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Abstract: Approximate and sample entropies are acclaimed tools for quantifying the regularity and
unpredictability of time series. This paper analyses the causes of their inconsistencies. It is shown
that the major problem is a coarse quantization of matching probabilities, causing a large error
between their estimated and true values. Error distribution is symmetric, so in sample entropy,
where matching probabilities are directly summed, errors cancel each other. In approximate entropy,
errors are accumulating, as sums involve logarithms of matching probabilities. Increasing the time
series length increases the number of quantization levels, and errors in entropy disappear both in
approximate and in sample entropies. The distribution of time series also affects the errors. If it is
asymmetric, the matching probabilities are asymmetric as well, so the matching probability errors
cease to be mutually canceled and cause a persistent entropy error. Despite the accepted opinion, the
influence of self-matching is marginal as it just shifts the error distribution along the error axis by
the matching probability quant. Artificial lengthening the time series by interpolation, on the other
hand, induces large error as interpolated samples are statistically dependent and destroy the level of
unpredictability that is inherent to the original signal.

Keywords: approximate entropy; sample entropy; quantization error; matching probabilities;
interpolation

1. Introduction

Despite the global spread of mobile phones and multimedia, few people know that
digital technology is based on the work of one scientist—Claude Elwood Shannon. His work
on the sampling theorem [1], channel capacity and compression [1,2], cryptography [3],
and coding [4] initiated a new scientific discipline—information theory [5].

One of the key findings was a measure of the information uncertainty of the communi-
cation signal [2]. It was called “entropy”, at the suggestion of J. von Neumann [6], following
a similar measure from the field of classical thermodynamics. A generalization suitable for
dynamical systems was introduced in [7] but theoretically too demanding for practical ap-
plication. With the relaxation of mathematical constraints first by the approximate entropy
(ApEn, [8]) and then by its modification sample entropy (SampEn, [9]), entropy began to
break into other areas, with the growing popularity, and with citations measuring in the
thousands [10].

Biomedical sciences are among the leaders in finding new applications as an area
that offers one of the largest selections of diverse signals to be analyzed. A nonlinear
regularity metric enabled by ApEn and SampEn might reveal the physiological mechanisms
that would otherwise remain hidden. Just to mention a very few applications, entropy
was implemented for medical image segmentation [11], melanoma detection [12], in neu-
rosciences [13], for heart rate in healthy subjects [14], during sporting activities [15], in
patients with heart failure [16], or with diabetes [17].

ApEn and SampEn are subject to several levels of freedom: the time series length N
and the threshold r—the similarity criterion that defines (un)predictability within the time
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series, the length of the pattern vector (similarity) m, and the time delay τ. Their incorrect
application can lead to different results within the same experimental settings (so-called
“flip-flop” effect) [18,19]. Detailed parameter studies are numerous [13,20–29], with one of
the most thorough analyses given recently in [30]. However, studies devoted to particular
biomedical problems prefer to perform a quick search and find the parameters tuned to
the signal they investigate. Thus far, guidelines or recommendations on implementation
methods do not exist, despite the extensive application.

Sampling frequency has recently come into focus as another potential level of freedom.
In [31], SampEn was estimated from source signals (hip, knee, and jump angle in the sagittal
plane), reporting that an increase in sampling frequency significantly reduced SampEn.
Similar results are shown in [32] (box-plots), representing the SampEn of the original ECG
and EEG signals. The tables in [33] show the same SampEn reduction with sampling
frequency, where SampEn was applied to the main atrial wave (MAV) waveforms derived
from the original ECG signal and then upsampled or downsampled to mimic different
sampling frequencies.

These results are expected. The lowest sampling frequency has to follow theoretical
requirements. Sampling frequency should be twice the maximal spectral component of
the observed signal [2], providing sufficient samples for its unambiguous reconstruction.
Increased sampling frequency provides redundant, and therefore statistically dependent,
samples, thus attenuating the unpredictability of the observed signal. For this reason, the
entropy of oversampled signals decreases.

The purpose of this paper is to examine the causes of entropy estimation errors
underlying deficiencies such as bias, relative inconsistency, and sample length dependence.
In addition, it is sometimes difficult to meet the minimum signal length requirements [20],
so artificially extending the signal by interpolating [34] might cause an additional error.
Knowing why errors occur is a safe way to find a method to combat them. For this reason,
we analyzed the entropy of artificial signals with symmetric and asymmetric distributions,
long time series of pulse intervals recorded from laboratory rats, and shorter heart rate
signals recorded from healthy volunteers in an outpatient setting.

