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ABSTRACT: Many mines in Guizhou Province are in urgent
need of renovation to ensure harmonious operation and prolong
their lifespan. The key to successful renovation lies in the prudent
selection of the appropriate mining technologies. Therefore, a
comprehensive investigation was conducted on steep coal mines in
Guizhou Province, and a comprehensive evaluation framework was
established. Spearman correlation analysis was performed on
various factors, selecting geological conditions and working face
parameters with high correlation as the input variables and mining
methods as the output variables. The optimal values of each
hyperparameter were determined through orthogonal experiments,
and the neural network structure was confirmed to be “17-9-3”.
Five variants of backpropagation (BP) algorithms were meticulously tested, and a genetic algorithm optimizing the BP neural
network (GA-BP) was further assessed to improve the model’s prediction accuracy. The accuracy of the model was evaluated via the
coefficient of determination (R2) and mean squared error (MSE). The research results indicated that the variable step−size
algorithm with a momentum term (VSS + MT) was the optimal algorithm for the BP neural network. Additionally, the MSE values
of the artificial neural network and GA-BP neural network in the testing phase were 0.06 and 0.04, with prediction success rates of 70
and 90%, respectively, and R2 values of 0.79 and 0.85, respectively. Thus, the GA-BP neural network demonstrated superior
performance. Finally, industrial application of the model was conducted on a working face in the Zhong-Yu coal mine. The
evaluation index for the working face was “0.847, 0.09, 0.111”, suggesting that fully mechanized mining should be adopted. The
evaluation results were consistent with the current production status of the mine, verifying the reliability of the model in practical
applications.

1. INTRODUCTION
Coal seams exhibiting an inclination angle surpassing 45° are
commonly referred to as steep coal seams.1 Although these coal
seams are ample and account for roughly 17% of the total coal
reserves in China,2 their yearly output represents a relatively
meager fraction of the national total coal production, estimated
to be between 8 and 10%.3,4 Despite the presence of abundant
steep coal resources in the Guizhou mining region, challenges,
such as inadequate geological conditions and suboptimal
selection of mining technologies, have led to a marked
imbalance between coal storage and mining operations. The
implementation of appropriate mining technologies is crucial for
designing and planning the mining face related to steep coal
seams and can substantially impact the reduction of cost per ton
of coal and optimization of labor organization. Notably, multiple
coal mine working faces in Guizhou are currently under
suspension and renovation. The selection of suitable coal
mining techniques is pivotal in determining the effectiveness of
the renovation.
Scholars from various countries have conducted extensive

research on the evaluation of mining processes and methods.

Zhao et al.5 developed a comprehensive optimization system for
selecting a thick residual coal remining method, named the fuzzy
analytic network process. This approach was based on fuzzy
comprehensive evaluation and ANP, addressing issues such as
fuzziness and subjectivity. Wang et al.6 proposed a method that
combined Monte Carlo simulation with the traditional analytic
hierarchy process (AHP) to optimize decision making for
selecting the best thin coal seam longwall mining method. These
authors considered factors such as economics, technology, and
ergonomics. Chander et al.7 developed an improved AHP and
VIKORmethod to select the optimal mining method for bauxite
ore, demonstrating that conventional mining was the most
suitable method for this type of ore. Iphar and Alpay8 developed
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a mobile application for selecting underground mining methods
using multicriteria decision-making methods, such as TOPSIS,
VIKOR, ELECTRE, FMADM, and PROMETHEE. Dogan9

proposed a fuzzy multiple-criteria decision-making approach
based on spherical fuzzy AHP for selecting the appropriate
mining technology under uncertain and ambiguous conditions.
Although concise and practical, the above methods suffer from
shortcomings, such as insufficient quantitative data and difficulty
in determining weights when there are too many indicators.
Furthermore, weight determination is dependent on expert
experience, rendering the reliability of these methodologies
questionable.
In 1959, Arthur Samuel proposed the idea of machine learning

