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Department of Orthopedics, Sun Yat-sen Memorial Hospital, Guangzhou, China

Background: Chemoresistance is one of the leading causes that severely limits the
success of osteosarcoma treatment. Evaluating chemoresistance before chemotherapy
poses a new challenge for researchers. We established an effective chemoresistance risk
scoring model for prechemotherapy osteosarcoma using single-cell sequencing.

Methods: We comprehensively analyzed osteosarcoma data from the bulk mRNA
sequencing dataset TARGET-OS and the single-cell RNA sequencing (scRNA-seq)
dataset GSE162454. Chemoresistant tumor clusters were identified using enrichment
analysis and AUCell scoring. Its differentiated trajectory was achieved with inferCNV and
pseudotime analysis. Ligand–receptor interactions were annotated with iTALK.
Furthermore, we established a chemoresistance risk scoring model using LASSO
regression based on scRNA-seq-based markers of chemoresistant tumor clusters. The
TARGET-OS dataset was used as the training group, and the bulk mRNA array dataset
GSE33382 was used as the validation group. Finally, the performance was verified for its
discriminatory ability and calibration.

Results: Using bulk RNA data, we found that osteogenic expression was upregulated in
chemoresistant osteosarcoma as compared to chemosensitive osteosarcoma. Then, we
transferred the bulk RNA findings to scRNA-seq and noticed osteosarcoma tumor
clusters C14 and C25 showing osteogenic cancer stem cell expression patterns, which
fit chemoresistant characteristics. C14 and C25 possessed bridge roles in interactions
with other clusters. On the one hand, they received various growth factor stimulators and
could potentially transform into a proliferative state. On the other hand, they promote local
tumor angiogenesis, bone remodeling and immunosuppression. Next, we identified a ten-
gene signature from the C14 and C25 markers and constructed a chemoresistant risk
scoring model using LASSO regression model. Finally, we found that chemoresistant
osteosarcoma had higher chemoresistance risk score and that the model showed good
discriminatory ability and calibration in both the training and validation groups (AUCtrain =
0.82; AUCvalid = 0.84). Compared with that of the classic bulk RNA-based model, it
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showed more robust performance in validation environment (AUCvalid-scRNA = 0.84;
AUCvalid-bulk DEGs = 0.54).

Conclusions: Our work provides insights into understanding chemoresistant
osteosarcoma tumor cells and using single-cell sequencing to establish a
chemoresistance risk scoring model. The model showed good discriminatory ability
and calibration and provided us with a feasible way to evaluate chemoresistance in
prechemotherapy osteosarcoma.
Keywords: osteosarcoma, single-cell RNA sequencing, chemoresistance, heterogeneity, stemness
INTRODUCTION

Osteosarcoma is the most common malignant bone tumor,
primarily threatening children and adolescents. The present
treatment strategy for primary osteosarcoma mainly consists of
local resection and systematic chemotherapy (1). Unfortunately,
the prognosis of osteosarcoma patients remains unsatisfactory, and
the 5-year overall survival (OS) rate of osteosarcoma patients who
receive complete resection and standard chemotherapy is
approximately 70% (2). The major problem that severely limits the
success of osteosarcoma treatment is a poor histopathologic response
to neoadjuvant chemotherapy, which increases the risk of developing
metastasis and relapse (3, 4). However, the histopathologic response
cannot be evaluated until tissue is obtained during surgery; thus,
timely adjustment of neoadjuvant chemotherapy to overcome drug
resistance is difficult. Evaluating chemoresistance before
chemotherapy poses a new challenge for researchers.

Researchers have continuously explored prechemotherapeutic
methods for predicting the osteosarcoma response to
chemotherapy. The application of evolutionary theory to cancer
provides the groundwork for forecasting histopathologic response
before chemotherapy in osteosarcoma (5). Theoretically, the
chemotherapeutic environment puts selection pressure on tumor
cell pools and causes existing chemoresistant cells to become the
dominant population. In osteosarcoma, previous studies also
strongly support the idea that chemoresistance results from the
population of chemoresistant cells (6). Early detection of
chemoresistant cells in biopsy can indicate an increased risk of
drug resistance (7). Bulk RNA sequencing (RNA-seq) is being
increasingly recognized as a feasible method to identify
chemoresistant cells in biopsy tissue (8). RNA-seq can help
researchers identify various chemoresistance-related biomarkers
and thus select existing relevant therapeutic agents, which is a
feasible way to improve the survival rate for osteosarcoma (6).
However, RNA-seq resolves the average gene expression of bulk
tissue and weakens its detection of the expression patterns of small
groups among environmental noise.

Made available with technological advances, single-cell RNA
sequencing (scRNA-seq) can resolve gene expression at the
individual cell level and enable us to better explore and identify
chemoresistant cells. Liu Y’s and Zhou Y’s first applied scRNA-seq
to reveal the landscapes of tumor environments in osteosarcoma
(9, 10). Comparing the two techniques, scRNA-seq has higher
sensitivity but higher cost, whereas bulk RNA-seq has more
2

samples and reliably reflects the characteristics among
populations. Thus, utilizing the connection between scRNA and
bulk RNA-seq data could be instrumental in understanding and
recognizing tumor chemoresistance in osteosarcoma. This study
focused on comprehensively analyzing prechemotherapy
osteosarcoma by combining bulk RNA-seq and scRNA-seq to
reveal chemoresistant osteosarcoma tumor cell expression
patterns and their role in interactions with other cellular
components in the osteosarcoma environment and to establish a
chemoresistance risk scoring model in prechemotherapy
osteosarcoma. First, we revealed the general glance in
chemoresistant osteosarcoma based on bulk RNA-seq data.
Second, we identified chemoresistant tumor cells based on
combining bulk RNA results and existing chemoresistant markers
(6). Third, we undertook a more thorough analysis of
chemoresistant cells in tumor cells and tumor environments.
Finally, chemoresistance-related expression patterns were utilized
to establish a chemoresistance risk scoring model for
prechemotherapy osteosarcoma. The workflow in our study is
summarized in Figure 1.