2. Materials and Methods
2.1. Approximate and Sample Entropy in Brief

The entropy analysis begins with the segmentation of the time series xi ∈ X, i = 1, . . . ,
N, into the overlapping vectors of length m:

X(m)
i =

[
xi, xi+τ , · · · , xi+(m−1)·τ

]
, i = 1, · · · , N − (m− 1)·τ. (1)

The parameter τ separates the signal samples, thus decorrelating them [29]. Most
applications assume that the vectors are composed of adjacent samples and τ > 1 is not
common, so we adopted τ = 1.

The ApEn and SampEn procedures are based on counting similar vectors. A criterion
for similarity is a condition that maximal absolute distance between the scalar components
of two vectors X(m)

i and X(m)
j should be below some predefined threshold r:

d
(

X(m)
i , X(m)

j

)
= max

k=0,··· ,m−1

∣∣∣xi+k − xj+k

∣∣∣ ≤ r, i, j = 1, · · · , N −m + 1 (2)

The observed vector X(m)
i is “template”, and the vectors X(m)

j , j = 1, . . . , N − m + 1
that satisfy condition (2) are its “matches”. Comparison of the template to itself is “self-
matching” and occurs in ApEn. The absence of any matches is “zero-match” and occurs only
in SampEn. The number of matches in ApEn and SampEn is not equal, as SampEn excludes
both self-matches (j = i) and the last comparison (j = N − m + 1):

C(m)
i (r) = ∑N−m+1

j=1 I
{

d
(

X(m)
i , X(m)

j

)
≤ r
}

, i = 1, · · · , N −m + 1, for ApEn;
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B(m)
i (r) = ∑N−m

j=1,j 6=i I
{

d
(

X(m)
i , X(m)

j

)
≤ r
}

, i = 1, · · · , N −m, for SampEn; (3)

The sum of indicator functions from (3), ∑ I{condition}, describes the counting process,
as the indicator function is equal to one of the condition it indicates is fulfilled; otherwise, it
is equal to zero. The notations of the number of matches are from [8,9].

The number of matches divided by the number of tests gives a classical definition of
probability as a relative frequency. The probability that the template vector will find its
match (“matching probability”) is estimated as:

p̂(m)
Ai (r) =

C(m)
i (r)

N −m + 1
, i = 1, · · · , N −m + 1, for ApEn;

p̂(m)
Si (r) =

B(m)
i (r)

N −m
, i = 1, · · · , N −m, for SampEn, (4)

where “p̂” denotes an estimate od p.
ApEn and SampEn also require matching probability estimates for m + 1 templates:

p̂(m+1)
Ai (r) = ∑N−m

j=1 I
{

d
(

X(m+1)
i , X(m+1)

j

)
≤ r
}
=

C(m+1)
i (r)
N −m

, i = 1, · · · , N −m, for ApEn;

p̂(m+1)
Si (r) = ∑N−m

j=1,j 6=i I
{

d
(

X(m+1)
i , X(m+1)

j

)
≤ r
}
=

C(m+1)
i (r)− 1

N −m
=

A(m)
i (r)

N −m
, i = 1, · · · , N −m, for SampEn; (5)

where A(m)
i (r) is the number of matches for vectors of length m + 1 (notation from [9]).

The source papers on ApEn and SampEn did not include matching probabilities, but
only the number of matching vectors A(m)

i (r), B(m)
i (r), and C(m)

i (r) defined in (3) and (5).
We opted to work with probabilities as it is mathematically more palatable to operate with
the probabilities that two vectors match than with the number of matching vectors.

Then the ApEn estimate is defined as:

ÂpEn(m, r, N) = Φ̂(m)
(r, N)− Φ̂(m+1)

(r, N) (6)

where
Φ̂(m)

(r, N) =
1

N −m + 1
·∑N−m+1

i=1 ln
(

p̂(m)
Ai (r)

)
, (7)

and “ln” is the natural logarithm.
Similarly, SampEn estimate is defined as:

ŜampEn(m, r, N) = − ln

∑N−m
j=1,j 6=i A(m)

i (r)

∑N−m
j=1,j 6=i B(m)

i (r)

 = Ψ̂(m)
(r, N)− Ψ̂(m+1)

(r, N) (8)

where

Ψ̂(m)
(r, N) = ln

(
1

N −m
·∑N−m

j=1,j 6=i B(m)
i (r)

)
= ln

(
1

N −m
·∑N−m

j=1,j 6=i p̂(m)
Si (r)

)
,

Ψ̂(m+1)
(r, N) = ln

(
1

N −m
·∑N−m

j=1,j 6=i p̂(m+1)
Si (r)

)
. (9)