for the first time.10 This method can learn appropriate and
effective characteristics from large amounts of complex
data.11−13 Since its introduction, machine learning has solved
many complex prediction problems in mining, such as drilling
fluid lost-circulation,14 coalbed methane production,15 coal
mining,16 nuclear magnetic resonance porosity,17 shale brittle-
ness,18 etc.
Artificial neural networks (ANNs), as a rapidly evolving

machine learning method, have emerged as pivotal tools for
addressing complex problems across various scientific do-
mains.12 Among sundry ANN types, the backpropagation
(BP) neural network represents a frequently employed and
efficacious method.19 BP neural networks possess the ability to
learn nonlinear correlations between input and output variables
using weight adjustments predicated upon a prescribed
collection of training data.20 Despite their ubiquity, BP neural
networks are susceptible to converging toward local minima, and
their training can be arduous and protracted.21

To mitigate these concerns, an adapted methodology was
devised, referred to as the genetic algorithm-based BP neural
network (GA-BP).22 GA-BP fuses the BP algorithm with the
global search proficiency of genetic algorithms, which leads to
more expeditious and efficient training, surmounting the local
minimum problem and converging toward a more optimal
solution compared to traditional BP neural networks.
Furthermore, the GA-BP network showcases superior resistance
to noise and improved generalization capacity because of its
exceptional global optimization capability. Therefore, GA-BP
neural networks are progressively gaining popularity in diverse
applications such as pattern recognition, prediction, and
classification.
In recent years, a plethora of mining engineering problems

have been resolved through the application of ANNs. Ozyurt et
al.23 developed six different ANN models and investigated the
applicability of ANNs and game theory in the development of an
underground mining method selection model. Yu and Ren24

devised a GA-BP network image recognition model to contrast
and choose multiple approaches for production blasting design,
providing a quantitative basis for the rational selection of
production blasting design parameters. Xu and Zhao25

established a landslide stability analysis and prediction
technique based on a GA-BP model, concluding that the GA-
BP model algorithm was more accurate and had faster
convergence than the BP model. Tan et al.26 optimized a BP
neural network with a genetic algorithm and inverted the
position and intensity of gas explosion sources in roadways
through gas explosion experiments and simulated overpressure
data. Compared with the actual results, the model accurately
determined the location of the explosion source and had a high
reference value. Shan et al.27 created an MIV-GA-BP fusion

model for forecasting the stability of cross-section coal columns
and applied the predictionmodel to verify its effectiveness in two
field cases.
In summary, GA-BP neural networks have been widely

applied in mining engineering-related problems. However,
research on applying the GA-BP neural network to mining
method selection and mining process evaluation is currently
scarce. Therefore, the application of the GA-BP neural network
to address mining method selection and mining process
evaluation is the main focus of this article.

2. ARTIFICIAL NEURAL NETWORKS
2.1. BP Neural Network. The BP neural network is a

complex feed-forward network that operates on the fundamental
principle of error BP and gradient descent of weight. It
comprises three distinct layers, namely, the input, hidden, and
output layers, each of which contains several independent nodes
or neurons. These neurons interact through the application of
weights.28,29 Notably, neurons in one layer can transmit signals
only to neurons in the following layer via the neurons in the
previous layer. The BP neural network structure is depicted in
Figure 1.

The training procedure of the BP neural network comprises
two key phases: forward signal propagation and backward error
propagation. During the forward propagation phase, data from
the input layer are conveyed to the hidden layer through
weighted summation, followed by processing in the hidden layer
and transmission to the output layer. If the output value of the
output layer does not satisfy the error requirement, then
backward propagation of errors is initiated. This phase includes
transmitting the error from the output layer to the hidden layer
in a particular form and then distributing it to the nodes in the
input layer. Using forward propagation of signals and backward
propagation of errors, the actual output value of the BP neural
network gradually approaches the expected value. The iteration
ends when the output value of the output layer satisfies the error
requirement or a particular number of iterations have been
accomplished.
Owing to the constant step size employed in conventional BP

algorithms, the process of updating network weights may result
in issues such as sluggish convergence and a high number of
training iterations. To overcome these difficulties, enhanced BP
algorithms derived from the standard BP model have been
developed, which are mainly classified into the following
categories:30