MATERIAL AND METHODS

Data Sources
The data sources in our study are summarized in Table 1. The
bulk RNA-seq data were obtained from the Therapeutically
Applicable Research to Generate Effective Treatments program:
Osteosarcoma (TARGET-OS) (phs000468; https://ocg.cancer.
gov/programs/target/projects/osteosarcoma) (11). The enrolled
patients had 1. available mRNA sequencing data from
osteosarcoma samples taken before chemotherapy and 2.
complete clinical data and follow-up records, including age,
sex, metastatic stage at diagnosis, and tumor response to
chemotherapy (necrotic rate ≥90% or Huvos stage III & IV
indicated chemosensitive osteosarcoma; necrotic rate <90% or
Huvos stage I & II indicated chemoresistant osteosarcoma). The
data were transformed into transcripts per kilobase million
(TPM) values, and log2(TPM+1) values were calculated before
further analysis.

scRNA sequencing data were obtained from GSE162454
(https://ftp.ncbi.nlm.nih.gov/geo/series/GSE162nnn/GSE162454/
) from the Gene Expression Omnibus (GEO) database (9).
GSE162454 data were collected from conventional osteosarcoma
biopsy samples taken before chemotherapy, and OS1-6 cases were
May 2022 | Volume 12 | Article 893282
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included in our study. The osteosarcoma single-cell suspension
was loaded onto a 10x Genomics Chromium Single-Cell Chip and
sequenced on an Illumina HiSeq X Ten instrument.

In the “Establishment and validation of the chemoresistance
riskmodel” section, theTARGET-OS serieswasused as the training
set, and GSE33382 (https://ftp.ncbi.nlm.nih.gov/geo/series/
GSE33nnn/GSE33382/matrix/) was used as the validating set
(11, 12). The enrolled patients were not only eligible according to
theabove standardsbut alsohad1.nometastasis at diagnosis and2.
available follow-up records, including tumor progression and
progression time for progression-free survival (PFS). GSE33382
Frontiers in Oncology | www.frontiersin.org 3
is RNA array data on the Illumina human-6 v2.0 expression
beadchip platform. The batch effect between TARGET-OS and
GSE33382wasadjustedbasedon empirical Bayes frameworksusing
the sva package (13).

Bulk RNA-Seq Expression Profiling of
Chemoresistant Osteosarcoma Patients
We used the EdgeR package to identify differentially expressed
genes (DEGs) (14). We kept those genes with average
expression>1. The p values were adjusted using the Benjamin
& Hochberg method, and the cutoff value was less than 0.05. The
TABLE 1 | Data sources.

Project Datasets Sample size

DEGs† analysis using bulk RNA-seq‡ TARGET-OS (11) 43
Inclusion criteria:

1. Available mRNA sequencing data from osteosarcoma samples taken before chemotherapy;
2. Complete clinical data and follow-up records, including age, sex, metastatic stage at diagnosis, and
tumor response to chemotherapy.
Single cell analysis using scRNA-seq§ GSE162454 (9) 6
Inclusion criteria:

Available scRNA sequencing data from osteosarcoma samples taken before chemotherapy;

Establishment and validation of the chemoresistance risk model
Training group TARGET-OS (11) 29
Validating group GSE33382 (12) 31
Inclusion criteria:

The same as DEGs analysis section

Exclusion criteria:

1. No distal metastasis at diagnosis (Enneking IIb);
2. Available records, including tumor progression and progression time for PFS¶.
May 2022 | Volume 12 | A
†DEG is “Differentially expressed genes”.
‡RNA-seq is “RNA sequencing”.
§scRNA-seq is “Single-cell sequencing”.
¶PFS is “Progression-free survival”.
FIGURE 1 | Design of the experiment and workflow of this study.
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absolute cutoff logFC value was more than 0.25. The upregulated
and downregulated DEGs were subjected to enrichment analysis
using Metascape (15). In the enrichment analysis, an adjusted p
value <0.01, q-value <0.05 and minimum enrichment score >1.5
were set as the cutoff criteria.

scRNA-Seq Data Processing and
Cell Annotation
The scRNA-seq data were processed with the Seurat package
(16). Individual data were merged, and low-quality cells were
excluded based on the types of genes detected, total number of
detected genes, and percentage of mitochondrial genes. The
eligible data were normalized, and batch effects were removed.
Furthermore, the scRNA-seq data were subjected to uniform
manifold approximation and projection (UMAP) analysis for
dimension reduction and statistically divided into different
clusters with a resolution of 1.0. Using the FindAllMarkers
function, we obtained markers among different clusters and
annotated their cell types based on known cell markers.

Determination of the Chemoresistant
Expression Profile in Tumor Cells
We filtered the chemoresistant clusters according to the
chemoresistance-related expression profile in the tumor cells.
Chemoresistant expression was evaluated from 2 perspectives.
First, based on bulk RNA results, we focused on osteoblastic
lineage expression, including cell proliferation, extracellular matrix
(ECM) secretion, and ossification induction among tumor cells
(17). Markers (top 100 genes) from each tumor cell cluster were
subjected to enrichment analysis using Metascape (15). The
parameter settings are the same as those mentioned above.

