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Abstract

Sleep is essential for the maintenance of the brain and the body, yet many features of sleep are poorly understood and
mathematical models are an important tool for probing proposed biological mechanisms. The most well-known
mathematical model of sleep regulation, the two-process model, models the sleep-wake cycle by two oscillators: a circadian
oscillator and a homeostatic oscillator. An alternative, more recent, model considers the mutual inhibition of sleep
promoting neurons and the ascending arousal system regulated by homeostatic and circadian processes. Here we show
there are fundamental similarities between these two models. The implications are illustrated with two important sleep-
wake phenomena. Firstly, we show that in the two-process model, transitions between different numbers of daily sleep
episodes can be classified as grazing bifurcations. This provides the theoretical underpinning for numerical results showing
that the sleep patterns of many mammals can be explained by the mutual inhibition model. Secondly, we show that when
sleep deprivation disrupts the sleep-wake cycle, ostensibly different measures of sleepiness in the two models are closely
related. The demonstration of the mathematical similarities of the two models is valuable because not only does it allow
some features of the two-process model to be interpreted physiologically but it also means that knowledge gained from
study of the two-process model can be used to inform understanding of the behaviour of the mutual inhibition model. This
is important because the mutual inhibition model and its extensions are increasingly being used as a tool to understand a
diverse range of sleep-wake phenomena such as the design of optimal shift-patterns, yet the values it uses for parameters
associated with the circadian and homeostatic processes are very different from those that have been experimentally
measured in the context of the two-process model.
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Introduction

Reduced or mis-timed sleep is increasingly recognized as

presenting a significant health risk and has been correlated with

increases in a diverse range of medical problems including all-

cause mortality, cardio-vascular disease, diabetes and impaired

vigilance and cognition [1–5]. The biological mechanisms that

result in such problems are beginning to be understood: recent

work has shown that changes to the duration or timing of the

human sleep-wake cycle can result in the up- or down regulation

and changes to the temporal pattern of large numbers of genes

associated with biological processes including metabolic, inflam-

matory, immune, stress responses and circadian rhythmicity [6, 7].

To further understand the underlying phenomena and associa-

tions that govern sleep-wake regulation, mathematical models are

an important tool to help clarify concepts, challenge accepted

ideas and aid in the interpretation of data.

A review of early mathematical models of sleep is given in [8],

leading up to the seminal model of Borbély, Daan and Beersma [9,

10], usually called the two-process model, and extended by

Borbély and Achermann [11]. As indicated by its name, the two-

process model proposes that the sleep-wake cycle can be

understood in terms of two processes: a homeostatic process and

a circadian process. The homeostatic process takes the form of a

relaxation oscillator that results in a monotonically increasing

‘sleep pressure’ during wake that is dissipated during sleep.

Switching from wake to sleep and from sleep to wake occurs at

upper and lower threshold values of the sleep pressure respectively,

where the thresholds are modulated by an approximately

sinusoidal circadian oscillator. This model has proved compelling

for both its physiological grounding and its graphical simplicity

and has been used extensively (there are over 1500 citations to [9]

and 600 citations to [10] to-date). For example: to explain why

only a relatively short period of recovery sleep is needed to

compensate for even lengthy periods of sleep deprivation [9]; to
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explain chronotype changes in adolescents [12]. Extensions of the

two-process model have been developed to explain the results of

chronic sleep restriction experiments [13, 14]. Despite its success,

it remains difficult to relate the threshold values in the two-process

model and its extensions to physiological processes.

Advances in neurophysiology have led to a proliferation of

models that aim to extend the two-process model to a more

physiological setting [15–21]. A recent review is given in [22]. The

most extensively tested of these is the model of Phillips and

Robinson [17] (the PR model), which has been used to explain

sleep fragmentation experiments [23], differences in mammalian

sleep patterns [24] and subjective fatigue during sleep deprivation

[25]. The PR model has also been extended to allow for the

inclusion of the effects of caffeine [26] and to allow for feedback of

the sleep-wake cycle on the circadian oscillator in order to explain

spontaneous internal desynchrony [27, 28].

In [17, 20], it was observed that the results of two different

physiologically based models could be presented in a qualitatively

similar way to those from the two-process model. Here we show

that some features of the PR model are not only qualitatively, but

also quantitatively similar to the two-process model: the param-

eters in the PR model can be explicitly related to the parameters in

the two-process model, giving a physiological interpretation to the

thresholds in the two-process model. We illustrate the conse-

quences of this explicit relation with two important sleep-wake

phenomena. First, by using the fact that the two-process model can

be represented as a one-dimensional map with discontinuities [29,

30], we demonstrate how transitions between monophasic and

polyphasic sleep occur through grazing bifurcations. These

grazing bifurcations are then used to provide a theoretical

underpinning for the observations that many mammalian sleep

patterns can be understood within a common framework by

varying just two parameters in the PR model [24]. Second, turning

to sleep deprivation experiments, we show how the ‘wake effort’

concept introduced in the PR model to explain sleep deprivation

can be explicitly related to the two-process model. This shows that

the wake effort is closely related to the difference between the

homeostatic pressure and the circadian oscillator, a measure often

used in the context of the two-process model to understand

sleepiness. Furthermore we discuss briefly how the PR model may

explain effects of chronic partial sleep deprivation on waking

performance.

Results

First we give a summary of the main features of the two-process

model and the PR model.

The two process model
The two-process model considers a homeostatic pressure H(t)

that decreases exponentially during sleep,

H(t)~H0e(t0{t)=xs ð1Þ

and increases during wake,

H~mz(H0{m)e(t0{t)=xw : ð2Þ

The parameter m is known as the ‘upper asymptote’ [13, 14],

this is the value that the homeostatic pressure H would reach if no

switch to sleep occurred. Similarly there is a ‘lower asymptote’ of

zero. Switching between wake and sleep occurs when the

homeostatic pressure H(t) reaches an upper threshold, Hz(t),

that consists of a mean value Hz
0 modulated by a circadian

process C(t),

Hz(t)~Hz
0 zaC(t): ð3Þ

The switch between sleep and wake occurs when H(t) reaches a

lower threshold, H{(t),

H{(t)~H{
0 zaC(t), ð4Þ

where C(t) is a periodic function of period 24 hours. In the

simplest cases

C(t)~ sin (v(t{a)),

but more complicated forms that include higher harmonics, such

as

C(t)~0:97 sin v(t{a)z0:22 sin 2v(t{a)

z0:007 sin 3v(t{a)z0:03 sin 4v(t{a)

z0:001 sin 5v(t{a),

have also been used [11]. Typical results of this model illustrating

its rich dynamics are shown in Figure 1.

