ments, the performance can be compared across thresholds, cohort

selection method, and employed test sets.
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RESULTS

Patient cohort
The study period spanned 5 calendar years, 2013–2017, and in-

cluded all adult inpatient admissions to 1 hospital. In this period,

128 328 admissions were recorded covering 87 293 unique patients.

In this cohort, the median [IQR] age at admission was 56.0 [35.4,

72.4] years, where 60.6% are female, 9.8% identify as Hispanic,

67.5% as white, 10.1% as African-American, 8.1% as Asian, and

14.2% as other or unknown race. Please refer to Supplementary Ta-

ble S3 for a more detailed breakdown of patient demographics,

comorbidities, and model features. Of these admissions, 16 004

have a known death outcome (6501 unique patients), with a median

[IQR] time from admission to death of 138 [22, 493] days, where

10 932 admissions lead to mortality within 365 days, a prevalence

of 8.5% (comparable with other large prognostic cohorts17).

The real-world cohort is separated early from this larger cohort

as described in Supplementary Figure S1. Defined as any admission

in 2017 (n¼29 382) but further restricted to patients known to

have died or censored beyond 365 days results in a real-world co-

hort of 17 868 admissions. The model development period of 2013–

2016 consists of 98 946 candidate admissions for cohort selection.

Cohort selection
Backwards-from-outcome selection

The backwards-from-outcome experiment is very restrictive and dis-

cards the large majority of observed admissions yielding a model de-

velopment cohort of n¼23 579 that is separated into training,

random and temporal test sets as described in Table 1 and Supple-

mentary Figure S1. The exclusions introduced by this design are ap-

parent when plotted alongside the real-world set in Figure 2 (left).

This approximate 75% reduction in cohort size is comparable with

similar works, namely Avati et al4 that reported an approximate

90% reduction (221 284 patients from approximately 2 million).

One primary limitation of backwards-from-outcome selection is

the introduction of temporal bias. Deaths occur reasonably uni-

formly across time, and thus selection should select a similar number

of deaths each month. However, when applied to the last encounter

of the survival group, recent times are more likely to be selected as

patients tend to continue to receive care within the same system until

death, recovery or relocation. In the 4 years of model development

data described in Figure 2, a noticeable increase in admissions per

month is observed in the survival group (top-left) but not the death

group (bottom-left). This introduced discrepancy between outcome

groups will only grow as the time period extends, challenging the

use of such a design in cohorts that span longer-time periods.

Forwards-from-admission selection

The less strict selection criteria of the forwards-from-admission de-

sign results in the inclusion of many thousands more admissions, ev-

ident in both Table 1 and Figure 2. The only admissions removed

are those excluded upon transition to temporal test, where a notice-

able drop is evident in Figure 2 starting January 2016, particularly

in the death group (bottom-right). The resulting cohort of 92 148

admissions is almost 4 times larger than the backwards-from-

outcome cohort with a larger mortality prevalence, closer to that of

the population.

Table 1. Model training and testing cohorts, stratified by outcome, for backwards-from-outcome and forwards-from-admission designs

Design Outcome Train Random test Temporal test Subtotal Real world

Backwards-from-outcome Survival 11 540 2906 7861 22 307 15 428

Death 732 (5.96%) 192 (6.20%) 348 (4.24%) 1272 (5.39%) 2440 (13.7%)

Forwards-from-admission Survival 52 834 13 389 18 474 84 697 15 428

Death 4913 (8.51%) 1157 (7.95%) 1381 (6.96%) 7451 (8.09%) 2440 (13.7%)

Figure 2. Cohort distributions of groups by calendar month. For reference, the monthly mean of the training set is represented with a horizontal black line.
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Test set performance: random vs. temporal
Backwards-from-outcome selection

Parameter optimization in 5-fold cross-validation within the

backwards-from-outcome training set selected the optimal random

forest model with 500 trees, depth of 100, and negative sample

weight of 0.2. The mean [minimum, maximum] AUROC and

AUPRC within cross-validation is 89.9% [89.3, 91.2] and 40.7%

[39.1, 43.1], respectively. When retrained and applied to test sets,

model performance shifts unpredictably as reported in Table 2,

highlighting the differences between the 2 test sets.

Precision recall curves are plotted in Figure 3 for random (left;

red) and temporal (right; green) test sets alongside that of the real-

world cohort (blue). Performance appears better when evaluating

the model on the random test set as compared with the temporal test

set. Each operating threshold migrates from the estimated test set

performance into a real-world performance, depicted by connected

colored dots. Importantly, these performance migrations are not

small vertical or horizontal movements, instead, they describe dras-

tic performance shifts in both precision and recall. Interestingly,

both random and temporal test set precision recall curves intersect

the real-world curve such that the direction of the performance shift

depends on the desired precision criteria. These large shifts suggest

that neither test set provides an accurate estimation of real-world

performance when using a backwards-from-outcome design, likely

due to distributional differences introduced by right-censoring.