Second, we collected chemoresistance-related expression based
on previous reports and included the ABC transporter gene set,
DNA repairment gene set, and stemness-related gene sets (EMT
gene set, Wnt/b-catenin gene set, TGFb gene set, TNFa gene set,
MAPK gene set, Notch gene set, Hedgehog gene set and BMP gene
set) (6). Due to the inherent sparsity of single-cell data, the
scRNA-seq data were transformed into pseudobulk profiles for
each tumor before comparison with AUCell, which identifies the
active state of gene sets in scRNA-seq data (18). The high AUCell
score cells were divided by AUC cutoff values.

Differentiation Trajectory Analysis of
Chemoresistant Tumor Cells
The chemoresistant tumor cells and the remaining tumor cells
from the same patients were subjected to differentiation trajectory
analysis. It was achieved with 2 steps. First, we estimated the DNA
variation to judge the degree of differentiation; second, we
performed pseudotime analysis to explore the cell-state transitions.

Tumor cell differentiation is an important resource of tumor
diversity, and DNA variation could infer the degree of
differentiation, in which higher DNA variation indicates a
higher differentiation degree (19). We estimated the
chromosomal copy number variation (CNV) by the inferCNV
package (20). The hidden Markov model (HMM) was utilized to
minimize noise, and the annotated immune cells were used as a
Frontiers in Oncology | www.frontiersin.org 4
normal cell control. The cutoff value for the minimum average
read counts per gene among reference cells was set as 0.1. The
CNV score was calculated as the mean of the CNV regions. Then,
based on the CNV results, pseudotime analysis was utilized to test
cell state transmission with theMonocle2 package (21). It was used
to calculate differentiation-related gene expression and visualize
the differentiatied trajectory tree of chemoresistant tumor cells.

Tumor Environment Evaluation of
Chemoresistant Tumor Cells
We focused on 2 aspects of the tumor environment surrounding
chemoresistant tumor cells. First, we undertook a more thorough
analysis in nontumor cell clusters. We rearranged their markers
and annotated them with reported tumor-related subtype
markers. Second, ligand–receptor (LR) interaction analysis was
applied to demonstrate the interaction between the tumor and
environment using the iTALK package (22). The ligand–receptor
interaction of interest was assessed based on the expression of the
ligand in the CRC cluster and the expression of the corresponding
receptor in another cell cluster. Only the top 20 expressed genes
and markers expressed in the corresponding cell types were
considered in the analysis. Then, we selected the LR interactions
that were biologically relevant to the osteosarcoma environment.

Construction and Validation of a
Chemoresistance Risk Scoring Model of
Prechemotherapy Osteosarcoma
As mentioned above, the TARGET-OS series was used as the
training set, and GSE33382 was used as the validating set (11,
12). The gene markers of chemoresistant tumor cells based on
scRNA-seq were a pool of candidate predictors. First, univariate
analysis was applied to narrow down the candidate predictors as
upregulated genes in chemoresistant osteosarcoma. Second, least
absolute shrinkage and selection operator (LASSO) analysis was
utilized to detect predictors using the glmnet package (23).
LASSO analysis was repeated over 100 iterations to fit the
optimal model. Third, these predictors were utilized to develop
the binary logistic regression model for scoring chemoresistance
risk in osteosarcoma. The chemoresistant risk score was
calculated with the following formula: Y =on

i=1coefi ∗Xi,
where “coefi” and “X” denote the coefficient and expression
level of each predictor. Ultimately, a receiver operating
characteristic (ROC) curve was utilized to examine the
performance of the predictive model, and an area under the
curve (AUC) value of >0.80 indicated good performance.
RESULT

Identification of DEGs in Chemoresistant
Osteosarcoma Using Bulk RNA-Seq
We employed 43 primary osteosarcoma bulk RNA-seq samples
from TARGET-OS, 25 samples from chemoresistant patients
and 18 samples from chemosensitive patients (Table 2) (11). We
identified 111 upregulated DEGs and 245 downregulated DEGs
in chemoresistant patients compared with chemosensitive
May 2022 | Volume 12 | Article 893282
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patients (Figure 2, list in Table S1). Several osteogenic
biomarkers, including SOST, DKK1, PHOSPHO1 and
SERPINH1, were upregulated in chemoresistant patients. The
upregulated DEGs were also enriched in terms including
ossification, collagen fibril organization, and the VEGF
signaling pathway. The downregulated DEGs were enriched in
several terms related to the immune response. Collectively, based
on bulk RNA-seq data, chemoresistant osteosarcoma was
characterized as expressing osteogenic-related gene sets (24),
with relatively weaker expression of immune response-related
gene sets.

scRNA-Seq Data Quality Control
and Annotation
The 10x Genomics scRNA-seq data of 6 prechemotherapy
osteosarcoma samples in GSE162454 were used in our study
(9). For scRNA data, the sequencing depth is shown in
Figure 3A. We used the following data: (1) features > 1200; (2)
total RNA counts between 500 to 75000; and (3) percent of
Frontiers in Oncology | www.frontiersin.org 5
mitochondrial gene expression <25%, and 37321 eligible cells
were standardized and normalized. First, the expression profile
was normalized using the LogNormalize method, and 5000
hypervariable gene features were identified using the variance-
stabilizing transformation (VST) method. Then, single-cell data
were scaled and regressed against patients and percent
mitochondrial gene expression. Next, the scRNA profile was
subjected to principal component analysis (PCA) and linear
dimensionality reduction with 50 presumptive principal
components (PCs). Finally, we set 20 dimensions of reduction,
which could exhibit 61.4% cumulative percent of variation and
0.01% change of variation between neighboring PCs, to identify
clusters of cells by shared nearest neighbor (SNN) modularity
optimization. The cells were classified into clusters based on the
UMAP algorithm (Figure 3B, cluster markers in Table S2).
Based on marker genes (Figure 3C, listed in Table 3), the
clusters were annotated into osteoblastic tumor clusters,
immune cell clusters (including monocyte clusters, T-cell
clusters and B-cell clusters) and stromal cell clusters (including
A

