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Abstract The chemotherapy combined with photothermal therapy has been a favorable approach for

the treatment of breast cancer. In present study, nanoparticles with the characteristics of photothermal/

matrix metalloproteinase-2 (MMP-2) dual-responsive, tumor targeting, and size-variability were designed

for enhancing the antitumor efficacy and achieving “on-demand” drug release markedly. Based on the

thermal sensitivity of gelatin, we designed a size-variable gelatin nanoparticle (GNP) to encapsulate in-

docyanine green (ICG) and doxorubicin (DOX). Under an 808 nm laser irradiation, GNP-DOX/ICG re-

sponded photothermally and swelled in size from 71.58 � 4.28 to 160.80 � 9.51 nm, which was

beneficial for particle retention in the tumor sites and release of the loaded therapeutics. Additionally,

GNP-DOX/ICG showed a size reduction of the particles to 33.24 � 4.11 nm and further improved drug

release with the degradation of overexpressed MMP-2 in tumor. In the subsequently performed in vitro

experiments, it was confirmed that GNP-DOX/ICG could provide a therapeutic effect that was enhanced

and synergistic. Consequently, GNP-DOX/ICG could efficiently suppress the growth of 4T1 tumor

in vivo. In conclusion, this study may provide a promising strategy in the rational design of drug delivery

nanosystems based on gelatin for chemo-photothermal therapy to achieve synergistically enhanced ther-

apeutic efficacy against breast cancer.
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1. Introduction
Breast cancer is one of the malignant tumor, following lung cancer
in 20181, which has attracted tremendous attentions2. Currently,
clinical methods have been used for breast cancer treatment such
as surgery, chemotherapy, radiotherapy, and immunotherapy3,4.
However, while chemotherapy has been shown to be an efficient
treatment for breast cancer patients after surgery, it is limited by
low therapeutic and targeting efficacy and high non-discriminable
system toxicity5. Hence, it is necessary to develop a more efficient
and less toxic therapy to overcome these disadvantages.

Photothermal therapy (PTT) is a spatiotemporally controlled and
non-invasive treatment for cancer6. PTT utilizes photothermal
agents, e.g., gold nanostructures7e18, carbon nanostructures19e26,
conjugated polymers27e31, and indocyanine green (ICG) containing
carriers32e34, to transform near-infrared (NIR) laser rays into rapid,
localized heating to cause irreversible damage and ablate cancer
cells. Numerous researches have reported that PTT has abilities to
increase cellular uptake of drugs, overcome drug resistance, lower
the side effects and increase the anticancer efficacy of chemo-
therapeutics35e39. Thus, integrating photothermal and chemo-based
therapies into one nanoplatform to achieve combinational therapy
and synergistic therapeutic effect has acquired tremendous inter-
est40,41. However, non-degradable components and sophisticated
engineering processes for the fabrication of such particles may limit
their potential clinical translation. Therefore, it is urgent to develop
drugdeliverynanosystemswithexcellentbiocompatibility andat the
same time ease of preparation.

ICG is a U.S. Food and Drug Administration (FDA)-approved
and clinically used NIR dye. It has received extensive attention in
fluorescence imaging and PTT applications32,37,42, but is limited
by easy photobleaching and fast body clearance43,44. Doxorubicin
(DOX) is an efficient therapeutic in cancer therapy, however, it
suffers from severe side effects, including cardiotoxicity, bone
marrow suppression, and multidrug resistance45. Hence, it is
necessary for us to search a novel delivery nanosystem to reduce
toxicity, prolong the permeation and retention of drugs in tumor
tissues, and enhance the antitumor efficacy.

To this end, several tumor microenvironment stimuli-
responsive nanoparticles have been constructed, which could be
triggered by acidic pH, overexpressed enzymes, and other path-
ological stimuli46. As we all know, particle size is the key factor in
tumor accumulation and retention47. Small nanoparticles gener-
ally show stronger tumor permeability than large nanoparticles,
but are limited by poor circulating half-life time and tissue dis-
tribution; large nanoparticles display enhanced tumor retention
and prolonged blood circulation48. Hence, constructing size
changeable nanoparticles could not only facilitate their accumu-
lation in tumor tissue, but also improve their tumor retention,
without causing any side effects to normal tissues49. Su et al.50

designed a size changeable graphene quantum dot nanoaircraft
for enhanced penetration and delivery of DOX deep into tumor
tissue, which was triggered by pathological pH. Xu et al.51 con-
structed an enzyme-responsive gelatin-coated nanoparticle, which
could be degraded by overexpressed matrix metalloproteinase-9
(MMP-9) in tumor tissues, exhibiting less cytotoxicity to normal
cells and effective antitumor efficacy. However, these stimuli-
responsive nanoparticles are limited by their complicated syn-
thetic processes and restricted availability. Taking into account of
these problems, designing microenvironment stimuli-responsive
nanoparticles with simple synthesis, low cost and favorable
biodegradability may be a promising strategy.