Forwards-from-admission selection

Parameter optimization in 5-fold cross-validation within the

forwards-from-admission training set selected the optimal random

forest model with 1000 trees, depth of 200, and negative sample

weight of 0.2, similar to the backwards-from-outcome design. The

mean [minimum, maximum] AUROC and AUPRC within cross-

validation is 90.4% [90.0, 90.7] and 48.7% [47.2, 50.5], respec-

tively, and only marginal reductions in performance are reported

when applied to random and temporal test sets, described in Table 2,

suggesting the cohorts are similar.

Both the random and temporal test set precision recall curves of

Figure 4 describe a drastic drop in performance in the very low recall

region—known as the early retrieval problem18 that is especially

common in tasks with imperfect labels. Despite this drop in preci-

sion, thresholds selected in both test sets typically result in improved

performances when applied to the real-world set. The performance

difference is relatively consistent between each test set and the real-

world set, but employing a forwards-from-admission design with a

Table 2. Model development and testing cohort performances in terms of AUROC and AUPRC for backwards-from-outcome and forwards-

from-admission designs.

Design Evaluation measure Train (mean [min, max]

cross-validation)

Random test

[95% CI]

Temporal test

[95% CI]

Real world

[95% CI]

Backwards-from-outcome AUROC (%) 89.9

[89.3, 91.2]

89.5

[87.0, 92.1]

85.4

[83.4, 87.3]

83.2

[82.3, 84.1]

AUPRC (%) 40.7

[39.1, 43.1]

45.9

[37.9, 55.0]

29.3

[24.7, 34.8]

41.6

[39.6, 44.0]

Forwards-from-admission AUROC (%) 90.4

[90.0, 90.7]

90.5

[89.7, 91.4]

90.3

[89.5, 91.2]

88.3

[87.6, 89.1]

AUPRC (%) 48.7

[47.2, 50.5]

45.0

[42.1, 48.7]

46.9

[44.0, 50.3]

56.5

[54.2, 59.1]

Bold values indicate highest real world performance.

Figure 3. Precision and recall curves with highlighted operating points describing estimated real-world performance by the backwards-from-outcome experimen-

tal design in comparison to the internal and temporal test sets.
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temporal test set provides consistently conservative estimation of de-

ployment—a safe scenario for deployment.

Real-world performance
The backwards-from-outcome design excludes many patients with-

out certain labels which improves the model’s ability to distinguish

very high-risk patients from at-risk patients (e.g., recall <0.20). But,

the result is a drastically smaller training cohort than the forwards-

from-admission alternative. The additional sample size of the

forwards-from-admission experiment improves real-world perfor-

mance by 5.2% (95% CI 4.6, 5.7) AUROC and 14.8% (95% CI

13.5, 16.5) AUPRC, described in Table 2, that is consistently and

conservatively estimated with either test set.

DISCUSSION

The machine learning community advocates for rigorous experimen-

tal design but, the medical domain presents challenges that cannot

be ignored. Backwards-from-outcome selection and random testing

are commonly employed, likely because they strictly address many

of these challenges and simplify training and validation. However,

doing so cleanses experimental data from the expected distribution

upon deployment, as evident in the patient demographics and

comorbidities of Supplementary Table S3. In fact, many statisticians

and epidemiologists would acknowledge that using forwards-from-

admission selection (i.e. a cohort study) with a temporal test set is

good practice despite the added complexity and potential for intro-

duced bias—the lessor of the evils. Despite this, medical machine

learning works are published with neither of these preferred design

components nor any secondary prospective or external validation

(as illustrated by a literature review in the Supplementary Material).

When applying machine learning to healthcare data, experimen-

tal choices are crucial, not only for their effect on validation perfor-

mance but also on the real-world performance. Gold-standard

results from prospective or external validation are infeasible in

many applications without tremendous technical infrastructure and

motivated by estimates of impactful performance. Without transpar-

ent reporting of experimental design choices, there is no way to dis-

criminate between potentially disruptive new applications and those

reliant on biased, idealistic results. Since some experimental designs

cleanse the underlying data beyond resemblance to real-world, pro-

spective data, these designs should be discouraged by the commu-

nity. Their continual use, without grounding in prospective or

external results, only perpetuates unrealistic expectations of ma-

chine learning and artificial intelligence that may fuel disillusion-

ment.