1. The variable step−size algorithm (VSS)

n n n d n( 1) ( ) ( ) ( )ij ij0 0 0 0+ = + (1)

2. The inclusion of a momentum term (MT) algorithm

Figure 1. BP neural network structure.
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n n d n w n( 1) ( ) ( ) ( )ij ij ij0 0 0 0+ = + + (2)

3. The VSS with inclusion of theMT algorithm (VSS +MT)

n n n d n w n( 1) ( ) ( ) ( ) ( )ij ij ij0 0 0 0 0+ = + + (3)

4. The Levenberg−Marquardt (LM) algorithm

n n H D E n( 1) ( ) 2( ) ( ( ))ij ij H ij0 0
1

0+ = + (4)

where η(n0) is the variable step function; d(n0) is the gradient of
the error variation concerning the weight; η is the stride; α is the
momentum factor; H is the Hessian matrix of energy function E
at ωij(n0); DH is the diagonal array with the same diagonal
elements asH; and ∇E is the matrix of derivatives of E at ωij(n0).
2.2. GA-BP Neural Network. Conventional BP algorithms

are inherently limited by the random generation of initial
weights and thresholds, causing issues such as sluggish
convergence and a large number of training iterations when
gradient changes areminute. Furthermore, these algorithmsmay
converge to a local minimum instead of the global minimum of
the objective function. To overcome these limitations, advanced
BP algorithms have been proposed that build on the traditional
BPmodel. The GA-BP network structure is depicted in Figure 2,
illustrating the main modifications:31

The following steps are employed to optimize a BP neural
network with a genetic algorithm:

1. Establish a BP neural network model according to specific
circumstances and initialize its parameters.

2. Use the genetic algorithm to optimize the constructed BP
neural network model, design the fitness function of the
genetic algorithm based on the objective function in the
BP network, and then optimize the initial weights and
thresholds of the BP neural network utilizing the fitness
function to obtain optimal initial weights and thresholds.
The specific steps include the following. (1) Initialization:
Randomly generate an initial population and set the size
of the population, number of iterations, etc. (2)
Calculation of the fitness value: After obtaining the initial
population, calculate the fitness value of each individual.
(3) Selection: Screen the individuals in the population,
and then transfer superior individuals to the next
generation. (4) Crossover: Randomly select two individ-
uals from the population and perform crossover
operations to form a new individual. Repeat this step
until all target individuals have been crossed. (5)
Mutation: Based on the set mutation probability, search
for several individuals in the population and perform
mutation operations on them. (6) Determine whether the
algorithm meets the stop condition. If so, the algorithm
ends and the optimal solution to the problem is obtained.
Otherwise, return to step (2) and continue iterating.

3. Train the BP neural network model optimized by the
genetic algorithm.

4. If the output value of the networkmeets the condition, the
network calculation process ends, and the result is the
output.

Figure 2. GA-BP neural network structure.

Figure 3. Evaluation index system for steep coal seam mining methods.
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3. MININGMETHOD EVALUATIONMODEL FOR STEEP
COAL SEAMS
3.1. Evaluation Index System for Steep Coal Seam