2.2. Errors in Entropy Estimation

The core of ApEn and SampEn estimates is the probability that the template vector
is similar to other vectors. As with any probability, it is prone to estimation errors. Such
errors are analyzed in detail in [35], in the data communication environment, for binary
transmission errors. However, entropy encompasses the sum of many probabilities, and
their impact on the overall result is not straightforward.
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The estimated probability p̂(m)
Zi (r), where Z ∈ {A, S} is included to denote both ApEn

and SampEn, can be expressed as a difference of the correct (calculated) matching probability
value p(m)

i (r), which is the same for both entropies and error ε
(m)
Zi (r):

p̂(m)
Zi (r) = p(m)

i (r)− ε
(m)
Zi (r), Z ∈ {A, S} (10)

The impact of errors on the summand Φ̂(m)
(r, N) is as follows:

Φ̂(m)
(r, N) =

1
N −m + 1

·∑N−m+1
i=1 ln

(
p(m)

i (r)− ε
(m)
Ai (r)

)
=

1
N −m + 1

·∑N−m+1
i=1 ln

(
p(m)

i (r)·
(

1−
ε
(m)
Ai (r)

p(m)
i (r)

))
=

=
1

N −m + 1
·∑N−m+1

i=1 ln
(

p(m)
i (r)

)
+

1
N −m + 1

·∑N−m+1
i=1 ln

(
1−

ε
(m)
Ai (r)

p(m)
i (r)

)
= Φ(m)(r, N) + ε

(m)
Φ (r, N).

(11)

Similarly, for Ψ̂(m)
(r, N):

Ψ̂(m)
(r, N) = ln

(
∑N−m

i=1

(
p(m)

i (r)− ε
(m)
Ai (r)

))
= ln

((
∑N−m

i=1 p(m)
i (r)

)
·
(

1− ∑N−m
i=1 ε

(m)
Ai (r)

∑N−m
i=1 p(m)

i (r)

))

= ln
(
∑N−m

i=1 p(m)
i (r)

)
+ ln

(
1− ∑N−m

i=1 ε
(m)
Ai (r)

∑N−m
i=1 p(m)

i (r)

)
= Ψ(m)(r, N) + ε

(m)
Ψ (r, N)

(12)

It follows that the estimation errors for ApEn and SampEn can be expressed as:

ε
(m)
ApEn(r, N) = ε

(m)
Φ (r, N)− ε

(m+1)
Φ (r, N) and ε

(m)
SampEn(r, N) = ε

(m)
Ψ (r, N)− ε

(m+1)
Ψ (r, N) (13)

In order to implement the error analysis, besides the values estimated from the time
series ((3)–(5)), it is also necessary to know the exact values of matching probabilities p(m)

i (r)
for each template.

If the probability density function of the observed time series is fx(x) and following
the similarity criterion

∣∣xi − xj
∣∣ ≤ r, the exact probability that the sample xi ∈ X will find a

similar sample is equal to:

pi(r) =
∫ xi+r

xi−r
fx(x)·dx, i = 1, · · · , N (14)

The template vector of length m will find its match if its kth sample is similar to the kth
sample of the matching vector for all m template samples. The exact matching probability
can be calculated for all the template vectors of the time series:

p(m)
i (r) = ∏m−1

k=0

∫ xi+r

xi−r
fx(x)·dx, i = 1, · · · , N −m (or N −m + 1) (15)

With the estimated and calculated matching probabilities, it is possible to estimate
all the elements for error analysis, (10)–(13), as well as to calculate the entropy of the time

series. It should be noted that the definition ε
(m)
Φ (r, N) = 1

N−m+1 ·∑
N−m+1
i=1 ln

(
1− ε

(m)
Ai (r)

p(m)
i (r)

)
(11) is formal, as the estimation error ε

(m)
Ai (r) can exceed the true probability value p(m)

i (r)

so a logarithm of negative value may occur. However, Φ̂(m)
(r, N) and Φ(m)(r, N) are

always defined, so the estimation error ε
(m)
Φ (r, N) = Φ̂(m)

(r, N)−Φ(m)(r, N) always exists.

Contrary to this, ∑N−m
j=1,j 6=i p̂(m)

Si (r) is a sum of the probabilities that exclude self-matches,

and this sum can be equal to zero. In this case, summands Ψ̂(m)
(r, N), (9), as well as the

corresponding SampEn, (8), are not defined.
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The problem with this approach is that the exact probability distribution functions of
the biomedical time series are not available. For this reason, we first performed an error
analysis using artificially generated time series with known distributions. Then, based on
these results, we analyzed the entropy estimated from the experimental signals.

2.3. Artificial and Experimental Data

In order to find the error in estimating entropy, we need a reference (correct) value
of entropy. Artificially generated data with a known probability density function (PDF)
provide this capability. If the PDF is known, the true entropy values can be calculated.
On the other hand, all-purpose software provides the ability to generate a time series of
arbitrary length N with signal samples that follow the same distribution. The entropy
estimated from such a time series, compared with its true calculated value, shows the error
in entropy estimation.