Phillips and Robinson model (PR model)
At the core of the PR model are two groups of neurons: mono-

aminergic (MA) neurons in the ascending arousal system that

promote wake and neurons based in the ventro-lateral pre-optic

(VLPO) area of the hypothalamus that promote sleep. Phillips and

Robinson model the interaction between the MA and the VLPO

as mutually inhibitory. In the absence of further effects, this would

mean that the model would either stay in a state with the MA

active (wake) or in a state with the VLPO active (sleep) and no

switching between the states would occur. Switching between sleep

and wake occurs because the model also includes a drive to the

VLPO that is time dependent and consists of two components: a

circadian drive, C(t), and a homeostatic drive H(t). The structure

of the PR model is shown in Figure 2(a).

The neurons are modelled at a population level and are

represented by their mean cell body potential relative to rest, Vj

for j~m,v, where v represents the VLPO group and m represents

the MA. The potential is related to the firing rates of the neurons

by the firing function, Qj ,

Qj~
Qmax

1z exp½{(V{h)=s’� , ð5Þ

where Qmax is the maximum firing rate and h is the mean firing

threshold relative to resting. The function Qj is a sigmoid function,

which is close to zero for all negative values of Vj and then

saturates exponentially fast to Qmax.

The neuronal dynamics are represented by

tv
_VvzVv~{nvmQmzDv,

tm
_VmzVm~{nmvQvzDm, ð6Þ
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where the drive to the VLPO, Dv and to the MA, Dm are given by

Dv~nvhH{nvcC{Av,

Dm~Am:

The homeostatic component of the drive, H is modelled by

x _HzH~�mmQm, ð7Þ

and the circadian drive, C, is approximated by

C(t)~ cos (v(t{a)),

where v~2p=24hrs{1 and a is a phase shift that specifies the

distance from the circadian maximum. Typically, a is chosen so

that the switch from sleep to wake occurs at an appropriate clock

time.

Typical results produced by the PR model are shown in

Figure 2(b)–(d). During wake, the firing rate of the MA neurons is

high (Qm&5 s{1), that of the VLPO is low and the homeostatic

pressure tends to increase, while during sleep the firing rate of the

MA neurons is low (Qm&0 s{1), that of the VLPO is high and the

homeostatic pressure tends to decrease. Note that in the PR model

switching between wake and sleep is defined to occur when Qm

reaches the threshold value of one; this differs from the timing of

the maximum and minimum homeostatic pressure by a few

minutes. Obviously, the exact choice of the threshold value does

not play an important role in the dynamics of the system, but does

change the regions that are labelled as sleep or wake.

Comparison of the PR and two-process models
As recognised in [23], since changes in neuronal potentials

happen much faster than changes associated with the homeostatic

pressure, tj%x, there is a strong separation of timescales in the PR

model. This strong separation of timescales means that the

dynamics of the PR model is well approximated by two separate

models: one on the ‘slow’ timescale that is appropriate when

considering changes on the timescale of the circadian and

homeostatic processes such as the timings of sleep and wake;

and the other, the ‘fast’ timescale, which is appropriate when

considering changes on the timescale of the neuronal potentials

such as the response to a night time disturbance. If the firing

switching function Qj given in equation (5) in the PR model is

replaced by a hard switch,

Qj~
0 for VjvhS

QS for Vj§hS,

�
ð8Þ

where QS is the mean maximum firing rate of the neuronal

population and hS is the value at which the switch occurs, we show

in the Methods section that the parameters for the slow dynamics

of the PR model with a switch can be exactly mapped to

parameter values in the two-process model, specifically,

Hz
0 ~

hSzAvznvmQS

nvh

, H{
0 ~

hSzAv

nvh

,

a~
nvc

nvh

, m~�mmQS, xs~xw~x: ð9Þ

The lower threshold is therefore dependent on the mean drive

to the VLPO and the threshold firing rate. The difference between

the thresholds in the two-process model,

Hz
0 {H{

0 ~
nvmQS

nvh

,

can then be interpreted physiologically as the amount by which

the MA inhibits the firing of the VLPO during wake. This makes

intuitive sense: there is hysteresis in the switch between wake and

Figure 1. Sleep-wake cycles generated by the two-process
model. With the parameters as in [10], Figure 3: C(t)~ sin (vt),
H{

0 ~0:17, a~0:10, xs~4:2 hrs, xw~18:2 hrs, m~1: (a) Hz
0 ~0:35,

(b) Hz
0 ~0:60, (c) Hz

0 ~0:85: The times when sleep occurs (H
decreasing) are shaded.
doi:10.1371/journal.pone.0103877.g001
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sleep because of the mutual inhibition between the MA and the

VLPO. In the wake state, the VLPO requires a large drive to fire

to counteract the inhibitory effects of the MA. Once in the sleep

state, less drive is needed to maintain firing because the MA is

quiescent.

Using the standard parameters for the PR model, only a small

part of the firing function (5) is used. This is illustrated in

Figure 3(a), where the firing function is shown by the dashed line

and the typical range of values for Qm is shown by the thick (red)

line. We show in the Methods section that there is a systematic

way to relate the parameters for the original PR model to

equivalent parameters for the two-process model that retain the

timings and values at the extrema of the homeostat. In keeping

with the fact that the mean firing rate across the neuronal

population QS is much less than the maximum possible firing rate

Qmax, the value for QS is significantly less than Qmax but close to

the mean firing rate across the population in the PR model: in fact

the actual firing function needed in the PR-switch model is shown

by the blue line in Figure 3(b).

Typical graphs of H and Qj for both the original PR model and

the PR switch model are shown in Figure 3(c)–(e) demonstrating

the close agreement between the two cases. Graphs comparing

timeseries computed from the two-process model and numerical

integrations of the corresponding PR/PR switch model are shown

in Figure 4. The extremely good agreement of the two models is a

result of the very large disparity in timescales between the fast and

slow systems. Consequently, solutions of the PR model converge to

solutions on the slow manifold on the timescale of minutes. Once

on the slow manifold, solving the PR model is essentially

equivalent to solving the two-process model.

In [31] it was recognised that the PR model could be plotted in

a similar way to the two-process model, but the explicit connection

between parameters was not made. It is stated that a key difference

is that in the two-process model the value of H remains between

the thresholds at all times, as in Figure 1. However, we note that

this could be regarded as a matter of parameter choice rather than

a fundamental difference between the two models: whether the

two-process model remains between the thresholds depends on the

relative gradients of the circadian and homeostatic processes at

each wake/sleep or sleep/wake transition. Figure 4 shows that,

with the PR parameters used to model sleep regulation in humans,

the two thresholds in the two-process model are very close, hence

the circadian oscillation is the dominant sleep regulator and the

two thresholds merge almost into one.