B

C

FIGURE 2 | Bulk RNA-based chemoresistant osteosarcoma expression patterns. (A) Volcano plot of DEGs in chemoresistant osteosarcoma versus control. Red
dots indicate upregulated genes, blue dots indicate downregulated genes, and gray dots indicate genes without significant changes. The dotted line shows the cutoff
values for adjusted p values <0.05 & absolute value of logFC >0.25. (B) Bar plot for the top-ranked gene set enrichment in upregulated DEGs in chemoresistant
osteosarcoma. (C) Bar plot for the top-ranked gene set enrichment in downregulated DEGs in chemoresistant osteosarcoma.
TABLE 2 | Patient clinical manifestations.

Total (n=43) Chemosensitive patients† (n=18) Chemoresistant patients‡ (n=25) p value

Age (years) 0.54
Median(P5-P95) 14.81 (9.72-28.90) 15.65 (9.69-29.46) 14.37 (9.62-26.53)

Sex 0.77
Female 18 (41.9%) 8 (44.4%) 10 (40.0%)
Male 25 (58.1%) 10 (55.6%) 15 (60.0%)

Metastasis at diagnosis 0.50
Metastasis 12 (27.9%) 6 (33.3%) 6 (24.0%)
Localized 21 (72.1%) 12 (66.7%) 19 (76.0%)

Status
PFS§ 23 (53.5%) 14 (77.8%) 9 (36.0%) 0.007
OS¶ 29 (67.4%) 15 (83.3%) 14 (56.0%) 0.059
May 2022 | Volume 12 | Article
†necrotic rate ≥90% or Huvos stage III & IV indicated chemosensitive osteosarcoma.
‡necrotic rate <90% or Huvos stage I & II indicated chemoresistant osteosarcoma.
§PFS is “Progression-free survival”.
¶OS is “Overall survival”.
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fibroblast clusters, osteoclast clusters, and vascular endothelial
cell clusters).

Tumor Cell Annotation Related
to Drug Resistance
To identify tumor heterogeneity in osteosarcoma, we further
investigated tumor cell clusters. Ten tumor clusters with 11777
cells were annotated in the previous step (Figure 4A). First,
based on bulk RNA results, we focused on osteogenic-related
expression among tumor cells (Figure 4B). Osteosarcomagenesis
has been reported to be closely associated with the osteoblastic
lineage and shows osteogenic differentiation-related activity in
proliferation, ECM secretion and ossification induction (25, 26).
We noticed that C11, C18 and C38 strongly upregulated
proliferative expression, including DNA replication,
chromosome organization and miotic expression. C0, C8, C14,
C15 and C25 are stromal tumor cells that were characterized for
T

C

O
M
T
B
O
F
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their osteogenic function through the expression of ECM
secretion and ossification induction. These stromal tumor cells
also showed stimulation with several growth factors, such as
PDGF, VEGF, EGF, and IGF, and activated downstream signals.
C7 and C28 were identified as senescent tumor cells. They were
characterized as weakly osteogenic activity but enriched in
expression related to cellular stress and senescence.

Second, we analyzed chemoresistance-related expression in
tumor cells. Using AUCell scoring, we noticed that the
chemoresistance-related gene sets were all expressed in tumor
clusters (Figures 4C–E). Among tumor clusters, the difference in
chemoresistance-related expression was major in stemness-related
expression, including EMT, Notch, TNFa, Hedgehog, and BMP
gene sets, when the ABC transporter, DNA repair, TGFb, Wnt b-
catenin and MAPK gene set scores were relatively uniform. Based
on the AUCell score threshold, the high EMT, TNFa, and
Hedgehog cells were mostly concentrated in C7, C14, and C25,
but high Notch and BMP cells were discretely distributed among
tumor clusters. Together, these results suggested that C14 and C25
met the above two chemoresistant points and were characterized
as osteogenic cancer stem cell (CSC)-like tumor cells.

Differentiation Trajectory of
Chemoresistant Tumor Cells
C14 originated from OS4 patients. C25 originated from OS6.
First, we calculated the CNV score of each cell to identify the
change in chromosomes and inferred the differentiated trajectory
among OS4 and OS6 tumor cells (Figures 5A, D). Based on
inferCNV, we found that C14 and C25 exhibited lower CNV
A C

B

FIGURE 3 | Overview of data processing and cell annotation in scRNA data. (A) Dot plot of data quality control in scRNA data. The threshold was set as
nFeature_RNA > 1200, 500<nCount_RNA<75000. Area that was not covered by gray is the corresponding value range. The color of the dot represents the
percentage of mitochondrial gene expression, whose cutoff value was less than 25%. (B) UMAP plot showing clusters of 7 main cell types from 6 osteosarcoma
scRNA-seq datasets. (C) Violin plots exhibiting the expression of representative markers across diverse cell types. ALPL and RUNX2 are osteoblastic tumor markers.
CD2 and CD8A are T-cell markers. CD79A is a B-cell marker. CD68 is a monocyte marker. CD34 and VWF are vascular markers. FN1 and COL1A1 are fibroblast
markers. CTSK and ACP5 are osteoclast markers.
ABLE 3 | The canonical markers for the cell types in osteosarcoma tissues.