The artificially generated data we used comprise time series from three distributions
chosen to show the impact of bounded, unbounded, and skewed data. An example of
bounded and symmetric distribution is a uniform distribution. An example of symmetrical
unbounded distribution is Gaussian, while skewed distribution is exponential. Additional
property is that the corresponding integrals can be expressed either in a closed form or
using the common built-in functions. In order to have errors of comparable amplitude, we
performed standard scaling, i.e., we normalized and centralized the variables. Such scaling
also avoids the necessity to adjust the threshold r to the signal standard deviation.

The following PDFs were used to generate the time series:

f (U)
x (x) =

{ (
2·
√

3
)−1

, |x| ≤
√

3
0, elsewhere

f (G)
x (x) =

(√
2·π
)−1

e−x2/2, ∀x

f (E)x (x) = e−x−1, x ≥ −1 (16)

The time series were generated using built-in PDF generators, and the generated
distributions were checked using the Kolmogorov–Smirnov test [36]. The probabilities
p̂m

Zi(r) were estimated by the counting process, according to (3)–(5). The probabilities pi(r)
are calculated for each sample of the template (Figure 1) according to (14):

pi(r) =


r + min(r,

√
3 − |xi |)

(2·
√

3)
, uniform

erf
(
(xi + r)√

2

)
− erf

(
(xi − r)√

2

)
2 , Gaussian

e−1−xi+r − e−1−xi−r, exponential

, (17)

with a built-in function erf(a) = 2√
π

∫ a
0 e−x2 ·dx. The probabilities of m adjacent samples

are then included in (15) to calculate p(m)
i (r).

After obtaining both estimated and calculated matching probabilities, all the other
parameters can be found. Additionally, in the case of uniform distribution, the entropy can
be calculated in a closed form. The expression is the same both for ApEn and SampEn:

ApEn(r) = SampEn(r) = −ln

(
4·r·
√

3− r2

12

)
(18)

The derivation is simple, and it is given in the Appendix of [37].
The experimental time series were recorded from adult male conscious and unre-

strained Wistar outbred rats, weighing 300–350 g, housed separately under control labo-
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ratory conditions (temperature −22 ± 2 ◦C; relative humidity: 60–70%; lighting: 12:12 h
light–dark cycle) with food and water ad libitum.
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Figure 1. An example of a template vector
[

xi xi+1 xi+2

]
=
[
−0.5 0.5 2

]
and the corre-

sponding calculated matching probabilities pi(r), pi+1(r), and pi+2(r), equal to the shaded areas of
PDF. In this example, m = 3, r = 0.2, and samples are from a normalized and centralized exponential
distribution.

The measurement of blood pressure waveforms (BP) was performed using TL11M2-PA-
C50-PX-DSI equipment implanted into the abdominal aorta. The sampling frequency was
1000 Hz, with a 12-bit A/D converter yielding 4096 amplitude levels. We chose the signals
from a pharmacological experiment [38] (baseline condition), for which data acquisition
lasted more than an hour. The experiment provided a very long time series that allowed
testing the effect of variable signal length on entropy estimation errors. Systolic blood
pressure (SBP) and pulse interval (PI) time series were derived from the BP waveforms
as the local maxima and as the intervals between the successive maximal BP positive
changes, respectively. Artifacts were detected semi-automatically [39], with residual errors
removed manually. The time series were detrended to remove the very slowly varying
signal components by a filter proposed for biomedical applications in [40]. Each data
segment was checked for stationarity both in mean and in variance by a method from [41].

All experimental procedures conformed to Directive 2010/63/EU national Animal
Welfare Act 2009/6/RS and Rule Book 2010/RS on the protection of animals used for scien-
tific purposes, insisting on the minimal number of experimental subjects. The protocol was
approved by the University of Belgrade Ethics review board (license n◦323-07-10519/2013-
05/2).

Data series from human subjects were recorded from 77 medically examined male
healthy volunteers in ideal hospital conditions, using Task Force monitor. Data lengths
were typical for ambulatory monitoring, up to 10 min, and ensured the tranquility of the
patient and stationarity of the recorded data. Artifacts were removed, and stationarity was
checked in the same way as for the previous experimental time series. The experiment
followed the ethical standards stated by the School of Medicine, University of Belgrade,
in accordance with the Declaration of Helsinki, and the protocol was approved by the
Ethics Committee of University Hospital Center Bežanijska Kosa, Belgrade, Serbia, No.
11754/3 from December 2015 for project TR32040. Signed permission was collected from
each volunteer.
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2.4. The Impact of Interpolation Errors

Medical recordings in patients might be very short. Some researchers limit the ob-
served signals to 1 min, providing on average 75 beat-to-beat samples in human subjects.
However, the source papers on entropy [8,9,20] pointed to the necessity of sufficiently long
data series in order to achieve the reliability of the results. The same finding is frequently
repeated in the research papers on entropy (many of which are quoted in the Introduction).