The link between the PR model and the two-process model not

only gives us a physiological interpretation of the thresholds in the

two-process model, it also allows us to gain a greater insight into

the dynamics of the PR model, enabling understanding developed

in the context of the two-process model to be interpreted in the

physiological setting of the PR model. In the next sections, two

different examples are discussed.

Transitions from monophasic to polyphasic sleep
It is well-known that the two-process model can show a range of

different sleep-wake cycles, including cycles that have multiple

sleep episodes each day, see Figure 1(a), and cycles that have a

period greater than one day, see Figure 1(c). Indeed in [10], the

authors postulate that the two-process model can explain the

polyphasic sleep of many animals. In [24], it is shown that the

sleep-wake cycles of many different mammals can be understood

by varying two parameters in the PR model: the homeostatic time

constant x and the constant component to the VLPO drive, Av. In

the previous sections, we have demonstrated how the parameters

of the PR model relate to those of the two-process model,

specifically, the homeostatic time constant x is present in both

models and varying the drive to the VLPO Av corresponds to

varying the upper and lower thresholds without changing the

distance between them. In [29, 30] it is shown that the two-process

model can be understood as a one-dimensional map with

discontinuities. In this section, we use this map to show how the

Figure 2. The PR model and typical solutions. (a) Diagrammatic description of the PR model showing the links between the VLPO, MA, the
homeostatic and the circadian processes. (b), (c) and (d) show typical timeseries for the level of the homeostat, H , and the firing rates of the MA and
VLPO, Qm and Qv , respectively. The times where sleep occurs are shaded.
doi:10.1371/journal.pone.0103877.g002
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observations in [24] and the postulate in [10] are linked and clarify

how the transition between different numbers of daily sleep

episodes occurs.

First we introduce the one-dimensional map. Consider the two-

process model and suppose we start on the upper threshold, at

time T0
0 , where the model switches from wake to sleep. The

dynamics of the two-process model takes this starting point and,

propagating it forward through one sleep and one wake episode,

results in the next wake to sleep time, T1
0 , and then through a

further sleep-wake episode to T2
0 and so on, generating a sequence

of sleep onset times T1
0 ,T2

0 ,T3
0 . . .. This is illustrated for

T0
0 ~0 days in Figure 5(a). Different starting values T0

0 generate

different sequences of sleep times, as illustrated in Figure 5(b). For

the parameter values chosen here, all sequences converge rapidly

to the same monophasic periodic cycle. A graphical way of

understanding this sequence is to plot Tnz1
0 modulo 1 day against

Tn
0 modulo 1 day (the first return map). For any particular starting

value, the sequence of iterates can then be found by drawing the

cobweb diagram, as shown in Figure 5(d). A monophasic sleep

pattern corresponds to Tnz1
0 ~Tn

0 modulo 1 day and so

corresponds to the intersection of the diagonal line with the

map. The fact that the sequences converge rapidly is related to the

fact that the gradient of the map is close to zero for most values of

Tn
0 . This rapid convergence means that a temporary change to

timing of sleep will revert to the regular sleep-wake cycle within a

few days.

Figure 3. The PR model and the PR switch model. (a) The dashed (black) line shows the firing function given by equation (5); the thicker (red)
line shows the portion that is used for the ‘normal’ PR cycle. (b) A magnified version of (a). The thin (blue) line shows the switch function (8). Panels
(c),(d) and (e) show the behaviour of the homeostat, H , and the firing rates Qm and Qv for the PR model (solid line) and the PR model with the hard
switch (dashed line). The switch parameters are hS~1:45 mV, QS~4:85 s{1, the mean firing rate of the neural population during wake; all other
parameters are listed in the Tables section.
doi:10.1371/journal.pone.0103877.g003

Figure 4. The two-process model compared to the two PR
models. (a) Comparison of the PR switch model with the two-process
model. (b) Comparison of the PR model with the two-process model.
Crosses show the two-process model; solid line the PR model and (blue)
dashed line the PR switch model.
doi:10.1371/journal.pone.0103877.g004
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Phrasing the two-process model in these terms illustrates that it

can be represented as a one-dimensional map. Probably the most

well-known example of such maps is the logistic map [32] which

has been widely used to show that simple rules can lead to very

complex dynamics. A distinctive feature of the two-process model

is the fact that the map contains a discontinuity. For the parameter

values shown in Figure 5(d) this discontinuity occurs at

T0
0&0:95 days: The discontinuity is a consequence of the fact

that there exist neighbouring starting values T0
0 that lead to

trajectories that follow very different paths. These occur whenever

there are points that result in trajectories that become tangent to

the thresholds. For example, starting at T0
0 ~0:96 days, the first

sleep just misses the wake threshold at 1:08 days so remains asleep

until 1:6 days resulting in a sequence 0:96, 1:6, . . ., as shown in

Figures 5(b) and (c); whereas starting at the nearby value of

T0
0 ~0:92 days, the trajectory hits, rather than misses, the sleep

threshold and the resulting sequence is 0:92, 1:1, . . ..
For the value of the clearance parameter x~45 hrs used in

Figure 5, the discontinuity does not have a significant impact on

the dynamics and all trajectories converge rapidly to the same

periodic cycle. However, the presence of the discontinuity is key to

understanding the transition from monophasic to polyphasic sleep.

This is illustrated in Figure 6(a)–(d), where a sequence of

converged solutions to the two-process model are shown for

decreasing x. For x~20 hrs, the sleep-wake cycle is monophasic,

but in the wake episode the trajectory comes close to, but does not

touch, the upper threshold (Figure 6(a)). If distance from the upper

threshold is a measure of sleepiness during wake, this would

correspond to a dip in alertness. If x is reduced further, say to

Figure 5. The one-dimensional map for the two-process model. (a) A single trajectory of the two-process model showing successive times of
sleep onset. (b) Trajectories of the two-process model for different initial sleep onset times. Each different sleep onset time results in a different
sequence, T0

0 , T1
0 . . ., but each sequence rapidly converges to the same sleep onset time, of 0:27 modulo 1 day. (c) A zoom of (b), showing only the

trajectories for T0
0 ~0:92 days and T0

0 ~0:96 days: (d) First return map for the two-process model. The black line shows the return map, in other

words for any value of sleep onset time on day n, Tn
0 it shows the onset time of sleep on day nz1, Tnz1