ell cluster Marker genes

steoblastic tumor cells RUNX2, ALPL, IBSP
onocytes CD14, CD68, CD74
cells CD2, CD3, CD4, CD8A, IL7R
cells CD19, CD79A
steoclasts ACP5, CTSK, MMP9
ibroblasts DCN, FN1, COL1A1

Vascular endothelium CD34, VWF
May 2022 | Volume 12 | Article 893282
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levels than C38 and C18 in OS4 and OS6, respectively (C14 vs.
C38: 0.23 vs. 0.48; C25 vs. C18: 0.36 vs. 0.40). The results
indicated that C14 and C25 had a lower degree of
differentiation than C38 and C18.

Then, we applied pseudotime analysis among tumor clusters
in OS4 and OS6 (Figures 5B, C, E, F). The pseudotime result also
supported that tumor cells from C14 and C25 could differentiate
to C38 and C18. A total of 217 genes were consistently involved
in the differentiation from C14 and C25 to C38 and C18 and
were strongly associated with mitosis and DNA replication.
Based on the TRRUST database, the expression of these genes
was closely regulated by transcription factors, including E2F1
and TP53. A total of 330 genes were common markers of C14
and C25 and were associated with the regulation of EMT and
osteoblast differentiation. As a result, differentiated trajectory
analysis supported the role of C14 and C25 in CSCs in
osteosarcoma. The common markers between C14 and C25
Frontiers in Oncology | www.frontiersin.org 7
suggested that tumor cells could be transmitted from CSCs
into proliferative stages through active osteoblastic
differentiation-like expression (Figures 5G, H).

Nontumor Cellular Components
Surrounding Chemoresistant Tumor Cells
As we were aware, the nontumor cellular component accounted
for more than half in the osteosarcoma environment (63.72% in
OS4, 80.65% in OS6). This encouraged us to investigate diverse
nontumor cellular components surrounding chemoresistant
tumor cells, including immune cells and stromal cells
(Figures 6A, B).

For immune clusters, we identified monocytes, T cells and B
cells in the previous step. We noticed that monocyte clusters
actively expressed markers of M2-TAM polarization, such as
CCL2, CD40, CSF1R, CD163, IL10 and TGFb1 (27). It has been
reported that M2-TAMs can suppress the local immune response
A C

D

E

B

FIGURE 4 | Tumor cells exhibited chemoresistant expression. (A) UMAP plot showing tumor clusters. (B) Bar plot for the top-ranked gene set enrichment in
markers in proliferative, stromal and senescent tumor cells. (C) Scatter plot showing the distribution of AUCell scores in chemoresistant-related gene sets. (D) AUCell
score distribution curves of chemoresistant related gene sets. The vertical line represents the cutoff of the AUCell score. The green vertical line indicates that the
score was relatively homogeneous, and the red line indicates that the score could be divided into 2 groups, with high expression above and low expression below.
As a result, BMP, EMT, Hedgehog, Notch, and TNFa are relatively heterogeneous in osteosarcoma. (E) Violin plots exhibiting the AUCell score of chemoresistant
expression across tumor cell types. The red horizontal line is the cutoff value.
May 2022 | Volume 12 | Article 893282
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and maintain stemness in osteosarcoma (27). In OS6, T cells
showed exhausted CD8 T-cell characteristics that upregulated
inhibitory receptors, including PDCD1, LAG3 and TIGHT (28).
The exhausted CD8 T cells and M2-TAMs together displayed
multifaceted immunosuppressive signals within the
osteosarcoma microenvironment.

For stromal clusters, we identified fibroblasts, vascular
endothelium and osteoclasts in the previous step. We found
fibroblasts expressing the CAF markers PDPN, S100A4 and
TAGLN2 (29). The CAF cluster markers indicated that they
had 3 functions in the osteosarcoma environment. First, it helped
suppress local immunity through PDPN and S100A4
maintenance of M2 macrophage infiltration (30, 31). Second, it
also played roles in the development of the osteogenic matrix by
secreting collagen fibrils and ossification inducers, such as
PHOSPHO1, BMP2, and BMP4. Third, it secreted rich growth
factors, such as PDGFC, VEFGA, and IGF2BP, and stimulated
cell growth. Vascular endothelial markers were strongly
associated with blood vessel development and endothelial
Frontiers in Oncology | www.frontiersin.org 8
proliferation, which indicated active tumor angiogenesis
in osteosarcoma.

Collectively, both the nontumor immune clusters and stromal
clusters participated in the malignant progression of
osteosarcoma by suppressing local immunity and promoting
angiogenesis, osteogenic formation and CSC stemness. This
result further supported that OS4 and OS6 were consistent
with chemoresistant osteosarcoma in bulk RNA analysis.