Gelatin is a natural polymer derived from the partial hydrolysis
of collagen that has a number of outstanding properties, including
low cost, biocompatibility, and biodegradability52e54. Further-
more, gelatin is approved by the FDA as Generally Regarded as
Safe material55. Gelatin is known as a natural thermo-reversible
hydrogel due to its strong intermolecular hydrogen bonds. At
temperatures above 40 �C, the hydrogen bonds break and gelatin
molecules disassemble56,57. Moreover, gelatin can be degraded by
matrix metalloproteinase-2 (MMP-2) into its sub-compounds,
which is 5‒7-fold overexpressed in most cancer microenviron-
ments as compared to normal tissues58,59. These properties make
gelatin an ideal candidate as an integrative nanoplatform for
photothermal and chemotherapy treatments57.

To solve the problems of biocompatibility, scalable
manufacturing for industry and high cost of size changeable
nanoparticles46, several gelatin nanoparticles have been designed
to deliver drugs. Hu et al.60 proposed an MMP-2 sensitive gelatin
nanoparticle, which showed size-reduction property and excellent
tumor targeting and penetration. Ruan et al.61 constructed gelatin-
coated nanoparticles, which could be degraded by MMP-2 and
facilitate small-sized nanoparticles better penetration into glioma.

Encouraged by the outstanding properties of gelatin, we have
constructed a photothermal/MMP-2 dual-responsive nanosystem to
achieve “on-demand” drug release and synergistic therapeutic effi-
cacy. Hence, gelatin nanoparticles (GNP-DOX/ICG) were designed
to co-encapsulate a photothermal agent (ICG) andchemotherapeutic
(DOX). A commonly used crosslinker, glutaraldehyde (GA), was
added to provide higher mechanical properties and improved sta-
bility54,62,63. Upon laser irradiation, GNP-DOX/ICG swelled,
remained in the tumor sites, and released its payloads of ICG and
DOX. GNP-DOX/ICG was then degraded by MMP-2, and released
DOX and ICG to further penetrate into tumors. Such nanoparticles
can obviously increase the efficacy of anticancer therapeutics.
2. Materials and methods
2.1. Materials

Doxorubicin hydrochloride (DOX$HCl) was obtained from
Shanghai Yuanye Biological Technology Co., Ltd. (Shanghai,
China). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT), type-A gelatin (99%) and indocyanine green
(ICG) were obtained from SigmaeAldrich (St. Louis, MO, USA).
The glutaraldehyde solution (25% water solution) was purchased
from Shanghai Lingfeng Chemical Reagent Co., Ltd. (Shanghai,
China). The active human recombinant MMP-2 was purchased
from EMD Chemicals (Shanghai, China). 4T1 cells were pur-
chased from Cell Bank of Chinese Academy of Sciences
(Shanghai, China). Female BALB/c mice (5e6 weeks, 20 � 2 g)
were purchased from the laboratory animal center of Zhejiang
Chinese Medical University [SYXK (Zhe) 2018-0012, Hangzhou,
China]. All animal experiments were performed in conformity
with the guidelines approved by the Animal Experimentation
Ethics Committee of Zhejiang Chinese Medical University,
Hangzhou, China.
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2.2. Preparation of GNP-DOX/ICG with different degrees of
crosslinking

Gelatin nanoparticles (GNP) were performed according to a
method previously reported with some modications64. Acetone
(25 mL) was mixed with gelatin solution (25 mL and 0.05 g/mL)
under the temperature of 50 �C, and stirred gently for 2 min. After
discarding the supernatant, the precipitated gel was then dissolved
at 50 �C in 25 mL of water containing ICG (10 mg) and DOX
(40 mg). Then hydrochloric acid was used to adjust the pH to 3.
During a 25-min period, acetone (75 mL) was added to the
mixture with continuous stirring under 40 �C. Different concen-
trations (0, 50 and 200 mL) of 1% glutaraldehyde were then added
to crosslink the gelatin for 2 h. Finally, the free ICG, DOX, and
glutaraldehyde were removed by repeated centrifugation
(3000 rpm, 10 min, and three times; 5810R, Eppendorf, Hamburg,
Germany) and resuspended with 20 mL water. The GNP-DOX or
GNP-ICG was prepared without ICG or DOX while keeping the
other conditions the same.