Since one-minute recording is not sufficient, a trial was made to prolong the signals
by a 5 Hz interpolation, presumably inspired by guidelines for power spectral density
(PSD) estimation of cardiovascular signals [42]. If the one-minute record is resampled by
5 Hz, each one of the source samples (75 bpm = 1.25 Hz) would have been coupled with
three statistically dependent ones, so, on average, 75% of the samples would be predictable
results of interpolation. The outcome of such interpolation applied to the heart rate of a
healthy volunteer is shown in Figure 2. However, the entropy level depends on the level
of unpredictability of time series, and additional interpolated samples induce statistical
dependency. By comparing the magnitude of the error made if the interpolated signals are
used instead of the signals of sufficient length, we investigated whether the artificial signal
prolongation is acceptable for entropy-based studies.
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Figure 2. Heart rate (HR) samples from a healthy volunteer. The original and interpolated time series
are shown in green and black, respectively. In both time series, the first five original samples are
encircled. “#” denotes “number”.

3. Results
3.1. Errors Estimated from Artificial Data

The impact of time series length N and threshold r is shown in Figure 3. Entropy is
estimated from the artificial data for vector size m = 2, and the results are presented as
mean ± standard deviation (SD) in Figure 3a,c, and only as a mean in Figure 3b,d. We
opted to show the results of uniform distribution as its entropy can be expressed in a closed
form, (18), dashed lines. The results for Gaussian and exponential distributions are similar
and, for this reason, omitted.
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Figure 3. Entropy estimates for signals with uniform distribution. (a) ApEn as a function of time
series length N; dashed lines show entropy evaluated by (18); (b) SampEn as a function of N; (c) ApEn
as a function of threshold r; (d) SampEn as a function of r; ApEn is expressed as a mean ± standard
deviation; SampEn is expressed as a mean value only, while its standard deviation is shown in Figure 4
for all three distributions.

ApEn estimates (Figure 3a,c) approach the theoretical values given by (18), but only
for long time series and large threshold values. The estimates are well below the theoretical
limit for thresholds r = 0.1 and 0.2, even in long data series (Figure 3a). Enlarging the
threshold level to r = 0.5 is not sufficient for short time series of N = 100 and its entropy
remains underestimated. On the other hand, estimated SampEn mean values in Figure 3b,d
are in perfect accordance with theoretical values. Besides, in Figure 3d, there are five
perfectly overlapping SampEn graphs, including the theoretical one, verifying the steady
mean value of the estimates. These results are not new, as SampEn is designed to remove
the ApEn inconsistencies. The standard deviation (SD) of SampEn, on the other hand, is
larger than in ApEn. It would make the graphs in Figure 3b,d indistinctive, so it is presented
separately in Figure 4.

Figure 4 shows that, contrary to the mean SampEn values, its standard deviation is
affected by the time series length N. To show that it is an outcome of the relationship
between the number of binary events (template matches) and the series length N, we
estimated confidence intervals for an illustrative example of the m = 2 template [−0.1 0.1]
and m = 3 template [−0.1 0.1 0.6], following a detailed reliability analysis of binary event
probability estimates from [36,43]. For each N, 104 time series were generated, and the
corresponding mean probability values were both estimated and calculated, (4) and (15).
The corresponding confidence intervals are shown in Figure 5 in the log–log scale. The
values that are missing are equal to zero and cannot be shown as logarithms. Short time
series have large confidence intervals, which causes an increased standard deviation of
estimated mean values.
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Another characteristic that might affect the stability of the results is zero-matches.
Figure 6a shows the percentage of time series within which a template cannot find its

match in SampEn, which is equivalent to finding its self-match in ApEn. The incidence of
p̂(m)

i (r) = 0 decreases below 10% for time series longer than N = 200 if m = 2, and longer
than N = 2000 if m = 3. The number of zero-matches exceeds the number of other matching
probabilities and disrupts their overall distribution. Moreover, if no pattern from the entire
time series finds its match, SampEn is undefined because the logarithm of zero would
appear in the (8). It can occur for low threshold values r and in short time series. The
incidence of such events is shown in Figure 6b,c.
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However, both ApEn and SampEn are prone to the same causes of instability, so it does
not explain the difference in their estimates (Figure 3). The following results clarify this
issue.

Figure 7 shows the distribution of matching probability errors ε
(m)
Zi (r) = p(m)

i (r)−
p̂(m)

Zi (r) , Z ∈ {A, S}, for short (N = 300) uniform time series. Figure 8 shows the same
distribution but for longer (N = 3000) uniform time series. It can be seen that the error
distribution of uniform time series is in part discrete and in part continuous.