Ligand–Receptor Interactions in the
Osteosarcoma Environment
Using iTALK analysis, the LR interactions among tumor clusters,
immune clusters and stromal clusters in OS4 and OS6 were
identified (Figures 6C, D, listed in Table S3). First, tumor
clusters received immune and stromal cluster stimulation. C14
and C25 were stimulated with growth factor interactions such as
PDGFD : PDGFRA, IGFBP4:FZD8, and TGFB1:SDC2. This also
supported previous results that C14 and C25 activated growth
factor signals. Additionally, it showed an IL1B:IL1R interaction
A D

B C E

G H

F

FIGURE 5 | Differentiated trajectory of chemoresistant tumor cells. (A, B) Chromosomal CNV plots of tumor cells in OS4 (C18, C25) and OS6 (C14, C38). The
above box was the control group. The lower box shows the tumor groups. The horizontal axis was segmentate as a chromosome. Red indicates amplification, and
blue indicates censoring. As a result, C14 and C25 showed lower CNVs than C38 and C18. (B–F) Scatter plot showing the pseudotime trajectory from C25 to C18
(B, C) and from C14 to C38 (E, F). (G) Bar plot for the top-ranked gene set enrichment in upregulated genes along the differentiated lineage. (H). Bar plot for the
top-ranked gene set enrichment in common marker genes in chemoresistant tumor cells.
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with TAMs and was related to increased chemoresistance in
osteosarcoma (32).

Second, tumor clusters affected both immune and stromal
cells. C14 and C25 play main roles in secreting tumor-derived
cytokines and growth factors. In OS6, C25 actively secreted FGF7
and CTGF, which promoted CAF growth and tumor
angiogenesis, and CXCL12, which interacted with CXCR4 to
block and deplete the T-cell response (33). In OS4, C14 secretes
TGFB1, which is known for its important role in bone
remodeling and regulation of the local immune response. It
interacts with macrophages to promote M2-TAM polarization
(34). It regulates the T and B immune response through the
TGFB1: CXCR4 interaction (35). It mediates osteoclast
activation in bone remodeling and tumor angiogenesis (36,
37). Together, we noticed that C14 and C25 acted as a bridge
between tumor components and nontumor components. On the
one hand, it receives messages from the environment that
Frontiers in Oncology | www.frontiersin.org 9
promote tumor growth and transform into the proliferative
stage. On the other hand, it delivers diverse cell factors to
immune and stromal cells, promoting tumor angiogenesis and
bone remodeling and suppressing local immunity.

Establishment and Validation Of the
Chemoresistance Risk Model
Based on the above results, we identified chemoresistant C14 and
C25 as being closely consistent with chemoresistant osteosarcoma
characteristics in bulk RNA analysis. Thus, we explored the
clinical application of their expression patterns in evaluating
chemoresistance risk in osteosarcoma. The TARGET-OS series
was used as the training set, and GSE33382 was used as the
validation set (Table 4). First, we used univariate analysis to
narrow down 1729 markers to 33 upregulated genes in
chemoresistant osteosarcoma. Then, we selected 10
chemoresistant risk-related genes based on LASSO algorithms
A B

C D

FIGURE 6 | Nontumor cell and ligand–receptor interactions in chemoresistant osteosarcoma. (A, B) Heatmap showing TAM, exhausted T cell, CAF and tumor vascular
cell marker expression. Colors from yellow to purple indicate the relative expression levels from high to low. (C, D) Ligand–receptor interaction plot in OS4 (C) and OS6
(D). The arrow direction indicates the direction of the ligand–receptor interaction, in which the arrow is the receptor and the nock is the ligand. The thickness of the line
indicates the relative expression levels from high to low. As a result, C14 and C25 showed a hub role between the tumor and osteosarcoma environment.
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(Figures 7A, Table 5). Ultimately, the formula of the
chemoresistant risk score was Y=−36.36+0.110∗ADAMTS2+
0.042∗SPAG16+0.124∗CGREF1+0.328∗JTB+0.083∗ENPP2+
0.528∗ACP1+1.485∗NPM1+0.759∗CTSF+0.045∗MPP6+
1.109∗PARD6G The chemoresistant Risk Score was reliable and
robust for predicting the chemoresistant risk of osteosarcoma
based on ROC curves (AUCtrain = 0.82; AUCvalid = 0.84
(Figures 7B, C).

Meanwhile, we compared the power between the above
scRNA-based risk model and the classic DEG-based risk model
(Figure 7D). The DEG model was constructed by repeating the
above steps, and the formula was Y=−5.712+0.920∗PARD6G+
0.486∗NPM1+0.852∗ATIC+0.434∗PDCD4−1.560∗EPS8−
0.335∗PHF19−0.304∗ITGAL−0.339∗FOXM1+0.029∗EFHD1−
0.019∗TPP2−0.195∗PDCD1+0.290∗ACP1 . AUCtrainwas 0.89, and
AUCvalid was 0.54 (Figures 7E, F). The results supported that the
scRNA-based risk model was more robust and avoided overfitting
than the classic DEG-based risk model.

Furthermore, we investigated the prognostic prediction of the
chemoresistant risk scoring model. Using ROC curves, we found
that -11.48 was the optimal cutoff value for the chemoresistant
risk score, where the AUC value reached a maximum of 0.80.
Therefore, we could divide the patients into a high
chemoresistant risk Score ≥ -11.48 and a low chemoresistant
risk (Score < -11.48). We explored the prognostic capability of the
chemoresistant risk score of osteosarcomas. The results showed
that high-risk patients tended to suffer from earlier progression
and a lower 5-year PFS rate, but the difference was not
statistically significant (p = 0.36) (Figures 7G, H).
DISCUSSION

In osteosarcoma, the combination of chemotherapy and surgery is
the cornerstone of treatment, and a good response to
chemotherapy could further improve patient survival (1).
However, predicting chemotherapy response and enacting
timely adjustment before neoadjuvant chemotherapy remain
challenges. Transcriptome sequencing is a feasible way to detect
chemoresistant related cells in osteosarcoma biopsy samples and
Frontiers in Oncology | www.frontiersin.org 10
to predict chemotherapy response (6). As technology advances,
scRNA-seq has enabled us to obtain higher-resolution data from
osteosarcoma tumor cells and explore the heterogeneous
chemoresistant tumor environment. In our study, we aimed to
reveal chemoresistance-related expression profiles and establish a
chemoresistance risk score model for osteosarcoma patients based
on a combination of scRNA-seq and bulk RNA-seq data.