2.3. Characterization of GNP-DOX/ICG

Using dynamic light scattering (DLS; Malvern Nano-ZS90, Wor-
cestershire, UK), the hydrodynamic diameter as well as zeta poten-
tial of GNP-DOX/ICG treated with or without an 808 nm irradiation
under the density of 1W/cm2 for 10min andMMP-2 (1mg/mL, 12 h)
were characterized. The morphological features were imaged via
transmission electron microscopy (TEM; H-7650, Hitachi, Tokyo,
Japan). Using a UVeVis spectrometer (SpectraMaxM2,Molecular
Devices,Sunnyvale,CA,USA), theUVeVisNIRabsorption spectra
of GNP-DOX/ICG in phosphate-buffered saline (PBS) was
recorded.

2.4. Drug loading and encapsulation efficiency

ICG and DOX drug loading (DL) yields and encapsulation effi-
ciency (EE) within the GNP were determined by measuring ICG
absorbance at 800 nm and DOX fluorescence intensity at 595 nm
(lex Z 488 nm) and comparing them to standard curves of the free
ICG and DOX. Briefly, the standard curve of ICG in PBS was
obtained by measuring the absorbance at 800 nm in solutions of
free ICG at different concentrations with a UVeVis spectrometer
(Molecular Devices). The standard curve of DOX in PBS was
obtained by measuring the emission fluorescence at 595 nm for
different DOX concentrations with a fluorimeter (F-4600 spec-
trofluorometer, Hitachi, Tokyo, Japan). The DL and EE were
calculated based on Eqs. (1) and (2), respectively:

DL ð%ÞZ Weight of loaded drug

Total weight of GNP�DOX=ICG
� 100 ð1Þ

EE ð%ÞZ Weight of loaded drug

Total weight of feeding drug
� 100 ð2Þ

2.5. In vitro release

The DOX release profile from the GNP-DOX/ICG with different
degrees of crosslinking, with or without an 808 nm laser irradia-
tion at the density of 1 W/cm2 for 10 min and MMP-2 (1 mg/mL)
was measured through a dialysis method. Briefly, GNP-DOX/ICG
(DOX: 300 mg) was first suspended into a dialysis bag (1500 Da)
and then placed into 50 mL of PBS (pH 7.4). The release exper-
iment was conducted at the temperature of 37 �C with constant
shaking. To study the effect of ICG-induced photothermal effect
on DOX release, GNP-DOX/ICG was dealt with laser irradiation
and/or MMP-2. At selected time intervals (15, 30, 60, 120, 130,
180, 240, 250, 300, and 360 min), aliquots of the solution out of
the dialysis bag were collected, following which the release
amounts of DOX were obtained using a fluorimeter (Hitachi).

2.6. In vitro photothermal characterizations

To characterize the photothermal transformation of GNP-DOX/
ICG, the temperature rising in its dispersion (ICG concentration of
5e40 mg/mL and 1 mL in PBS) was monitored during 5 min
irradiation of 808 nm laser with a power density of 1 W/cm2.

2.7. In vitro cytotoxicity evaluation

The cytotoxicity of GNP or GNP-DOX/ICG on 4T1 cells was
determined throughMTTmethod. 4T1 cells (1� 104 cells per well)
were seeded in 96-well plate and incubated at a constant temperature
incubator (ThermoFisher, Waltham, MA, USA). Once confluence
reached 80%, the culture medium was replaced with fresh medium
comprising different concentrations of free GNP with different de-
grees of crosslinking (concentrations: 1e256 mg/mL) and GNP-
DOX/ICG (DOX concentrations: 10e40 mg/mL). After 4-h incu-
bation, GNP-DOX/ICG þ laser group was treated with 5 min irra-
diationbyan808nm laserwith the density of 1W/cm2.After another
20-h incubation, 20 mL MTT (5 mg/mL) was added for another 4-h
incubation. Then 150 mL DMSO was used to replace MTT solu-
tion. The absorbance value at 490 nmwas determined bymonitoring
the optical densities with a microplate reader (Synergy TM2, BIO-
TEK, Winooski, VT, USA).

2.8. In vitro cellular uptake

To evaluate GNP-DOX/ICG cellular uptake at different condi-
tions, 1 � 105 4T1 cells were seeded in a 12-well plate and
incubated at 37 �C overnight. Once the confluence reached 80%,
the culture medium was replaced with a fresh medium that con-
taining GNP-DOX/ICG (DOX concentration of 20 mg/mL) for
12 h. As for the group of laser irradiation, the cells were irradiated
using an 808 nm laser at the density of 1 W/cm2 for 5 min after
incubated 3 h. After another 9-h incubation followed by DAPI
staining and PBS washing, GNP-DOX/ICG intracellular locali-
zation in 4T1 cells was determined using a laser scanning confocal
microscope (Olympus, Tokyo, Japan).