Mining Methods. To ensure that the model possessed
adequate fitting capacity, constructing an evaluation index
system composed of factors related to mining techniques for
steep coal seams was imperative before the neural network
model. The evaluation index system for steep coal seam mining
methods was determined through a combination of various
factors. Based on the geological conditions of steep coal seams,
this paper considered four factors, including coal seam
occurrence conditions, roof−floor conditions, working face
conditions, and other conditions. Ultimately, 16 self-criteria
were determined for the evaluation of steep coal seam mining
methods. These criteria included the coal seam thickness, coal
seam dip, coal seam hardness, etc. The evaluation index system
is depicted in Figure 3. Because the neural network outputs
through input data, qualitative indicators cannot be accurately
and effectively input into the neural network. Hence,
quantification of the factors affecting the evaluation is crucial
in establishing the neural network model. Therefore, it was
necessary to quantify the 16 subcriteria. The quantified results
are listed in Table 1.
3.2. Structure Design of the Neural Network. The crux

of establishing a BP neural network model lies in determining
the optimal number of unit nodes, which entails ascertaining the
appropriate quantity of nodes in the input, output, and hidden
layers. The initial step in identifying the unit nodes involved
using 50 sets of workforce data collected from eight Guizhou
mines as learning samples, acquired through field surveys and

data collection. Subsequently, 30 learning samples were
randomly selected as the training set, 10 as the test set, and 10
as the validation set.
Input layer: The input layer of the neural network model for

assessing steep coal seam mining methods consisted of the
indices employed to evaluate the mining methods. Developing
the input layer entailed the identification of these evaluation
indices. In keeping with the practical conditions of steep coal
seam mining, a BP neural network model for assessing mining
methods was created. The input layer of the neural network
contained 20 neurons, denoted as x = (x0, x1, ..., x19)T.
Output layer: To satisfy the demands of appraising steep coal

seam mining methods, the said process was designated as the
output parameter of the BP neural network, denoted as y = (y0,
y1, and y2)T. Before commencing network training, the network
output values were predetermined as follows: “0.9, 0.1, 0.1” for
fully mechanized mining, “0.1, 0.9, 0.1” for ordinary mining, and
“0.1, 0.1, 0.9” for blast mining. The resulting output denoted
fully mechanized mining if y0 represented the maximum value,
ordinary mining if y1 represented the maximum value, and blast
mining if y2 represented the maximum value. Furthermore, as y0,
y1, and y2 approach 0.9, they signify a higher suitability for fully
mechanized mining, ordinary mining, and blast mining under
the working face.
Hidden layer: The numbers of hidden layers and nodes within

the BP neural network play a pivotal role in determining the
predictive accuracy of the said neural network. Insufficient layers
and nodes hinder the network’s capacity to learn, while an
excessive number of nodes may lead to overfitting. To ascertain

Table 1. Evaluation Index System for Steep Coal Seam Mining Methods

serial number influencing factor quantitative index

1 coal seam thickness average thickness of coal seam (x0)
2 coal seam dip average dip of coal seam (x1)
3 coal seam hardness compressive strength of coal (x2)

compressive strength of gangue (x3)
4 coal seam variability coefficient of variation of coal thickness (x4)
5 coal seam admissibility coal seam recoverability index (x5)
6 coal bed gangue coal bed gangue rate (x6)
7 immediate roof compressive strength of immediate roof (x7)
8 false roof false roof thickness (x8)
9 floor compressive strength of floor (x9)
10 mining face length average length of working face (x10)
11 mining face advancing length average advancing length of mining face (x11)
12 fault number of faults (x12)

fault length index (x13)
fault drop coefficient (x14)

13 fold folding strength coefficient (x15)
folding complexity coefficient (x16)

14 gas low gas concentration 1 (x17)
high gas concentration 0.6
gas outburst anomaly 0.3
coal and gas outburst 0

15 hydrology arid 1 (x18)
nonaqueous 0.6
moderately aqueous 0.3
excessively aqueous 0

16 spontaneous combustibility absence 1 (x19)
low likelihood 0.6
moderate likelihood 0.3
high likelihood 0
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the optimal number of hidden layer nodes, formula 5 was
employed33