0 . The grey diagonal line is the line along

which Tn
0 ~Tnz1

0 . One typical trajectory is plotted for T0
0 ~0:92 showing the rapid convergence to the periodic cycle where Tn

0 ~Tnz1
0 ~0:27 modulo

1 day, the point at which the return map and the diagonal line intersect. The discontinuity is a result of the fact that neighbouring values of Tn
0 exist

that lead to very different values for Tnz1
0 , as shown in (c). Parameter values for the two-process model are based on the PR model for the human

sleep-wake cycle and can be found in (15).
doi:10.1371/journal.pone.0103877.g005
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x~18 hrs as shown in Figure 6(b), then the wake trajectory does

not only come close to, it touches the upper threshold resulting in a

short nap and a sleep-wake cycle that is bi-phasic with one longer

sleep and one short sleep. Decreasing x further results in a

sequence of further tangencies each of which adds one additional

sleep-wake episode. Such transitions are known as grazing

bifurcations, tangent bifurcations, or border collision bifurcations

and are characteristic of one-dimensional maps with discontinu-

ities [33–35]. In the return map, a grazing bifurcation occurs when

the discontinuity in the map coincides with the diagonal line. They

are responsible for period-adding transitions in the context of

electronic circuits and here, we see, are responsible for sleep-

episode-adding transitions. Such transitions have also been

observed and analysed using one-dimensional maps in the context

of understanding the dynamics of neurons [36, 37].

The sleep-wake pattern for varying x is shown in Figure 6(e).

For larger values of x there is one episode of sleep each day: the

model falls asleep exactly once and always at roughly the same

time (N~1). A grazing bifurcation occurs at around x~19:8 hrs
and results in a region between 15 hrsvxv19 hrs where sleep is

bi-phasic with one longer and one shorter sleep each day (N~2).

A succession of further grazing bifurcations take place as x is

reduced, resulting in increasing numbers of daily sleep episodes.

From Figure 6(e) we see there are intermediate regions between

each value of N. For example, between the monophasic and

biphasic region there is a small region around x~19:8 hrs where

the sleep pattern has a period of two days. This corresponds to a

region where a grazing bifurcation has taken place, causing an

extra sleep period on one day, but this extra sleep period is enough

to mean that no additional sleep is needed on the following day.

The sleep wake trajectory in this case is shown in Figure 7(a).

Similar behaviour is seen at each transition between different

numbers of daily sleep episodes and is characteristic of such

transitions in one-dimensional discontinuous maps [38]: this is

illustrated for the transition between two and three sleep episodes

in Figures 7(b) and is a similar pattern of sleep to that shown in

Figure 1(a) using parameters as in [10]. In fact, as shown for one-

dimensional discontinuous maps in [38], the situation is even more

complicated: in Figure 1 of [27] the first few layers of an infinite

adding scheme are set out. This shows that, for example, the

sequence of transitions from sleeping once a day to sleeping twice a

day is f1, 1, 1, . . .g . . . f1, 1, 2, 1, 1, 2 . . .g, f1, 2, 1, 2 . . .g,
f1, 2, 2, 1, 2, 2, 1 . . .g . . . f2, 2, 2, . . .g, etc. Further discussion

of the map is given in the Information S1.

In [24], the behaviour of the PR model is examined both as the

time constant x and the mean drive to the VLPO, Av are varied.

Our parameter equivalences between the PR model and the two-

process model (9) show that increasing Av is equivalent to

Figure 6. Varying the homeostatic constant. Using the two-process model with parameters as indicated in (15). Figures (a)–(d) give sleep-wake
cycles for different values of the homeostatic time constant x (x~20,18,16,5 hrs), illustrating that reducing x results in more daily sleep episodes. (e)
Sleep regions (shaded) as a function of x. Note that the circadian maximum occurs at t~0, 1, . . . days:
doi:10.1371/journal.pone.0103877.g006
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increasing the upper and lower thresholds without changing the

distance between them. One can then deduce for the two-process

model that for low Av, the homeostat will never reach the lower

threshold and no wake will occur. Similarly, for high Av no sleep

will occur. For large values of x (x greater than approximately

20 hrs), the amount of daily sleep varies approximately linearly

with the mean drive to the VLPO as shown in Figure 8(a) and

observed in [24]. As seen before, the sleep-wake cycle is

monophasic and is largely independent of x in this range. The

actual transition between monophasic sleep and no sleep (or no

wake) occurs through grazing bifurcations, where this time the

grazing bifurcations result in periodic cycles that have wake (sleep)

episodes of greater than 24 hours: examples of such cycles are

evident in Figure 8(a) at the extremes of the values of Av that are

shown. For smaller values of x, where polyphasic sleep exists,

varying Av shows that, as the no sleep (or no wake) threshold are

approached, grazing bifurcations result in ever decreasing

numbers of sleep (wake) episodes until no sleep (no wake) occurs,

see Figure 8(b).

In [24], it was shown that the sleep of many mammalian species

could be understood in the context of the PR model by varying

just two, physiologically plausible, parameters: x and c0~Av=nvc.

Their results show: a sequence of transitions from monophasic to

polyphasic sleep as the time constant x is reduced but where total

sleep daily sleep remains approximately constant; for fixed x and

varying mean drive to the VLPO a sequence of transitions from a

state with no wake to a state with no sleep. By using the

relationship between the PR model and the two-process model we

see that reducing x results in a sequence of transitions from

monophasic to polyphasic sleep through grazing bifurcations that

successively add sleep episodes; at the transition between N

episodes of sleep and Nz1 episodes of sleep, there are regions

where sleep alternates between N and Nz1 daily episodes

(examples of such trajectories for the PR model are shown in

Information S1). The identified parameter equivalences show that

changing the mean drive to the VLPO is equivalent to

simultaneously shifting the upper and lower thresholds of the

two-process model. The relation between the PR model and the

two-process model shows how this inevitably leads to grazing

bifurcations and ultimately cycles with either no sleep or no wake.

The quantitative agreement with [24] is close, but not exact: this

is because we have chosen a fixed value for m, the upper

asymptote, in the two-process model, the value to match the PR

model for x~45 hrs : Varying x in the PR model results in a small

change to the precise region of the switching function that is used,

which in turn induces some change in the value of QS . Since

m~�mmQS this results in some dependence of m on x in the

equivalent two-process model. One consequence is that the switch

from monophasic sleep to biphasic sleep occurs at around

x~19 hrs for the two-process model instead of x~16 hrs for

the PR model. More details can be found in the Information S1.