2.9. In vivo imaging and biodistribution analysis

Once tumor volumes reached 100e200 mm3, the tumor-bearing
BALB/c mice were randomly divided into two groups. Then
200 mL of PBS or GNP-DOX/ICG (ICG concentration: 1 mg/mL)
was intravenously injected into mice. The fluorescence signal of
ICG was acquired at 0, 0.5, 1, 2, 4, 8, 12, and 24 h after the in-
jection through an in vivo imaging system (excitation: 704 nm and
filter: 735 nm). At 24 h after the injection, mice were sacrificed.
And their major tissues including heart, liver, spleen, lung and
kidney, and tumor were collected for ex vivo imaging. Then the
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major tissues and tumor were fixed in 10% paraformaldehyde and
prepared into tissue slices. The fluorescence distribution of tissue
slices was determined by a laser scanning confocal microscope.

In order to compare the retention of GNP-DOX/ICG with or
without laser irradiation, one group of mice treated with GNP-
DOX/ICG were irradiated by an 808 nm laser at the density of
1 W/cm2 for 10 min after injected for 24 h. Then the fluorescence
signals of ICG were acquired at different days via an in vivo
imaging system.

2.10. In vivo photothermal characterizations

Six 4T1 tumor-bearing BALB/c mice were divided into two
groups. Then 200 mL of PBS control or GNP-DOX/ICG (ICG
concentration: 1 mg/mL) were intravenously injected into mice.
At 24 h following the injection, the tumor sites of all mice groups
were irradiated by using an 808 nm laser at the density of 1 W/cm2

for 5 min. The temperature change in the tumor was determined
by recoding its thermographs using an infrared thermal camera
(ICI 7320, Infrared Camera Inc., Beaumont, TX, USA).

2.11. In vivo antitumor evaluation

Once tumor volumes reached approximately 100e200 mm3, thirty
4T1 tumor-bearing BALB/c mice were randomly divided into six
groups. Among these mice groups, two groups were intravenously
injected with 200 mL PBS or GNP-DOX, respectively. And the
other four groups were injected with 200 mL of GNP-ICG or GNP-
DOX/ICG (ICG concentration: 1 mg/mL) via the tail vein,
respectively. For the laser irradiated groups, tumor irradiation was
performed for 10 min using an 808 nm laser at 1 W/cm2 after
intravenous injected for 24 h. The NIR irradiation was repeated
once daily and over a span of 21 days thereafter. The tumor
volume, body weight, and survival ratio of the mice were recorded
every other day. The tumor volume was calculated according to
Eq. (3):

V ZTumor length�Tumorwidth2=2 ð3Þ

2.12. Histopathology analysis

After 21 days, the mice were sacrificed, and the major organs and
tumors were collected and fixed in 10% paraformaldehyde. After
that, the tissues were stained with hematoxylin and eosin (H&E)
and terminal-deoxynucleotidyl transferase mediated nick end la-
beling (TUNEL) according to the protocol from manufacturer.
Then an optical microscope (AXIO SCOPE.A1, Zeiss, Jena,
Germany) was used to evaluate each organ’s tissue damage and
cell apoptosis of the tumor tissue, respectively.

2.13. Statistical analysis

All data are presented as mean or mean � standard deviation.
Statistical significance was determined via SPSS 23. P < 0.05
indicated a statistical difference, and a statistically significant
difference was indicated by P < 0.01.
3. Results and discussions

As depicted in Fig. 1, GNP-DOX/ICG was fabricated using a two-
step desolvation method with ICG and DOX loadings. Different
concentration of glutaraldehyde was used as a crosslinker to
provide higher mechanical properties, improve stability, and
modulate subsequent responsive drug release kinetics. GNP-DOX/
ICG is capable of responsively releasing the payloads of ICG and
DOX through photothermal actuation and MMP-2 degradation-
induced, partial dissolution and disassembly of gelatin molecules
to achieve synergistic effects in photothermal and chemotherapy
treatments.