Experimental design considerations
Backwards-from-outcome selection limits one individual to one out-

come group even if no appropriate prediction instant can be identi-

fied. In reality, patients that die are likely to be hospitalized more

than once (55% of patients in our dataset), and in many cases will

have long clinical histories with increasing risk. Since the forwards-

from-admission design determines an outcome per admission, read-

missions are accommodated and the model is penalized for prema-

ture or delayed risk estimation along each patient’s trajectory.

However, the forwards-from-admission design may introduce

bias upon the temporal test set. To mitigate data leakage, all tempo-

ral test patients must have not been recently admitted—otherwise

they would have been recruited for training—and therefore may be

less acutely ill. A brief drop in admissions is observed in the death

group of Figure 2 (bottom-right). Separation of the training and

temporal testing cohorts with a buffer time period, typical of pro-

spective validation, may mitigate this introduced bias at the expense

of omitted data.

Simulated deployment
The thresholding and simulated deployment presented here is overly

simplified. In practice, thresholding would challenge the quality of

some “gold-standard” outcome labels, especially those patients pre-

dicted at relatively high risk. Since death data are prone to missing-

ness,19 a process including chart review or follow-up may reconcile

some cases. Any improvements may be particularly helpful in the

forwards-from-admission random test set as thresholding is cur-

rently hindered by poor performance at very low recall.

Figure 4. Precision and recall curves with highlighted operating points describing estimated real-world performance by the forwards-from-admission experimen-

tal design in comparison to the internal and temporal test sets.
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In this experiment, the real-world cohort begins immediately af-

ter the temporal test set. In reality, at least 1 year will pass between

development data and implementation, to collect outcomes and de-

velop the model. Implementation will almost certainly be more diffi-

cult than this simulated deployment, such that measuring

generalization with a sampled test set becomes inadequate. Instead,

a temporally separated test set will likely yield more realistic esti-

mates of performance, as it assesses the model’s adaptation to the fu-

ture—historic transportability.2

Limitations
The results presented here consider one dataset. However, it is not

unreasonable to expect this pattern of behavior in other datasets. Al-

though we cannot predict future changes, we can be sure they will

arrive. Expecting the challenges of deploying in a temporally evolv-

ing domain highlights the importance of pragmatic solutions for cal-

ibration drift20 that may require retraining or planned re-

calibration,21 but future research is required.

Comparison to previous work is unfortunately limited as only 5

years of data were available in a setting with, potentially, less conti-

nuity of care and follow-up than Avati et al4 (given the geographic

differences between New York City and Santa Clara County). In ad-

dition, predictions were restricted to inpatient admissions for practi-

cality, a random forest model was employed for portability and

efficiency, and hospice discharges were included as a proxy for death

upon observing that hospice patients were often lost to follow-up

with no confirmed death date (unpublished).

Using a binary “gold-standard” outcome label is common,22

however, implementation evaluation is plagued with uncertainty.

Cohort selection and strict inclusion/exclusion criteria inadvertently

separate the 2 classes, but patients identified in deployment will be

lost to follow-up. Testing on a dataset that does not represent the

expected deployment distribution is likely optimistic.

The extreme reduction in cohort size when selecting backwards-

from-outcome results in relatively small cohorts in the random and

temporal test sets, especially the death groups of 192 and 348 admis-

sions, respectively. These groups are likely inadequate for reliable

thresholding within the precision recall space, especially under sub-

sampling conditions. More testing data may improve the thresholds.

However, the sanitization of data by the backwards-from-outcome

design will limit the utility of any test set threshold upon deploy-

ment.

Future work
We consider a simplified scenario where we plan to evaluate the

learned model for use within our institution. Before we comment on

its utility elsewhere, spectrum bias23 and other pillars of transport-

ability2 must be addressed. Our first step is generalizing to other

hospitals within our system which contain different patient distribu-

tions with varying data collection processes that may impede gener-

alization.

CONCLUSION

Evaluation of a predictive model in terms of its utility and feasibility

for deployment presumes the reported performance is achievable in

the real world. In this work, we evaluated 2 common retrospective

experimental designs employed for model development, and selected

a range of thresholds across 2 test sets in order to compare their dif-

ferences in terms of estimated model performance. Cohort selection

in a forwards-from-admission design results in higher real-world

performance. Moreover, temporal validation within a test set com-

prised of more recent data yields more consistent estimates of real-

world performance especially at higher precision than a randomly

sampled internal validation set. In all cases, migration from test set

to real-world performance was observed and should be expected

when deploying predictive models into clinical practice.
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