Wake effort
Sleep deprivation experiments involve keeping subjects awake

for an extended period of time during which cognitive and

behavioural tests are undertaken to measure sleepiness and

Figure 7. Sleep-wake cycles with a two day period. Solutions of the two-process model showing periodicity on the period of two days. (a)
x~19:3 hrs (b) x~16:6 hrs: All other parameters are as in Figure 6 and can be found in (15).
doi:10.1371/journal.pone.0103877.g007
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performance. One measure of sleepiness is the Karolinska

Sleepiness Scale (KSS) score [39]. In [25], the concept of ‘wake

effort’ is introduced for the PR model and good agreement

between wake effort and experimental data on KSS scores is

found. Wake effort corresponds to a change in the drive to the MA

and is interpreted as a need to provide the MA with greater

stimulation in order to maintain wake. Here, we show how this

can be re-interpreted in the context of the two-process model.

Wake effort in [25] is presented by considering the graph of the

MA firing rate Qm (or equivalently, Vm), against the drive to the

VLPO, Dv. In a regular sleep-wake cycle, Qm follows a hysteretic

loop, see Figure 9(a), where the transition from wake to sleep

occurs close to Dz
v and the transition from sleep to wake occurs

close to D{
v . During sleep deprivation, it is argued in [25] that by

increasing Dm, rather than switch from wake to sleep, it is possible

to stabilise the ‘ghost’ of the wake state: the extent to which Dm is

increased is known as the wake effort. An alternative view of the

same idea is to consider the (Dm,Dv)-plane as shown in Figure 9(b)

and recognise that D+
v are curves that divide the parameter plane

into regions where only the wake state exists, only the sleep state

exists, and a bistable region where both wake and sleep exist.

There are also regions for low Dm, (Dmv0:4 mV) and high

Dm, (Dmw200 mV), where the two states cannot readily be

distinguished. The region of relevance for the parameters used in

[25] is close to the bottom of the bistable region, and is shown in

blow-up in Figure 9(c). The horizontal line represents the normal

sleep-wake cycle: the time dependence of the homeostatic and

circadian processes result in Dv oscillating backwards and forwards

along the line, switching from wake to sleep for increasing Dv

when Dv~Dz
v and from sleep to wake for decreasing Dv when

Dv~D{
v .

In sleep deprivation experiments, subjects are prevented from

falling asleep at Dv~Dz
v . At this point, in order to remain awake

the only alternatives that keep the system in the wake region are:

decrease the drive to the VLPO, Dv; increase the drive to the MA,

Dm or some combination of both of these. In [25], it is argued that

in order to maintain wake it is necessary to stimulate the MA, and

therefore Dm is increased to remain on the ‘ghost state’, but this is

equivalent to following the line Dz
v . The additional amount by

which the MA is stimulated, the wake effort, W is then

W~Dz
m {1:3,

where Dz
m is a function of Dz

v and is the solution of equations (14)

in the Methods section.

In the two-process model, acute sleep deprivation is modelled as

a continued increase in the homeostatic pressure. In [10] this is

interpreted as a suspension of the upper threshold, but with insight

gained from the the PR model, we see that an alternative

interpretation is that the upper threshold is continuously moved to

keep the model in the wake state, as shown in Figure 10(a). The

wake effort is then related to the extent to which the threshold has

to be moved, that is the quantity max (H{Hz,0) with the upper

threshold Hz as given by (3). This quantity is shown in

Figure 10(b). In the Methods section it is shown that this relation

is

W&{0:012 H{Hzð Þ2z0:357 H{Hzð Þ: ð10Þ

This resulting wake effort computed from the two-process

model is shown by the solid line in Figure 10(c) and agrees very

well with the calculation of the wake effort from the PR model in

[25] (crosses).

The close to linear relationship (the quadratic term has a very

small coefficient) between wake effort in the PR model and

H{Hz, which is essentially the difference between the homeo-

static pressure and the circadian oscillator, demonstrates that the

wake effort used in [25] is fundamentally similar to previous

measures used to compare performance and sleepiness scores. The

precise scaling relationship and the degree of nonlinearity is

dependent on the shape of the bistable region in the (Dm,Dv)-

Figure 8. Sleep timing in the two-process model. The upper and lower thresholds are moved simultaneously via H{
0 ~1:45zAv and

H{
0 ~2:46zAv with (a) x~45 hrs (b) x~15 hrs and all other parameters as in (15). Note that mean VLPO drive equals c0~Av=nvc for consistency

with [24]. Sleep regions are shaded.
doi:10.1371/journal.pone.0103877.g008
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plane shown in Figure 9(b), and on the choice of function for the

dependence of the homeostatic process on the firing rate of the

MA. In [17] and for many of the subsequent papers, the upper

asymptote is give by m~�mmQm. However, in [25] the functional

form m~�mm
Q2

m

nhzQ2
m

is used in order to ‘‘limit the unrealistically

high production rate at high Qm’’. This change in functional form

has the effect of keeping m approximately constant during wake,

which is why the agreement between the wake effort as defined by

[25] agrees well with our analogous computation from the two-

process model. This is illustrated in Figure 10(c) and (d) where the

wake effort and the dependence of m on time are shown for the

two-process model and for the PR model with the two different

functional forms for m.

The shape of the bistable region in the (Dm,Dv) plane shows

that for Dm larger than about 30 mV, there is a transition from

relatively small changes in Dm needed to maintain wake to very

large changes in Dm needed to maintain wake; eventually it

becomes impossible to maintain wake at all. While for typical

parameters used in the PR model this transition occurs for

infeasibly large values of Dv and Dm, we note that the shape of the

bistable region is dependent on the parameters within the firing

function and the choice of firing function itself. Once fixed in [31]

these parameters have largely been left unchanged: we will return

to this point in the discussion.

Discussion

The strengths of the two-process model have been its inclusion

of the two fundamental processes that are believed to regulate the

sleep-wake cycle along with its graphical simplicity. This has

meant that it has been used extensively as a tool to understand the

behaviour of the sleep-wake cycle, design experiments and

interpret data [40, 41]. A weakness is the difficulty in relating

the threshold levels of the homeostatic pressure H that result in

switches between wake and sleep to physiological quantities.

The PR model was developed with the same two governing

processes in mind, but introduced some physiological basis for the

switching that occurs between wake and sleep. In recent years, this

model has been extensively tested in a range of scenarios, some of

which depend on the fast dynamics within the model, like the role

of disturbances during sleep [23], but in many cases relying on the

slow dynamics of the model. The four orders of magnitude

between the neuronal timescale and the homeostatic/circadian

times scales means that the timescale separation between the slow

and fast dynamics is very good.

