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Abstract
With the ongoing laboratory restrictions, it is often challenging for bioscience
students to make satisfactory progress in their projects. A long-standing practice
in multi-disciplinary research is to use computational and theoretical method to
corroborate with experiment findings. In line with the lack of opportunity to
access laboratory instruments, the pandemic situation is a win-win scenario for
scholars to focus on computational methods. This communication outline some of
the standalone tools and webservers that bioscience students can successfully
learn and adopt to obtain in-depth insights into biochemistry, biophysics, biotech-
nology, and bioengineering research work.
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Introduction

The worldwide impact of COVID-19 has raised several challenges for research
scholars [1]. The common problems include restricted access to lab workspace,
delayed transportation of materials, and reduced technical assistance for experimental
troubleshoot [2]. Though the online platforms have rescued to a certain level with
one-on-one discussion, educational sessions, and virtual conferences, the problem still
persists among the graduate students and forming the cloud of worries—“how to
make progress in the research project?” (Fig. 1). While the laboratory experiments are
not at full speed, it is still possible to use computational power. This communication
aims to highlight a few useful computational tools that can help in making research
progress, amid restricted laboratory access.
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Structural Modeling

Most of the bioscience problems deal with biological macromolecules such as proteins, nucleic
acids, and small molecules. Though the structural coordinates are available from the protein
data bank (PDB) for some structures, there exists a large sequence-structure gap for many
biomacromolecules [3]. Homology modeling tools are a valuable starting point to analyze the
putative three-dimensional conformation, interacting residues, and active site arrangement in
these structures. The available standalone tools include MODELLER [4], while webservers are
Phyre2 [5], ROBETTA [6], and SWISS MODEL [7]. The structural validation of such models
for the interface analysis, surface assemblies, and Ramachandran plot can be determined using
PDBePISA server [8]. The solvent accessibilities can also be analyzed using Naccess
standalone program [9]. The contact map details can be analyzed using ConPlot [10] and
DISTEVAL [11]. Relevant details of normal mode for predicting collective protein domain
motions is achievable using iMODS [12], ElNémo [13], and WEBnm@ [14]. To determine
the protein stability, especially for projects with protein mutants, one can use servers like SDM
[15], MAESTROweb [16], PoPMuSic [17], DUET [18], and pPerturb [19]. These algorithms

Fig. 1 Illustration suggesting that exploring computational powers could be valuable for scholars to make
progress in bioscience projects

3419Applied Biochemistry and Biotechnology  (2021) 193:3418–3424



are accountable for predicting thermodynamics (free energy) properties based on input
structural coordinates in a PDB format.

Bio-macromolecular Complex

The macromolecular interactions are an important area that helps in better understanding
protein functioning, mechanism, and drug designing. The widely used server ClusPro [20] is
one of such tools that predict protein-interface based on the energetic evaluation. Hex program
offers interactive fast Fourier transform-based docking [21]. Several useful options are also
available on HADDOCK [22] webserver that can help in blind or experimental constraint-
guided protein docking. While protein-protein docking is more complicated due to the
presence of several degrees of freedom, the algorithm for small molecule docking is relatively
simpler. The widely used AutoDock [23] is suitable for such exercise, with AutoDock Vina
[24] offering high-throughput screening. Notably, these tools must be benchmarked for the
system under consideration, such as by docking a known complex and comparing the root-
mean-squared deviation (docked vs original complex). Additionally, the docking outcomes
can be benchmarked against a reliable set of decoy molecular sets, available from DUD-E [25]
and DEKOIS 2.0 [26] database. Schematic diagrams for protein-ligand contacts can be plotted
using Ligplot [27]. More advanced tools such as for pKa prediction include Protein-Sol server
[28], DelPhiPKa [29], and PDB2PQR [30]. However, these tools come with limitation to
process non-standard residues such as small organic and drug-like molecules.

Visualizers

The visualization tools add fun while depicting the spatial arrangement of amino acids and
nucleobases, secondary structures, and water molecules in a three-dimensional network.
Nevertheless, they can render publication-quality images (Fig. 2). One can also perform
structural modeling with visualizers like PyMol [31], VMD [32], and Chimera [33].

Classical Simulations

The collaboration between classical simulation with biophysics is more common these
days. Some of the relevant free tools to perform molecular simulation include

Fig. 2 Representation of static structures from homology modeling and protein-protein docking, and dynamic
structures from molecular dynamics simulation
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GROMACS [34] and Desmond [35]. However, they require advanced hardware to
compute physics-based time-dependent motions of biomolecules. A Perl-based toolset
for structure preparation and analysis is available with MMTSB [36]. While
CHARMM-GUI server [37] provides numerous options to prepare solvated structures,
membrane bilayer, and coarse-grain systems, one can also use this server to prepare
input complement to other simulation engines. Equilibrated trajectories for a short
time-scale are possible to be calculated using MDWeb server [38] and ChemCompute
server [39]. Furthermore, scholars having a basic knowledge of python can make use
of MDAnalysis [40] to extract information. Both VMD and Chimera offer capabilities
to visualize, and varieties of plugins to analyze the simulation trajectory.

Quantum Chemical Calculations

Calculations based on quantum mechanics (QM) are more accurate and reliable
compared to the classical simulations; however, they come with their own set of
limitations. Accurate modeling of protein-ligand interaction and elucidation of spec-
troscopic properties are some valuable insights that might be crucial to investigate
biochemical and biophysical problems. Notably, rigorous quantum mechanics methods
are mandated to achieve their transferability and robustness in connection to experi-
mental corroboration. Orca [41] and GAMESS [42] are open-source quantum chem-
istry package that offer a wide range of capabilities, including geometry optimization,
calculation of UV/Vis excitation energy, CD spectra, and vibrational frequencies.
Avogadro [43] is user-friendly freeware that not only enables chemical editing but
also to visualize frontier molecular orbitals and vibrational modes. Psi4 open-source
package [44] is useful in analyzing the wavefunctions and Hartree-Fock energy
decomposition. While these programs are accountable for high-computing time, one
can run calculations with a smaller basis set on desktop and laptop with Windows or
Linux operating system. Thankfully, it is also possible to perform QM calculations
with a high basis set using the webserver ChemCompute [39], which offers computing
time on cluster nodes for registered users with an academic electronic address.

Conclusion

In summary, this communication highlights various (not limited to) computational tools
relevant to obtain atomistic-scale analysis of biomacromolecules. While having restricted
access to laboratory space and equipment, learning computational methods could mark a
substantial advancement. Most of the standalone tool and web servers listed are freely
accessible, with academic registration. Nevertheless, before using these computational tools
and corroborating with the experimental measurements, it is essential to understand their
theoretical principles.
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