3.1. Characterization of GNP-DOX/ICG

GNP-DOX/ICG with different crosslinking degrees were charac-
terized with UVeVis. Each sample displayed characteristic peaks
of UVeVis absorption at 480 nm for DOX and 777 nm for ICG,
which indicated that DOX and ICG were successfully encapsu-
lated into the nanoparticles (Fig. 2A). Based on DLS result
(Fig. 2B), the size of non-, low-, and high-crosslinked GNP-DOX/
ICG were 83.40 � 5.15, 71.58 � 4.28, and 67.80 � 6.22 nm,
respectively. These results indicate that the addition of cross-
linkers leads to a more compact nanostructure and smaller size in
the nanoparticles. A smaller size can facilitate GNP-DOX/ICG
accumulation at the tumor site and largely decrease their diffu-
sional hinderance65. In addition, all the nanoparticles displayed
similar negative surface charges, which may reduce non-specific
interactions with proteins in the blood and prolong their circula-
tion time. The DL of DOX and ICG within GNP-DOX/ICG with
different crosslinking degrees were monitored next using a spec-
trometer and fluorimeter as this is important for their biomedical
applications32. The DOX DLs of non-, low-, and high-crosslinked
GNP-DOX/ICG were 2.13 � 0.12%, 5.17 � 0.29%, and
8.23 � 0.68%, respectively. The ICG DLs were calculated to be
5.42 � 0.31%, 7.27 � 0.66%, and 10.12 � 0.12%, respectively
(Fig. 2C). The DOX EEs of non-, low-, and high-crosslinked
GNP-DOX/ICG were 4.52 � 0.25%, 11.35 � 0.60%,
18.68 � 1.42%, respectively. The ICG EEs were 47.78 � 2.63%,
65.32 � 1.31%, 78.86 � 1.01%, respectively. It should be noted
that the addition of crosslinker led to higher loading of both DOX
and ICG, which should be attributed to improved stability. For
evaluating the photothermal potency of GNP-DOX/ICG, their
temperature changes were monitored by using an thermal imaging
camera under laser irradiation (Fig. 2D). After irradiated for 5 min
using an 808 nm laser at 1 W/cm2, GNP-DOX/ICG exhibited
temperature rise profiles at various concentrations of ICG. The
results implied that the photothermal effect was concentration
dependent. At 40 mg/mL of ICG, GNP-DOX/ICG was increased
by 36.1 �C at 300 s with laser irradiation. Meanwhile, at 5 mg/mL
of ICG, the temperature was elevated by 9.5 �C with irradiation
for 300 s. Based on normal body temperature of 37 �C, such a
variation of GNP-DOX/ICG with ICG as low as 5 mg/mL could
increase the temperature above 46 �C and hence lead to irre-
versible damage to tumor cells65.

It has been reported that gelatin is a natural thermo-reversible
hydrogel due to its strong intermolecular hydrogen bonds. At
temperature above 40 �C, the hydrogen bonds break and gelatin



Figure 1 Schematic illustration for GNP-DOX/ICG preparation and subsequent blood circulation, cellular uptake, and responsive drug release

enabled by laser irradiation and MMP-2 degradation.
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molecules disassemble and switch to a solution state, during
which it would experience a swelling process57. Pal et al.55 have
shown that the swelling ratio of gelatin nanoparticles increased
from room temperature to 37 �C and thereafter decreased over
37 �C, which was attributed to the improvement of the kinetic
energy of water molecules entrance and the breakage of binding
forces between water molecules and gelatin molecules,
respectively.

TEM was applied to monitor the morphology transition of
GNP-DOX/ICG treated with or without laser irradiation and
MMP-2 incubation. As shown in Fig. 3A, non-, low-, and high-
crosslinked GNP-DOX/ICG displayed spherical nanostructures.
After laser irradiation, non-crosslinked GNP-DOX/ICG displayed
a hollow nanocapsule morphology as their hydrodynamic diam-
eter increased from 83.40 � 5.15 to 210.60 � 11.35 nm (Fig. 3B),
which indicated that the photothermal effect led to volumetric
expansion of the nanoparticles based on the insoluble‒soluble
transformation of gelatin molecules. This phenomenon could be
explained that the hydrogen bonds of gelatin in GNP-DOX/ICG
collapsed partially with the increase of temperature; then the
gelatin became more flexible, presenting a higher swelling ca-
pacity66. Hence, with the increasing temperature caused by NIR
laser irradiation, GNP-DOX/ICG exhibited a swelling process
reflected by the size increase.