L M N A( )+ + (5)

where L is the number of nodes in the hidden layer; N is the
number of nodes in the input layer; M is the number of output
layer nodes; and A is a constant between 0 and 10.
3.3. Data Acquisition and Analysis. The Guizhou mining

region is endowed with abundant steep coal resources with a
concentrated distribution of thin-to-medium thick coal seams in
areas such as Liuzhi, Zunyi, and Shuicheng. Notable among
these are the C14, C15, C16, C17, C18, C19, and C29 coal
seams of the Changyin Coal Mine in Shuicheng County; the C5,
C3, and C1 coal seams of the Wanshun Coal Mine in Tongzi
County; and the #1, #3, #7, #17, #18, and #21 coal seams of the
Xingwang Coal Mine in the Liuzhi Special District. According to
incomplete statistics, the cumulative reserves of steep coal seams

in the aforementioned mines are approximately 62.603, 29.54,
and 19.927 million tonnes, respectively.32

Driven by demand, this study’s research team embarked on a
comprehensive exploration of numerous coal mines in
Shuicheng, Panzhou, Liuzhi, Bijie, and Zunyi and diligently
conducted surveys and compiled data regarding the major mines
and mining faces. The project context and dip angle distribution
are illustrated in Figure 4.
The surveyed mines are acknowledged to be urgently in need

of renovation, requiring an efficient approach to discern an
appropriate extraction technique, in accordance with the
geological attributes of each mine. Resolution of this issue will
expedite progress in the extraction of challenging coal seams,
enhance working conditions, and realize secure and efficient
mining operations. In turn, such an approach will provide the
essential theoretical foundation to improve the mechanization
level within China’s coal industry, achieving harmonious
alignment with the developmental objectives of the coal sector.

Figure 4. Project background and statistics. (a) Map of China. (b) Mine locations. (c) Coal seam dip angle distribution.

Figure 5. Rock mechanical test procedure.
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Employing economic, technological, and environmental
considerations as our evaluation criteria, we judiciously
handpicked 50 workfaces from the steep coal seams evaluated
during on-site investigations. These selections were predicated
on their distinct aptness for contemporary extraction method-
ologies in the coal mining domain. Subsequently, we conducted
on-site sampling and performed mechanical experiments
(depicted in Figure 5) to procure missing data related to coal
seam characteristics. The data sets utilized for training the neural
network are presented in Figure 6 (https://1drv.ms/x/
s!AhFxzUt5Rfw5gnuFMxIm-suIv2LJ?e=CFo7sk).
To circumvent the scenario where insignificant data may get

overshadowed by substantial data, rendering the evaluation
outcomes subpar, formula 6 is employed to standardize the
initial data.17

Y
X X

X Xk
k min

max min
=

(6)

where Yk is the data obtained by preprocessing, Xk is the original
data, Xmin is the minimum value in the sample series, and Xmax is
the maximum value in the sample series.
To ascertain the impact of each factor on the prediction

outcome and eliminate sources of minor variability in the data in
order to enhance the model’s sensitivity to true signals,
correlation analysis was conducted on 50 sets of sample data.
To determine the appropriate method for correlation analysis, it
was necessary to ascertain whether the sample data followed a
normal distribution. Spearman correlation analysis was con-
ducted when the data followed a normal distribution, whereas

Pearson correlation analysis was conducted for non-normal
distribution of the data. Thus, histograms of each factor were
plotted, as shown in Figure 7, which revealed that the sample
data did not conform to a normal distribution overall. Spearman
correlation analysis was subsequently employed to determine
the impact of each factor on the prediction outcome.
Spearman correlation analysis was conducted on 50 sets of

samples by using SPSS software, and the results are depicted in
Figure 8. Except for false roof thickness (x8), hydrology (x18),
and spontaneous combustibility (x19), the correlation of the
remaining input parameters with the output parameter exceeded
0.2. Among them, the coal seam recoverability index (x5) was
the primary source of variability for fully mechanized and
ordinary mining, with correlation coefficient (R) values of 0.78
and −0.46, respectively. Additionally, the compressive strength
of coal (x2) was the primary variability source for blast mining,
with an R value of 0.49. Based on this analysis, x8, x18, and x19
were excluded, while the remaining parameters were retained as
input variables for the neural network.
3.4 Hyperparameters Tuning. Hyperparameters serve as