Figure 9. Normal and deprived sleep in the PR model. (a) Sleep-wake cycle showing the MA firing rate Qm as a function of the drive to the
VLPO Dv. Over one cycle Dv oscillates between high and low values. When Dv is low, Qm is high and the model is in a wake state. When Dv is high,
Qm is low and the model is in a sleep state. The transitions from wake to sleep and sleep to wake occur at Dz

v and D{
v respectively. The size of the

hysteresis loop depends on Dm , shrinking to nothing for Dmv0:4 mV and for Dmw200 mV : (b) The path of Dz
m and D{

m in the Dm,Dv plane. Dz
m

and D{
m do not exist for values of Dm that are either less than 0:4 mV or greater than 200 mV . Consequently for Dmv0:4 mV or DMw200 mV

increasing Dv will result in a smooth change from high Qm (wake) to low Qm (sleep) instead of the jump from one state to the other shown in (a). (c) A
blow up of (b), with the ‘normal’ sleep-wake cycle superimposed. (d) The Dm,Dv plane showing the wake trajectory in a sleep deprivation experiment.
doi:10.1371/journal.pone.0103877.g009
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Here we have shown that the slow dynamics of the PR model

can be explicitly related to the two-process model, which provides

new perspectives on both the two-process model and the PR

model. Using this relationship, new insight into the meaning of the

two-process model has been gained. Specifically, the distance

between the thresholds is related to the degree to which the MA

inhibits the VLPO during wake and the values of the thresholds

are related to the parameters associated with the modelling of the

firing rates Qj , the mean VLPO drive, and the strength of the

homeostat. The parameter comparison also highlights the fact that

there is no strong reason why the homeostatic pressure should

remain between the thresholds in the two-process model, see for

example Figure 4. For values between the thresholds, either sleep

or wake can occur. Above the upper threshold, only sleep can

occur: this could be viewed as a region of sleep, from which it is

hard to wake up. Below the lower threshold, only wake can occur,

representing times when it is difficult to fall asleep.

Motivated by the strong relationship between the two-process

model and the slow dynamics of the PR model, we have re-visited

the two-process model in order to gain insight on the dynamics of

the PR model. By using the fact that the two-process model can be

represented as a one-dimensional map with discontinuities we are

able to interpret the transitions from monophasic to polyphasic

sleep as grazing bifurcations. This provides the dynamical

underpinning for the observation that the PR model gives a

systematic framework which encompasses many different mam-

malian species and confirms the hypothesis of [10] that such a

framework could be present in the two-process model. Further-

more, it suggests that ‘typical’ transitions with varying clearance

parameter, at least for the larger mammalian species with

relatively large clearance parameters, will involve gaining or

losing one sleep episode a day. We note that the sequence of

transitions for increasing x is consistent with observations of

changes in the daily sleep patterns of early childhood.

Varying the homeostatic time constant as shown in Figure 6(a)

suggests that for large mammals (large x) sleep regulation is

dominated by the circadian rhythm. In contrast, as shown in

Figure 6(d), small mammals are more strongly driven by their

metabolism and it is the homeostatic component that dominates.

However, we note that the equivalence of the two models raises

some interesting questions on accepted parameter values: in both

models the homeostatic process is modelled in a similar way, with

exponential decay during sleep and an exponential approach to an

upper asymptote during wake. In the context of the two process

model, accepted physiological markers for the homeostatic process

are slow waves in the sleep EEG and theta activity in the EEG

during wake respectively, both of which are readily measured. The

time constants xs and xw differ during wake and sleep and are

Figure 10. Sleep deprivation and the wake effort. (a) The two-process model, showing the typical trajectory of the homeostatic pressure
during a sleep deprivation experiment. Using the wake effort concept of [25] suggests that the upper threshold moves simultaneously: the dashed
line shows the position of the upper threshold after 4 days. (b) The difference between the homeostatic pressure and the value at the ‘normal’
threshold, H{Hz~H(t){(Hz

0 zaC(t)). (c) The wake effort computed from the two-process model (10) (solid line), the PR model as in [25] using

m~
�mmQ2

m

nhzQ2
m

(crosses), the PR model with m~�mmQm (dashed line). (d) The dependence of m, the upper asymptote, on time for the three different cases

shown in (c). The downward spikes indicate that the model gets very close to falling asleep, hence Qm gets very close to 0.
doi:10.1371/journal.pone.0103877.g010
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measured to be xs&4 hrs and xw&18 hrs in humans [11]. An

important physiological question is the necessity for two different

time constants for the homeostatic process, one for wake and one

for sleep. Animal [42] and human experiments [43] strongly

suggest that the time constant during wakefulness varies with

genetic background (animals) and during development (humans)

whereas the time constant during sleep appears more invariant

within species. In the context of the PR model, the homeostatic

process represents the concentration of somnogenic factors such as

adenosine, which are not easily accessible. During wake, adenosine

is produced more quickly in the brain than it is cleared, decreasing

the inhibition to the VLPO. A single value x~xs~xw~45 hrs is

taken in order to replicate typical sleep patterns for adult humans.

Given that in both models, the homeostatic process plays a key

role in determining patterns of sleep and wake, it would be

interesting to extend the modelling of the homeostatic process in

the PR model to allow xs and xw to differ and determine whether

a different parameterization of the PR model would lead to time

constants in-line with measured values for the two process model.

The grazing bifurcations have been shown to occur as the

clearance parameter x and as the mean drive to the VLPO or

equivalently, both the upper and lower thresholds, are simulta-

neously varied. However, it is clear that the tangencies between

the sleep-wake trajectories and the thresholds that give rise to these

bifurcations could also occur if the the distance between the

thresholds (see [29, 30]) or the upper and lower asymptotes of the

homeostatic process are varied. A systematic study will be carried

out elsewhere.

The two-process model has been compared with sleep

deprivation experiments by assuming that the upper threshold is

no longer present and that the sleep pressure continues to increase,

with sleepiness linearly related to the difference between the

homeostat and the circadian process. Here, we have demonstrated

that the notion of ‘wake effort’ introduced in [25] is a similar

measure and is equivalent to imagining, not that the upper

threshold has vanished, but that increasing the stimulation to the

MA results in increasing the upper threshold in line with the

increase in H .

Similarly, one could also imagine a ‘sleep effort’ that would be

required to keep the model asleep when it would naturally wake.