The first part of the matching probability error is its estimated value (10). It is a
discrete variable as it can have at most 1/(N − m) different values. The second part is the
calculated matching probability. For uniform distribution, the calculated value is the same
for most templates ((15), top line). It becomes continuous for the borderline amplitudes
(|xi| ≥

√
3− r). Observation of the x-axes in Figure 7a,c reveals that the distance between

the discrete components (i.e., the distance between the discrete error values) is equal to
1/(N − m) ≈ 0.336, and Figure 8 shows that the same distance is 10 times smaller, in
accordance with the ten times increased N.
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(m)
Zi (r) = p(m)

i (r)− p̂(m)
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Figure 7b,d show the error distribution for m = 3 templates. Since the matching
probabilities are much lower than in the previous example, and the time series is short, the
errors have three peaks showing that only 1, 2, or 3 matches were found for each template.
It can be seen that Figure 7d is “shifted” along the x-axis by a value of 1/(N − m) ≈ 0.336
with respect to Figure 7b. Namely, due to excluded self-matches, the number of matches
in the SampEn was reduced by one if compared to ApEn. Such a shift exists in all error
distributions, but it is the most clearly visible in 7b and 7d.

An important feature of error distributions in Figure 8 is its symmetry, especially for

N = 3000. The inspection of (12) reveals that estimated SampEn summands Ψ̂(m)
(r, N) can

be expressed as:

Ψ̂(m)
(r, N) = ln

(
∑N−m

i=1 p(m)
i (r)−∑N−m

i=1 ε
(m)
Ai (r)

)
(19)

The second term within the logarithm is a summation of all the errors from the
template matching procedure. Since error distribution is almost symmetric with respect
to zero, the positive and negative error values mostly cancel each other. It holds even
for the discrete distribution in Figure 7d, where one peak, but with more errors, cancels

the remaining less exhibited peaks. Therefore, estimated summand Ψ̂(m)
(r, N) is almost

error-free, as well as the corresponding entropy estimates.

In ApEn summand Φ̂(m)
(r, N), the errors are not summed directly, but via a logarithmic

function (11):

Φ̂(m)
(r, N) = Φ(m)(r, N) +

1
N −m + 1

·∑N−m+1
i=1 ln

(
1−

ε
(m)
Ai (r)

p(m)
i (r)

)
(20)

so no error cancelation exists. On the contrary, errors are accumulating. Therefore, the
improvement that SampEn induced is not only because the self-matching exclusion reduces
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the bias by shifting the error distribution along the error axis, thus increasing its symmetry
with respect to zero, but essentially due to the method of SampEn estimation itself, as it
implements this symmetry for error cancelation.

Only when estimated errors become very low (for time series length for which the
confidence interval tightens), the error cancelation become irrelevant, and the errors also
decrease in ApEn estimates.

Figure 9 shows examples of error distributions in Gaussian and exponential time
series. The asymmetry of the error distribution in Figure 9b is due to the very low val-
ues of calculated matching probabilities: first, these probabilities are a product of m = 3
sample probabilities (15), and second, probability of samples from tail parts of Gaussian
distribution can be very low, so the templates comprising them are not likely to find more
than 2–3 matches. On the other hand, the resolution of the estimated matching probabili-
ties is too coarse, 1/(N − m), to be compared with the fine granulation of the calculated
probabilities. Thus, the PDF in Figure 9b is cut into intervals. Since the error in probability
is expressed as ε

(m)
Si (r) = p(m)

i (r)− p̂(m)
Si (r), where the first term is continuous (15) and

the second discrete (4), in the first interval, ε
(m)
Si (r) ∈

[
0,− 1

N−m

)
, the error is equal to

ε
(m)
Si (r) = p(m)

i (r); the second interval is defined as ε
(m)
Si (r) ∈

[
− 1

N−m −
2

N−m

)
and the

corresponding error values are ε
(m)
Si (r) = p(m)

i (r)− 1
N−m . The remaining segments follow

the same pattern.
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The increased time series length also increases the resolution of p̂(m)
Si (r) estimates, and

the error distribution becomes smooth and symmetrical, as shown in Figure 9b, for m = 2
and N = 3000.
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Figure 9 also presents examples of matching probability error distribution estimated
from exponential time series. PDFs are asymmetric, both in shape and with respect to zero.
Positive errors are dominant, as the calculated probabilities exceed the estimated values.

Namely, the area below the exponential curve on the interval [xi − r, xi] has large
values that dominate the Equation (14), so that the calculated matching probabilities for the
exponential distribution are higher than the pattern search can achieve (cf. Figure 1).