Meanwhile, the degrees of crosslinkingwith glutaraldehyde also
had an important affection in the potency of laser and MMP-267.
Compared to non-crosslinked GNP-DOX/ICG, low-crosslinked
GNP-DOX/ICG exhibited lower volumetric expansion
(71.58 � 4.28 to 160.80 � 9.51 nm). The high-crosslinked GNP-
DOX/ICG exhibited a less significant change after laser irradiation
(67.80� 6.22 to 115.80 � 7.25 nm). Furthermore, with the combi-
nation treatment of laser irradiation and MMP-2, all three GNP-
DOX/ICG were degraded and their particle sizes notably
decreased to 20.58 � 3.20, 33.24 � 4.11, and 50.11 � 4.25,
respectively (Fig. 3B). And the order of laser and MMP-2 has little
effects on hydrodynamic diameter of different-crosslinked GNP-
DOX/ICG (Supporting Information Fig. S1). Results fromTEMand
DLS suggest that GNP-DOX/ICG with different crosslinking de-
grees can lead to the transformation of small‒large‒small as a
response to laser irradiation and MMP-2, thereby facilitating drug
penetration into the core area at tumor sites. GA is the most widely-
used crosslinker in providing higher mechanical properties and
improving stability of gelatin. As a protein molecule, gelatin could
react with the aldehyde groups in GA by using the available free
amine groups68. Hence, with the increasing of glutaraldehyde, the
size of nanoparticles exhibited a consistent decrease55. Andwith the
addition of MMP-2, the gelatin in GNP-DOX/ICG would be
degraded,andneed toovercome thecrosslink strengthwithGAin the
meantime.

The cumulative drug release from GNP-DOX/ICG with or
without laser irradiation or MMP-2 was determined through a
dialysis method (Fig. 3C). Few DOX was released when the three



Figure 2 Characterization for nanoparticles with different crosslinking degrees: (A) UVeVis absorption spectra of DOX, ICG, and GNP-DOX/

ICG. (B) Zeta potential and hydrodynamic diameter of GNP-DOX/ICG. Data are presented as mean or mean � SD (n Z 3). (C) Drug loading

yields of GNP-DOX/ICG. Data are presented as mean or mean � SD (nZ 3). (D) The temperature changes in GNP-DOX/ICG dispersions in PBS

(ICG concentration of 5, 10, 20, and 40 mg/mL) when irradiated with 808 nm laser at a power density of 1 W/cm2 for 5 min.
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groups were dialyzed against PBS. After irradiation for 10 min,
non- and low-crosslinked GNP-DOX/ICG exhibited laser-
dependent release properties, and approximately 47.4% and
35.7% were respectively released after 6 h. With a combination of
laser irradiation and MMP-2, non- and low-crosslinked GNP-
DOX/ICG exhibited a higher cumulative drug release of 57.3%
and 44.8%, respectively. In comparison, the DOX release of high-
crosslinked GNP-DOX/ICG did not obviously increase. And these
results correlated with the results from DLS and TEM (Fig. 3A
and B). Considering the parameters involved in DL, stability, and
responsive drug release behavior, the low-crosslinked GNP-DOX/
ICG was selected for the subsequent in vivo and in vitro antitumor
evaluation.
3.2. In vitro cytotoxicity evaluation

The cytotoxicity of blank GNP and GNP-DOX/ICG, and photo-
thermal effect of ICG against 4T1 cells were evaluated by MTT
assay. Almost no toxicity was observed after incubating 4T1 cells
with GNP with different crosslinking degrees (Fig. 4A), indicating
excellent biocompatibility of GNP. Meanwhile, 4T1 cells survival
rates were dramatically reduced with an increase of DOX con-
centration in the nanoparticles (Fig. 4B). With the combination of
laser, cell survival rate of GNP-DOX/ICG (DOX: 40 mg/mL) was
further reduced to below 20%, indicating that laser irradiation has
an effective lethality on tumor cells.
3.3. In vitro cellular uptake and intracellular distribution

Targeted delivery to specific cells is crucial for cancer therapy.
The intracellular delivery of nanosystems could be enhanced via
photothermal effect on account of increased cell membrane
permeability and improved endocytosis67,69. The cellular uptake
of GNP-DOX/ICG was evaluated by confocal laser scanning mi-
croscopy for monitoring cellular targeting efficiency. DOX could
exert its therapeutic effects in the nucleus because of its quick
intercalation as well as excellent bonding ability with DNA70. In
GNP-DOX/ICG treated cells, a red fluorescence was from DOX,
and the blue fluorescence was the nucleus stained with DAPI. As
displayed in Fig. 4C, GNP-DOX/ICG-treated groups exhibited
DOX fluorescence that was mainly distributed at the cell surface
and cytoplasm, while a little fluorescence can be seen in the nu-
cleus. However, with laser treatment, more DOX distributed
within the cytoplasm and a higher red fluorescence could be seen
in the nucleus. This suggests that the laser treatment can be used
to facilitate the entrance of drugs into cells, followed by respon-
sive drug release.
3.4. In vivo imaging and biodistribution analysis