Using bulk RNA-seq, we revealed the general glance in
chemoresistant osteosarcoma: active osteogenic expression and
suppressive immune expression. Our chemoresistance landscape
is consistent with previous reports suggesting that the
immunosuppressive and rich ossific ECM microenvironment is
a barrier that severely limits osteosarcoma patient survival
(38, 39). However, it is known that the existing chemoresistant
tumor cells play a core role in the construction of a
chemoresistant environment when bulk RNA results provide
only a view of average expression. The expression characteristics
of chemoresistant tumor cells remain unclear.

scRNA sequencing enabled us to resolve gene expression at
the individual cell level and has been widely investigated in solid
tumors, including osteosarcoma (9, 10). This provided us with
the chance to capture chemoresistant tumor cells according to
Liu’s study (9). In this study, we obtained a comprehensive
single-cell expression atlas of prechemotherapy osteosarcoma
and annotated tumor cells, T cells, B cells, monocytes, fibroblasts,
osteoclasts and vascular endothelium. The cell types were similar
to those in Liu’s report, demonstrating the reliability of our
data processing.

To recognize chemoresistant tumor cells, we reviewed
previous literature and summarized key chemoresistant
expression patterns, including ABC transporters, DNA repair,
stemness expression (EMT, Wnt/b-catenin pathway, TGFb
pathway, TNFa pathway, MAPK pathway, Notch pathway,
Hedgehog pathway and BMP pathway) (6). Combining this
result with the active osteogenic function from bulk RNA
results, we identified C14 and C25 as most fitting to the
chemoresistant expression patterns among tumor cells. They
showed both osteogenic functions, such as ossific ECM secretion,
and were stimulated with growth factors and high stemness
expression, such as activating EMT and the TNFa pathway.
TABLE 4 | Patient clinical manifestations in the establishment and validation of the chemoresistant risk scoring model.

Training cohort Validating cohort

Dataset TARGET-OS (n = 31) GSE33382 (n = 29)
Age (years)
Median (P5-P95) 15.10 (9.72-30.44) 16.00 (4.92-23.67)

Sex
Female 12 (38.7%) 9 (31.0%)
Male 19 (61.3%) 20 (69.0%)

Chemotherapy respond†

Sensitive 12 (38.7%) 11 (37.9%)
Resistant 19 (61.3%) 18 (62.1%)

Status
Progression free survival 19 (61.7%) Metastasis in 5yrs: 19 (65.5%)
Overall survival 23 (74.2%) –
May 2022
†necrotic rate ≥90% or Huvos stage III & IV indicated chemosensitive osteosarcoma; necrotic rate <90% or Huvos stage I & II indicated chemoresistant osteosarcoma.
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In our study, we undertook a more thorough analysis of C14,
C25 and their surrounding osteosarcoma environment. CNV
estimation and pseudotime analysis illustrated a differentiated
trajectory from C14 and C25 to proliferative C38 and C18. In
addition, we noticed that the transmission came through
upregulating osteoblastic differentiation-like expression. Studies
have revealed that osteoblastic differentiation is closely associated
with osteosarcoma tumorigenesis (25, 26). This result supported
the osteogenic CSC roles of C14 and C25.

CSCs make up the dominant roles in osteosarcoma
chemoresistance, and the tumor environment acts as fertile soil
for CSCs (40, 41). We found that C14 and C25 played a bridge
role between tumor cells and the cellular environment. On one
TABLE 5 | Chemoresistant risk-related genes based on the LASSO algorithm.

Gene
name

Protein name

ADAMTS2 A disintegrin and metalloproteinase with thrombospondin motifs 2
SPAG16 Sperm-associated antigen 16 protein
CGREF1 Cell growth regulator with EF hand domain protein 1
JTB Jumping translocation breakpoint protein
ENPP2 Ectonucleotide pyrophosphatase/phosphodiesterase family

member 2
ACP1 Adipocyte acid phosphatase
NPM1 Nucleophosmin
CTSF Cathepsin F
MPP6 M-phase phosphoprotein 6
PARD6G Partitioning defective 6 homolog gamma
A B C