Figure 10 presents the errors in entropy estimation for m = 2 and all three distributions—
Gaussian, uniform, and exponential. ApEn errors (Figure 10a,b) are large and slowly
converge towards zero for long data series. SampEn errors for the same distributions
are different from zero for N < 500 and have a large standard deviation for N < 1500
(Figure 10d,e).
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The skewness of the exponential time series causes an accumulation of positive errors
in matching probabilities so that errors in entropy estimates do not converge to zero in
both ApEn and SampEn. This further confirms the assumption that annulling the matching
probabilities is the main reason for the stability of SampEn: if the errors cannot be annulled,
the SampEn estimate is not consistent.

3.2. Errors in Experimental and Interpolated Time Series

The experimental SBP and PI beat-to-beat time series recorded from the laboratory
rats comprised N = 8000 samples each. The mean PI value was 153.81 ± 12.17 ms, while
the mean SBP value was 124.22 ± 18.22 mmHg. Each time series was divided into non-
overlapping segments of length N. Entropy was estimated from each segment, and the
results averaged, i.e., if N = 100, then 80 values are averaged, if N = 1000, then eight values
are averaged.

Figure 11 shows entropy as a function of time series length N, estimated from the
pulse interval and systolic blood pressure of laboratory rats. For very long data series of
length N > 5000, with a threshold r ≥ 0.2, the values of ApEn and SampEn are the same
(Figure 11a,b). However, SampEn reaches a constant mean value for series as short as
N = 500, while ApEn requires a much longer series. On the other hand, the standard
deviation of ApEn is below the standard deviation of SampEn. This is a consequence
of logarithms in ApEn since log-transformation is a classic method for increasing the
stationarity of time series. The increased SampEn stability (smaller standard deviation) is
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reached with increased threshold values (Figure 12b,d). The entropy estimated from the
SBP signals) is slightly lower than the entropy of the PI signal.
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Figure 13 presents entropy estimated from the interpolated time series. The length of
the initial time series was chosen to be N = 75 to correspond to one minute of the beat-to-
beat cardiovascular data of a healthy volunteer. Then the interpolation was performed so
that the number of samples is increased k + 1 times, k = 1, . . . , 20. Simultaneously, the time
series of length N = k·75 independent samples are generated. The results in Figure 13a–c
for Gaussian, uniform, and exponential distributions show that entropy in interpolated,
and therefore heavily statistically dependent time series, decreases.

Entropy 2022, 23, x FOR PEER REVIEW 16 of 19 

Figure 13. SampEn estimated from the original and interpolated time series; (a) time series with 
Gaussian distribution; (b) time series with uniform distribution; (c) time series with exponential 
distribution; (d) heart rate and systolic blood pressure time series recorded from healthy volunteers. 

The experiment is repeated for signals recorded from healthy volunteers with a mean 
heart rate equal to 73.27 ± 9.22 (bpm—beats per minute) and mean systolic blood pressure 
equal to 113.31 ± 11.5 (mmHg). Entropy was estimated from original recordings of dura-
tion 1 min, 5 min, and 12 min, showing no significant difference between the results. The 
entropy of interpolated time series is approximately three times lower than the entropy of 
the original time series. 

Time series lengths of N = 75 are short and not too stable, as shown in the previous 
results, as well as in the difference of the mean values of the repeated experiments and 
the corresponding standard deviation for k = 0 (N = 75) in Figure 13a–c. However, the error 
magnitude is considerably smaller if SampEn were estimated from short time series than 
from interpolated time series. 

As already mentioned, the interpolation does exist in the recommendations on heart 
rate variability, but for power spectral density estimation. However, the effects of inter-
polation for PSD and for entropy analysis are not the same. The interpolation in PSD is 
used to obtain equidistant samples, obligatory for Fourier transform. The signal power 
before and after the transform remains the same, regardless of the interpolation frequency 
(Parseval theorem [44]). Entropy, on the other hand, shows the irregularity and unpre-
dictability of the time series. Lower entropy values correspond to the predictable data, 
and higher values to irregular, unpredictable data. Entropy estimates are based on the 
temporal similarity of template and matching vectors. If the interpolation is used, it in-
duces temporal dependency and violates unpredictability. 

4. Discussion and Conclusions
A key feature in the definition of ApEn and SampEn is the probability of pattern 

matching. ApEn is based on the sum of its logarithms that can be considered as informa-
tive content of the template. Formal ApEn interpretation is the difference between the av-
erage information carried by templates with incremental lengths, where the average is 
arithmetic. 

Figure 13. SampEn estimated from the original and interpolated time series; (a) time series with
Gaussian distribution; (b) time series with uniform distribution; (c) time series with exponential
distribution; (d) heart rate and systolic blood pressure time series recorded from healthy volunteers.