The inherent and sensitive fluorescence of ICG was used to
measure the amounts of accumulated GNP-DOX/ICG in the tumor
and different organs, without the need for additional radio or



Photothermal/MMP-2 dual-responsive gelatin nanoparticles for breast cancer treatment 277
fluorescent labeling32. To evaluate the real-time biodistribution of
GNP-DOX/ICG, an imaging system was used to in vivo image at
different time intervals. Fig. 5A illustrated the ICG FL signal and
intensity distribution of GNP-DOX/ICG. ICG FL could be visu-
alized in the GNP-DOX/ICG treated group at 24 h postinjection,
indicating that GNP-DOX/ICG could achieve prolonged circula-
tion. This is most likely due to the protection provided by gelatin.
Interestingly, the ICG FL signal of GNP-DOX/ICG reached a peak
at 1 h postinjection in the tumor site, decreased, increased again at
12 h. The highest level of fluorescent was at 24 h postinjection,
which demonstrated the increased tumor targeting efficiency. The
distribution of GNP-DOX/ICG in the major organs and the tumor
was displayed in Fig. 5B and C. The results showed that ICG
mostly accumulated in the liver, followed by the spleen, lung,
kidney, and tumor. The ICG signal in spleen and lung might be
due to the effects of reticuloendothelial system (RES). Generally,
a large amount of nanoparticles accumulated in the RES-
associated organs such as liver, lung and spleen after adminis-
tration, which will result in a low percentage (w5%) retained in
the tumor site, and then possibly followed by excretion in feces or
Figure 3 (A) TEM images, (B) hydrodynamic diameter, and (C) cumul

treated with or without laser irradiation and MMP-2 incubation. Data are
recirculation71,72. As shown in Supporting Information Fig. S4,
tissue slices were used to further elucidate the fluorescent distri-
bution after treated with GNP-DOX/ICG, which were consistent
with the results of in vivo imaging and biodistribution analysis.

In order to compare the fluorescence changes with or without
laser irradiation, the ICG FL signals were recorded by imaging
system. As shown in Fig. 5D and E, the FL signals of GNP-DOX/
ICG around the tumor site under laser irradiation were much
higher than the group without laser irradiation. These phenomena
could be due to both the laser-induced thermoresponsive behavior
and the retention caused by gelatin swelling.

3.5. In vivo photothermal characterizations

Owing to sufficient tumor uptake, GNP-DOX/ICG could generate
rapid local heating upon laser irradiation. At 24 h after GNP-
DOX/ICG injection (200 mL and ICG concentration of 1 mg/mL),
the photothermal effect at tumor site was measured via an infrared
thermal camera while being irradiated. Simultaneously, the con-
ditions of irradiation were laser wavelength of 808 nm and a
ative drug release of non-, low-, and high-crosslinked GNP-DOX/ICG

expressed as means � SD (n Z 3). **P < 0.01.



Figure 4 (A) The viability of 4T1 cells treated with GNP of varying concentrations. (B) The viability of 4T1 cells after treatment with GNP-

DOX/ICG containing various DOX concentrations with or without NIR laser irradiation (808 nm, 1 W/cm2, and 5 min). (C) Confocal laser

scanning microscopy images of DOX in 4T1 cells treated with GNP-DOX/ICG after 4 h incubation with or without laser irradiation. Data are

expressed as means � SD (n Z 3). **P < 0.01.
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power density of 1 W/cm2. The 5 min laser irradiation increased
tumor temperature to 55.9 �C in the GNP-DOX/ICG-treated
group, whereas PBS-treated and laser irradiated tumors exhibi-
ted no significant increase in temperature (Fig. 5F and G).

3.6. In vivo antitumor evaluation

To assess the antitumor effect of combined effect of photothermal
and chemotherapy treatment mediated by GNP-DOX/ICG, in vivo
antitumor evaluation was evaluated in 4T1 tumor-bearing mice.
Thirty mice were randomly divided into six groups, and treated
with PBS, GNP-DOX, GNP-ICG, GNP-ICG þ laser, GNP-DOX/
ICG, or GNP-DOX/ICG þ laser. The therapeutic efficacy was
monitored via tumor volume and body weight as well as survival
ratio. During the 21-day treating period, the average tumor volume
of GNP-ICG þ laser and GNP-DOX/ICG þ laser-treated mice
continuously decreased and remained negligible from Days 13 and
9, respectively (Fig. 6A and D), which mainly were caused by the
PTT effect of ICG. However, the average tumor volume of GNP-
DOX/ICG-treated mice kept increasing at a slower rate than that
of PBS-treated group, which suggested that 4T1 tumors were
slightly inhibited by GNP-DOX/ICG. Moreover, results of the
mouse survival revealed that mice treated with GNP-ICG þ laser
and GNP-DOX/ICG þ laser achieved 100% survival throughout
the 21-day treating period, whereas mice treated with GNP-DOX/
ICG and PBS exhibited 20% and 40% loss in survival ratio,
respectively (Fig. 6B). The mice treated with GNP-DOX/ICG and
PBS led to a slight reduction of body weight, whereas the average
body weight treated with GNP-DOX/ICG þ laser kept stable
(Fig. 6C). Compared to group of single treatment of chemotherapy
or PTT, the group of GNP-DOX/ICG þ laser-treated mice dis-
played the best antitumor effect by combining chemotherapy with
PTT, indicating the superiority of drug combination.