This could be achieved by reducing the lower threshold in the two-

process model or, equivalently, decreasing the stimulation to the

MA, Dm. As can be seen from Figure 9(b), the PR model

parameters suggest that, while it is possible to extend the wake

state significantly by increasing Dm, the capacity to extend the

sleep state is more restricted. This observation is sensitive to the

precise parameters and definition of the firing function. The

asymmetry between sleep and wake is equivalent to the fact that in

[25], the authors noted that the ‘sleep ghost’ is less prominent than

the ‘wake ghost’.

The equivalence between the PR model on the slow timescale

and the two-process model is exact when the firing function is a

hard switch, but when the firing function is sigmoidal the

equivalence is more subtle. This is because, in the PR model,

the upper/lower asymptotes of the homeostatic process are

modelled as a a function of Qm the firing rate of the MA. With

a hard switch, Qm takes only two values, QS or zero (similar to the

two-process model), but with a sigmoid it varies continuously.

Except in the neighbourhood of bifurcations, for monophasic sleep

we have shown that one can fix the maximal value of Qm and the

switching voltage hS such that the times when the homeostatic

pressure reaches its extreme values in the PR and two-process

models co-incide. The precise values of Qm and hS needed, and

therefore the values of the asymptotes in the equivalent two-

process model, depend to some extent on the other parameters in

the model. In this paper we have taken the approach of fixing the

values of the asymptotes as those needed to agree with the PR

model for their ‘normal’ values of the parameters at x~45 hrs:
We have not then varied the asymptotes as other parameters are

changed which means that the quantitative agreement between

the results from the two-process model and the PR model are not

exact. Nevertheless, the sequence of transitions and the underlying

mechanism through grazing bifurcations carry over between the

two models with only minor quantitative differences. In the case of

the wake effort, the dependence of the upper asymptote on the

firing rate in the PR model means that there is approximately a

10% difference in the wake effort between the two-process and PR

models after four days.

However, the fact that implicit in the PR model is a non-

constant asymptotic value for the homeostatic process has wider

implications. Sleep deprivation experiments tend to show a

leveling off of psychomotor vigilance test (PVT) scores over a

period of a few days, similar to the levelling off seen in the wake

effort shown in Figure 10. In contrast, chronic sleep restriction

experiments, where subjects repeatedly are allowed less sleep than

they need, tend to show a linear increase in PVT over the

timescale of typical experiments. In order to explain this, in [13],

Avinash et al considered a two-process model but suggested that

the upper and lower asymptotes varied with time. This idea was

generalised in [14]. Both papers suggest that the time variation

occurs through some longer timescale process. We note that within

the context of the PR model, during sleep deprivation or chronic

sleep restriction the values of the firing function will tend to

increase, automatically inducing some time dependence in the

values of the asymptotes.

The asymptotes and therefore the wake effort in the PR model

are sensitive to the particular choice of the firing function and the

functional dependence of the upper asymptote on Qm. For

parameter choices made in [25], Qm, like Dm, depends approx-

imately linearly on wake effort. However, note that the shape of

the relation between Dv and Dm shown in Figure 9 means that for

high Dm there is a ‘corner’ where to stay awake longer means that

a very large increase in Dm is needed. This transition suggests that

a critical change in behaviour for large wake effort, although it is

unclear whether this could give an alternative explanation for the

behaviour at extreme sleep restriction to the ‘bifurcation’

suggested by [14]. This corner can be further understood by re-

examining the firing function shown in Figure 3. Since only a

small part of the sigmoid is used under ‘normal’ conditions for the

PR model, increasing Dm will result in an almost linear change to

the range of Qm. However, once Dm is large, it becomes increasing

difficult to increase Qm by increasing Dm and the corner in

Figure 9 corresponds to the flattening off of the relationship

between Qm and Dm. While this is beyond the physiological range

of the parameters, this part of the PR model has been less

constrained by physiological parameters or behaviour than many

other features of the model and a different firing function could

lead to a corner at more physiological values. The relationship

between the two-process based model in [14], the PR model and

the modelling of sleep deprivation versus sleep restriction deserves

further attention and will be the subject of a future paper.

In order to better understand sleep/wake regulation it is

essential that models that incorporate neurophysiology are

developed, analysed and used. However, as models become more

complex two problems arise. Firstly they become difficult to

analyse systematically, with large numbers of numerical simula-

tions becoming the principle method used to establish the

behaviour of the system. Secondly, there is a proliferation of
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parameters which cannot be easily determined experimentally.

One consequence is that it becomes difficult to establish the

relative merits of different models. By demonstrating that the two-

process model and the PR model are essentially the same for sleep-

wake phenomena on the slow time-scale of hours we have not only

gained insight on the interpretation of both models but also

established the mechanism for transitions between different

patterns of sleep and wake in the PR model. This link also

suggests some interesting avenues for future extensions of the PR

model based on recent insights and research on the two-process

and related models.

Methods

PR switch to two-process comparison
The equations for the PR switch model are

tv
_VvzVv~{nvmQS (Vm{ĥhS)zDv(t)

tm
_VmzVm~{nmvQS (Vv{ĥhS)zDm(t)

x _HzH~�mmQS (Vm{hS), ð11Þ

where

Dv~nvhH{nvcC(t){Av

Dm~Am:

Since t%x we introduce the small parameter E~t=x, the fast

time t̂t~t=E and the slow time T~t, d=dt̂t~Ed=dt and

d=dT~=dt. Then, at O(1) (slow time) equations (11) become

Vv~{nvmQS (Vm{hS)zDv(T)

Vm~{nmvQS (Vv{hS)zDm(T)

x _HzH~�mmQS (Vm{hS), ð12Þ

where

Dv~nvhH{nvcC(T){Av

Dm~Am:

During wake, these have solution

Vv~{nvmQSznvhH{nvcC(T){Av,

Vm~Am,

H~�mmQSz H0{�mmQSð Þe(T0{T)=x:

During sleep, these have solution

Vv~nvhH{nvcC(T){Av,

Vm~{nmvQSzAm,

H~H0e(T0{T)=x:

Transitions between wake and sleep when Vm~hS , so the

switch from wake to sleep occurs when

H:Hz~
hSzAvznvmQSznvcC(T)

nvh

,

and from sleep to wake when

H:H{~
hSzAvznvcC(T)

nvh

:

By comparison with equations (1)–(4) we see that the two-

process model and the dynamics of the PR switch model on the

slow manifold are equivalent if

Hz
0 ~

hSzAvznvmQS

nvh

, H{
0 ~

hSzAv

nvh

, ð13Þ

a~
nvc

nvh

, m~�mmQS, xs~xw~x:

PR to two-process comparison
On the slow manifold, the PR model is

Vv~{nvmQmzDv(T)

Vm~{nmvQvzDm,

x _HzH~�mmQm,

where Qj ,j~m,v is given by equation (5). For a fixed value of Dv

these have one or three solutions, with the transition between one

and three solutions happening at saddle-node bifurcations, D+
v

that satisfy

D+
v ~Vv{nvmQm

D+
m ~Vm{nmvQv ð14Þ
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nvmnmv

s’2
~ Qv{Qmaxð Þ Qm{Qmaxð Þ:

The values of D+
v depend on nvm,nmv,Qmax,s’ and h, and for the

values commonly used in the PR model and listed in Table 1 give

Dz
v ~2:46 mV and D{

v ~1:45 mV:

The sleep-wake cycle corresponds to slowly changing Dv,

tracing out a path on the slow manifold as shown in Figure 9(a).