the tuning knobs that control the model’s structure, function-
ality, and efficiency. For the BP neural network, the hyper-
parameters included the learning rate, epochs, target error,
number of hidden layer units, and activation function, while for
GA, they encompassed population size, evolutional times,
crossover probability, and mutation probability. The results of
multiple experiments revealed that the experimental require-
ments were met when the number of epochs was set to 1000 and
the target error was 1 × 10−5. Thus, these parameters were not
considered in hyperparameter tuning.

Figure 6. Sample data for training the neural network.
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To determine the optimal conditions for the remaining
parameters, the standard BP algorithm was employed as the

training model for the GA-BP neural network. An experimental
study was conducted by adopting an orthogonal experimental

Figure 7. Histogram of the input parameters.

Figure 8. Correlation analysis results of each factor.

Table 2. Factors and Levels

levels learning rate number of hidden layer units activation function population size evolutional times crossover probability mutation probability

1 0.0001 1 elu 20 50 0.2 0.001
2 0.001 5 tanh 40 100 0.4 0.01
3 0.01 9 relu 60 150 0.6 0.1
4 0.1 13 sigmoid 80 200 0.8 0.2
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design, with the experimental factors and levels listed in Table 2
and the experimental design detailed in Table 3, with each
scheme repeated 20 times for training. The experimental metric
was the average coefficient of determination (R2) obtained from
20 training iterations for each scheme, as depicted in Figure 9.
The experimental results indicated that there were consid-

erable differences in the R2 value among the 32 schemes. Among
them, scheme 10 exhibited the highest R2 value of 0.499, the
lowest R2 value of 0.183, and an average R2 value of 0.452, and it
was thus selected as the optimal scheme. The hyperparameters
used in subsequent experiments are given in Table 4.
Ultimately, the GA-BP neural network structure was

established as “17-9-3”.

4. RESULTS
The comparative study of the model was primarily divided into
the following aspects: (1) a comparative analysis of BP neural
network algorithms trained with the traditional BP, VSS, MT,

VSS + MT, and LM algorithms to determine the most suitable
BP neural network algorithm for the problem at hand and (2) a
comparison of models trained by the GA-BP and BP neural
networks, analyzing whether the GA-BP neural network
demonstrated significantly improved accuracy compared to
the BP neural network.
4.1. Comparative Analysis of BP Algorithms. Employing

the parameter values listed in the BP section of Table 4, the
traditional BP, VSS, MT, VSS + MT, and LM algorithms were
each trained 20 times. The training results are presented in Table
5. The VSS + MT and LM algorithms had successful
convergence with 20 iterations, while the other algorithms
experienced convergence failures. Notably, the traditional BP
and MT algorithms only had 0 and 2 successful convergence
iterations, respectively. The VSS + MT algorithm had average,
maximum, and minimum iteration counts of 305, 455, and 53,
respectively, while the LM algorithm had average, maximum,
and minimum iteration counts of 314, 538, and 67, respectively.