The experiment is repeated for signals recorded from healthy volunteers with a mean
heart rate equal to 73.27 ± 9.22 (bpm—beats per minute) and mean systolic blood pressure
equal to 113.31± 11.5 (mmHg). Entropy was estimated from original recordings of duration
1 min, 5 min, and 12 min, showing no significant difference between the results. The
entropy of interpolated time series is approximately three times lower than the entropy of
the original time series.

Time series lengths of N = 75 are short and not too stable, as shown in the previous
results, as well as in the difference of the mean values of the repeated experiments and the
corresponding standard deviation for k = 0 (N = 75) in Figure 13a–c. However, the error
magnitude is considerably smaller if SampEn were estimated from short time series than
from interpolated time series.

As already mentioned, the interpolation does exist in the recommendations on heart
rate variability, but for power spectral density estimation. However, the effects of interpola-
tion for PSD and for entropy analysis are not the same. The interpolation in PSD is used to
obtain equidistant samples, obligatory for Fourier transform. The signal power before and
after the transform remains the same, regardless of the interpolation frequency (Parseval
theorem [44]). Entropy, on the other hand, shows the irregularity and unpredictability of
the time series. Lower entropy values correspond to the predictable data, and higher values
to irregular, unpredictable data. Entropy estimates are based on the temporal similarity of
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template and matching vectors. If the interpolation is used, it induces temporal dependency
and violates unpredictability.

4. Discussion and Conclusions

A key feature in the definition of ApEn and SampEn is the probability of pattern
matching. ApEn is based on the sum of its logarithms that can be considered as informative
content of the template. Formal ApEn interpretation is the difference between the average
information carried by templates with incremental lengths, where the average is arithmetic.

SampEn is based on the logarithm of the average of matching probabilities, which can
be considered as the information content of the average template of the observed time series.
Formally, this can be considered a difference between the information carried by average
templates with incremental lengths. Therefore, ApEn averages information estimated from
matching probabilities, and SampEn estimates information from the average of matching
probabilities.

ApEn inconsistencies have long been known and are usually explained by self-matching
bias and a bias due to the different number of m and m + 1 patterns.

The analyses showed that the errors in entropy estimation are a consequence of the
same reason as the quantization errors in signal digitization. The quants in estimating
the matching probability are equal to 1/(N − m). For short signal lengths, the resolution
of the estimated matching probability is too coarse to approximate its exact value, so
the estimation error is large. This was confirmed with confidence intervals of estimated
matching probabilities that are large for data lengths that are typical of most biomedical
experiments (N up to 1000).

The quantization errors occur both in ApEn and SampEn. The reason for the difference
in their consistency is the error distribution of the matching probabilities. This distribution
is symmetric with respect to zero in most signals. The expression for SampEn sums these
probabilities so that their errors cancel each other out, giving a consistent SampEn estimate.
Disabling self-matching in SampEn shifts the error distribution along the error axis toward
increasing symmetry, slightly improving error cancellation.

The resolution in matching probabilities increases simultaneously with the length of
the time series. The quantization errors are then reduced, and ApEn and SampEn estimates
are equalized. However, despite the stable SampEn means, its standard deviation is large
and exceeds the standard deviation of ApEn even in very long data series. This is because
logarithmic transformation is a classic method for smoothing signals. Since each estimated
matching probability is logarithmically transformed, their standard deviation is attenuated.

Skewed distributions, such as exponential, yields asymmetric matching probabilities
and induce a systematic error in SampEn estimates.

It follows that both ApEn and SampEn have advantages and disadvantages. For time
series with symmetrical PDF, SampEn is stable in mean even for short data series, but
with large variance. For the same series, ApEn yields erroneous values but with a very
small standard deviation. For very long data series, ApEn is better as it gives the same
estimates as SampEn, but with a significantly smaller standard deviation than in SampEn.
For asymmetric PDF, SampEn induces errors in estimates while ApEn yields the correct
value, provided that the time series is sufficiently long.

Entropy estimated from experimental data reveals that time series should not be
shorter than N = 500 and that the threshold should not be below 0.3. It is also shown that
interpolation cannot be used for artificial time series lengthening, as it distorts the very
property of signal that is measured by entropy.

Further research will follow the idea of non-uniform quantization implemented for
speech coding in digital transmission systems: to develop variable threshold levels adapted
to the amplitude distributions of the observed signals. Templates containing large but rare
amplitudes from the tails of the signal density function would be associated with a higher
threshold. A template containing smaller but more likely amplitudes would be associated
with a smaller threshold. Such a procedure would definitely give a smaller average error in
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estimating the probability of a match, but it remains to be seen whether it would give a
reliable estimate of entropy.
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