3.7. Histopathology analysis

Whether the GNP-DOX, GNP-ICG and GNP-DOX/ICG groups
treated with laser irradiation or not, showed various degrees in



Figure 5 (A) In vivo ICGfluorescence images of 4T1 bearingmice following intravenousGNP-DOX/ICG injection at 0, 0.5, 1, 2, 4, 8, 12 and 24 h.

(B) Ex vivo fluorescence images and (C) fluorescence intensity of major organs and tumors at 24 h following GNP-DOX/ICG injection. Data are

presented as mean or mean � SD (nZ 3). (D) In vivo ICG fluorescence images at different time point. (E) Semi-quantitative analysis of ICG fluo-

rescence intensity around the tumors with or without laser irradiation. Data are presented as mean or mean� SD (nZ 3). (F) Near-infrared thermal

images and (G) temperature profiles of tumor treated with PBS or GNP-DOX/ICG with an 808 nm laser with a power intensity of 1 W/cm2. Data are

presented as mean or mean� SD (nZ 3).

Photothermal/MMP-2 dual-responsive gelatin nanoparticles for breast cancer treatment 279
tumor cell necrosis. The GNP-DOX/ICG group with NIR
exhibited the largest area of abnormalities or lesions than the PBS-
treated mice, which was caused via the synergistic effect of DOX
and ICG-induced PTT. Furthermore, immunofluorescent TUNEL
staining assay was used to evaluate the cell apoptosis of tumors
in vivo for the chemoephotothermal therapy. The tumor cells in
the PBS, GNP-DOX, GNP-ICG and GNP-ICG þ laser-treated
mice displayed little apoptosis (Fig. 6E and Supporting
Information Fig. S3). GNP-DOX/ICG treatment led to a higher
tumor cell apoptosis, demonstrating that GNP-DOX/ICG could
produce a better chemotherapy effect by enhancing DOX accu-
mulation at the tumor site. Moreover, GNP-DOX/ICG þ laser
treatment resulted in a significantly increase in the amount of
apoptotic and necrotic cells compared to the treatment without
laser irradiation. These studies illustrate that
chemoephotothermal therapy could efficiently eliminate tumor
cells via permanent and irreversible DNA/RNA and protein
damage73. Histological analysis (Supporting Information Fig. S5)
of the major organs further indicated that GNP-DOX, GNP-ICG,
GNP-ICG þ laser and GNP-DOX/ICG treatment did not induce
damage to these organs compared with PBS treatment.

4. Conclusions

In this study, we have successfully constructed GNP-DOX/ICG
for synergistically delivering DOX and ICG to provide a combi-
nation of photothermal and chemo-based therapies. GNP-DOX/
ICG exhibited microenvironment-responsive tumor targeting and
size-variable capabilities. Most importantly, GNP-DOX/ICG dis-
played excellent photothermal effects upon irradiated by near-
infrared laser, which could obviously improve DOX and ICG
cellular uptake within 4T1 cells. Finally, GNP-DOX/ICG showed



Figure 6 (A) Tumor volume, (B) survival ratio, and (C) body weight alterations treated with PBS, GNP-DOX, GNP-ICG, GNP-ICG þ laser,

GNP-DOX/ICG, or GNP-DOX/ICG þ laser. (D) Photographs of mice at 48 h postinjection and on day 19 after initiating NIR irradiation. (E) H&E

staining and TUNEL immunofluorescence of tumors after PBS, GNP-DOX, GNP-ICG, GNP-ICG þ laser, GNP-DOX/ICG, and GNP-DOX/

ICG þ laser treatment. Data are expressed as means � SD (n Z 5). **P < 0.01.
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efficient antitumor effects for breast cancer by combining
chemotherapy with PTT. We hold a belief that this work could
provide the basis for a promising nanocarrier for the treatment of
breast cancer.
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