Transitions from wake to sleep and from sleep to wake occur close

to Dz
v and D{

v respectively. In order to find parameter values for

the two-process model that retain the maximum and minimum

values and timings for the homeostatic process for monophasic

sleep. Away from bifurcation points the following algorithm is

followed:

N First the identification between the threshold values and the

saddle node bifurcations in the PR model is made, leading to

Hz
0 ~

Dz
v zAv

nvh

, H{
0 ~

D{
v zAv

nvh

,

hence Hz
0 {H{

0 ~
Dz

v {D{
v

nvh

:

N Numerically integrating the PR model during monophasic

sleep results in trajectories for the homeostat that increase to a

maximum during wake and decrease to a minimum during

sleep, this gives values for Hmin, tmin, Hmax and tmax . These

maximum and minimum values occur close to the switches

from wake to sleep and sleep to wake respectively. During

wake, the two-process model gives

H(t)~mz Hmin{mð Þe(tmin{tmax )=xw :

Hence, taking

m~

Hmax{Hmin exp
tmin{tmax

xw

� �

1{ exp
tmin{tmax

xw

� � ,

results in a trajectory for the two-process model that passes

through the required values at the required times.

N One can do a similar matching for the decreasing H phase

to find a value for the lower asymptote. For the simulations

presented here, the value of zero was taken for the lower

asymptote.

By integrating the PR model with the typical parameter values

listed in Table 1, it is found that the minimum occurs at

Hmin~12:51, tmin~15:31 hrs and the maximum at

Hmax~15:07, tmin~30:67 hrs : This implies that in this case

the parameter values for the two-process model are

m~21:35, Hz
0 ~15:5, H{

0 ~14:5,

a~2:9, xs~45 hrs, xw~45 hrs :
ð15Þ

Going back to the PR switch model and its link to the two-

process model, we can now find expressions for the parameters

hS and QS such that it is close to the full PR model:

N Comparing the expression for H{
0 above with that for the

Table 1. Typical parameter values for the PR model and the equivalent parameters for the PR model with a hard switch.

Parameter PR PR switch

Qmax or QS 100s{1 4:85s{1

h 10mV 1:45mV

s’ 3mV -

nvm 2:1mVs 0:208mVs

nmv 1:8mVs 1:8mVs

nvc 2:9mV 2:9mV

nvh 1mVnM{1 1mVnM{1

Am 1:3mV 1:5mV

Av 13:05mV 13:05mV

tm 10s 10s

tv 10s 10s

x 45hrs 45hrs

�mm 4:4nMs 4:4nMs

These values give the appropriate parameter values for the two-process model as in (15). The derivation of the values for QS , hS and nvm for the PR switch model are
given in the Methods section. All parameters have been defined to be positive, consequently some of the signs in equations (6) are opposite to their original definitions
in [17]. The mean component of the circadian drive in the PR model has been incorporated in the definition of Av , Av~nvcc0 , c0~4:5.
doi:10.1371/journal.pone.0103877.t001
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PR switch model in (13), gives

hS~D{
v :

N The relation for QS in (13) gives

QS~
m

�mm
:

N Considering Hz
0 {H{

0 as given above with Hz
0 and H{

0 as

in (13), leads to

nvmQS~Dz
v {D{

v :

Hence for the typical values of the PR parameters listed in

Table 1 and used in Figure 4,

hS~1:45 mV, QS~4:85 s{1 nvm~0:208 mVs :

It is also necessary to take AmwhS in the PR switch model,

otherwise no switching occurs.

The wake effort
Following [25], the additional amount by which the MA has to

stimulated to follow the ‘‘wake ghost’’, the wake effort, W is

W~Dz
m {1:3,

where Dz
m is a function of Dz

v and is the solution of transition

equations (14) above. For the region of relevance shown in

Figure 9 (c) and (d), the relationship is close to linear with a small

quadratic term and is well-approximated by

Dz
m &{0:012Dz2

v z0:416Dz
v z0:383:

Using the explicit relationships between the parameters in the

PR model and the two-process model, the moving of the threshold

in the two-process model corresponds to a modified value for Dz
v

is given by Dz
v ~H{Hzz2:46, as nvh~1 mV nM{1 and

2:46~nvhHz
0 {Av, the value of Dz

v if no wake effort is applied, so

the wake effort for the two-process model is

W&{0:012 H{Hzð Þ2z0:357 H{Hzð Þ: ð16Þ

Supporting Information

Information S1

(PDF)

Author Contributions

Conceived and designed the experiments: ACS DJD GD. Performed the

experiments: ACS. Analyzed the data: ACS. Contributed reagents/

materials/analysis tools: ACS. Wrote the paper: ACS DJD GD.

References

1. Cappuccio F, D’Elia L, Strazzullo P, Miller M (2010) Sleep duration and all-

cause mortality: a systematic review and meta-analysis of prospective studies.

Sleep 33: 585–592.

2. Knutson KL (2010) Sleep duration and cardiometabolic risk: a review of the

epidemiologic evidence. Best Pract Res Clin Endocrinol Metab 24: 731–743.

3. Cappuccio F, Cooper D, D’Elia L, Strazzullo P, Miller M (2011) Sleep duration

predicts cardiovascular outcomes: a systematic review and meta-analysis of

prospective studies. Eur Heart J 32: 1484–1492.

4. Nielsen LS, Danielsen K, Sorensen T (2011) Short sleep duration as a possible

cause of obesity: critical analysis of the epidemiological evidence. Obes Rev 12:

78–92.

5. Kronholm E, Sallinen M, Era P, Suutama T, Sulkava R, et al. (2011)

Psychomotor slowness is associated with self-reported sleep duration amoung the

general population. Journal of Sleep Research 20: 288–297.
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