D E

G H

F

FIGURE 7 | Development of a Chemoresistant Risk Scoring Model. (A–C) establishment of scRNA-based Chemoresistant Risk Scoring Model. (A) Chemoresistant
expression feature selection in the LASSO model. (B) ROC curves to assess the accuracy of the scRNA-based chemoresistant risk scoring model to predict
chemoresistance in the training groups. (C) ROC curves to assess the accuracy of the scRNA-based chemoresistant risk scoring model to predict chemoresistance
in the training groups. (D–F) establishment of a bulk DEG-based chemoresistance risk scoring model. (D) Chemoresistant expression feature selection in the LASSO
model. (E) ROC curves to assess the accuracy of the bulk DEG-based chemoresistant risk scoring model to predict chemoresistance in the validation groups.
(F) ROC curves to assess the accuracy of the bulk DEG-based chemoresistant risk scoring model to predict chemoresistance in the validation groups. (G) Kaplan–
Meier plot estimate of progression-free survival of patients by chemoresistant risk scores. (H) Kaplan–Meier plot estimate of progression-free survival of patients by
chemoresistant risk scores.
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side of the bridge, C14 and C25 receive growth signals from the
environment. The results showed that the growth factor LR
interacts with PDGFB : PDGFRA, IGFBP4:FZD8, and TGFB1:
SDC2 with TAMs and tumor vascular cells. C14 and C25
possessed FGF7, IGFBP4, and PDGFD paracrine functions,
further promoting tumor growth and differentiation to the
proliferative stage. On the other side of the bridge, C14 and
C25 transmit messages to nontumor cells to shape an angiogenic,
immunosuppressive and ossific environment. C25 actively
secretes FGF7 and CTGF, which promote CAF growth and
tumor angiogenesis, and CXCL12, which interacts with CXCR4
to block and deplete the T-cell response (33). C14 secretes
TGFB1, which participates in bone remodeling and the
regulation of the local immune response (42). As a response,
we noticed that exhausted CD8 T cells and M2-TAMs together
displayed multifaceted immunosuppressive signals within the
osteosarcoma environment, which could suppress the local
immune response and maintain stemness in osteosarcoma (27,
28). For stromal clusters, CAFs help to maintain M2 macrophage
infiltration and play roles in developing osteogenic matrix when
the tumor vasculature shows actively proliferative and
angiogenic function. Collectively, the results supported OS4
and OS6 fitting with characteristics of chemoresistant
osteosarcoma in bulk RNA analysis.

The detection of existing chemoresistant tumor cells is a
feasible method for chemoresistant risk assessment (7). In the
era of precision medicine, the RNA sequencing-based risk model
is one of the most widely applied risk assessment tools to evaluate
the chemoresistant risk for a particular patient and to plan
individualized treatment. During the past years, several bulk
RNA-seq-based signatures have been identified for
chemoresistance prediction in osteosarcoma and other solid
tumors (43, 44). However, these models sometimes failed to
show synchronously consistent predictive performance in both
the training and validation groups. This could be explained as
bulk RNA-based tumor markers sometimes being drowned by
environmental noise, since bulk RNA results reflect average
expression and ignore the heterogeneity of tumor components
in the solid tumor environment. Our results also showed a
similar phenomenon in which the traditional DEG-based
model had unsatisfactory performance in validating the
environment (AUCtrain-bulk DEGs=0.89; AUCvalid-bulk DEGs= 0.54).
As technology advances, single-cell sequencing can be used to
identify the expression patterns in individual cell clusters. A
recent study attempted to apply scRNA-seq-based signatures in
prognostic prediction in ovarian cancer (45). The scRNA-seq-
based signatures revealed the roles of macrophages in ovarian
cancer progression and showed robust performance in predicting
patient prognosis. In this way, we drew our inspiration and
presented a single-cell sequencing-assisted strategy for
establishing an osteosarcoma chemoresistant risk prediction
model. As stated above, the chemoresistant tumor cells C14
and C25 play central roles in the chemoresistant osteosarcoma
environment, and we assessed chemoresistance by detecting their
existence. Therefore, using the scRNA-based chemoresistant
markers in C14 and C25, we constructed a chemoresistant risk
Frontiers in Oncology | www.frontiersin.org 12
score model in prechemotherapeutic osteosarcoma, which
presented satisfying and stable performance in inferring the
likelihood of chemoresistance in osteosarcoma patients
(AUCtrain = 0.82; AUCvalid =0.84).The scRNA-based model
showed comparable performance with the classic bulk DEG-
based model in the training environment (AUCtrain-scRNA = 0.84;
AUCvalid-bulk DEGs =0.54).

In our study, some limitations must be recognized. First, due
to the absence of a histologic response in the scRNA-seq
dataset, we identified chemoresistant tumor cells based on
findings from bulk RNA-seq and lacked follow-up of the
scRNA-seq patients. Experimental verification of drug
resistance in chemoresistant tumor cells and chemoresistant
marker expression in osteosarcoma tumor tissue were
necessary to clarify the association between histologic
response and the chemoresistance risk score. Second, our
model lacks consideration of the adjustment strategy in the
high chemoresistant risk group. Further improvement of the
model could focus on experimental and clinical exploration for
the latent adjustment strategy of chemotherapy in high
chemoresistant risk patients. Third, the small sample size
weakened the validation of the effectiveness of the model. The
model performance and prognostic prediction capability
required a larger sample size.
CONCLUSION

In this study, we provided a perspective for understanding
chemoresistant osteosarcoma tumor cells based on combining
scRNA and RNA data. Using bulk RNA data, we found that
osteogenic expression was upregulated in chemoresistant
osteosarcoma compared to that of chemosensitive osteosarcoma.
Then, we transferred the bulk RNA findings to single cell
sequencing data and identified osteosarcoma tumor clusters C14
and C25 that show osteogenic cancer stem cell expression patterns,
which fit chemoresistant characteristics. In addition, it possessed
bridge roles in interactions with other clusters. On the one hand,
they received various growth factor stimulators and could
potentially transform into a proliferative state. On the other
hand, they promote local tumor angiogenesis, bone remodeling
and immunosuppression. Furthermore, we established a
chemoresistant risk score model to evaluate the chemoresistant
risk for prechemotherapeutic patients with osteosarcoma. The
model had a satisfying discriminatory ability and was more
robust in predicting chemoresistant risk in both the training and
validation groups than classic bulk RNA-based models. This
approach could potentially assist with prechemotherapeutic
assessment and personal ized adjustment strategies
in osteosarcoma.
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