Table 3. Test Scheme

scheme
number

learning
rate number of hidden layer units

activation
function

population
size

evolutional
times

crossover
probability

mutation
probability

1 0.0001 9 3 80 200 0.8 0.1
2 0.1 5 4 40 200 0.6 0.001
3 0.1 13 2 60 50 0.4 0.1
4 0.001 1 3 80 50 0.4 0.001
5 0.001 5 3 40 100 0.2 0.2
6 0.001 9 1 20 200 0.6 0.1
7 0.0001 5 1 60 100 0.4 0.2
8 0.001 13 1 60 150 0.8 0.01
9 0.01 5 3 20 50 0.8 0.01
10 0.001 9 4 60 50 0.6 0.2
11 0.0001 1 4 60 200 0.2 0.01
12 0.01 1 2 20 150 0.6 0.2
13 0.01 9 1 40 150 0.4 0.001
14 0.01 1 3 60 100 0.6 0.1
15 0.01 13 4 40 50 0.2 0.1
16 0.1 9 2 20 100 0.2 0.01
17 0.01 13 1 80 200 0.2 0.2
18 0.0001 13 3 40 150 0.6 0.01
19 0.1 1 1 40 100 0.8 0.1
20 0.1 9 3 60 150 0.2 0.001
21 0.1 1 4 80 150 0.8 0.2
22 0.01 5 2 60 200 0.8 0.001
23 0.01 9 4 80 100 0.4 0.01
24 0.1 13 3 20 200 0.4 0.2
25 0.001 5 2 80 150 0.2 0.1
26 0.0001 5 4 20 150 0.4 0.1
27 0.0001 9 2 40 50 0.8 0.2
28 0.001 13 4 20 100 0.8 0.001
29 0.001 1 2 40 200 0.4 0.01
30 0.1 5 1 80 50 0.6 0.01
31 0.0001 1 1 20 50 0.2 0.001
32 0.0001 13 2 80 100 0.6 0.001

Table 4. Network Training Parameters

BP algorithm parameters parameter value GA algorithm parameters parameter value

Iterations 1000 population size 60
target error 1 × 10−5 evolutional times 50
learning rate 0.001 crossover probability 0.6
activation function sigmoid mutation probability 0.2
number of hidden layer units 9
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The iteration counts for both algorithms were substantially
lower than those of the other algorithms. The aforementioned
analysis indicated that the VSS + MT and LM algorithms had
convergence success rates and efficiencies higher than those of
the other algorithms. The iteration counts of each BP algorithm
are illustrated in Figure 10.
To determine the optimal algorithm for the present problem,

further analysis of the strengths and weaknesses of each
algorithm in the evaluation model was imperative. The error

variance attained by the VSS, VSS +MT, and LM algorithms was
compared, as depicted in Figure 11. Analysis of the training

results indicated that the BP neural networks trained with the
VSS, VSS + MT, and LM algorithms obtained mean squared
error (MSE) values of 0.2185, 0.1490, and 0.2685, respectively,
with minimum squared errors of 0.08, 0.04, and 0.14,
respectively. Notably, the BP neural network trained with the
VSS + MT algorithm had the lowest squared error.
In summary, when juxtaposed with the other four algorithms,

the BP neural network trained with the VSS + MT algorithm
boasted the benefits of a high convergence success rate, high
convergence efficiency, and minimal error variance. Therefore,
the VSS + MT algorithm was employed in training the coal
mining method assessment network model for steep coal seams.
4.2. Training Model Optimization. To guarantee the

reliability of the comparison results between the BP and GA-BP
models, the following limitations were imposed: (1) both
models utilized the data in the training set as test samples; (2)

Figure 9. Diagram of superparameter optimization results for each scheme.

Table 5. Results of BP Neural Network Training with
Different Algorithms

BP
algorithm

number of
successful

convergence

average
number of
iterations

maximum
number of
iterations

minimum
number of
iterations

Standard 0 >1000 >1000 >1000
VSS 13 891 >1000 224
MT 2 >1000 >1000 950
VSS + MT 20 305 455 53
LM 20 314 538 67

Figure 10. Comparison of BP algorithm iteration number results.

Figure 11. Variance test of BP network training with different
algorithms.
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both models employed the VSS + MT algorithm as the neural
network algorithm; (3) roulette wheel selection was used as an
evolutionary algorithm in genetic algorithms; and (4) both
models used the parameters outlined in Table 4 as the training
parameters of the network. Based on the abovementioned
conditions, the average fitness and optimal fitness of the GA-BP
model were calculated to be 4.04184 × 10−6 and 1.295 × 10−7

(depicted in Figure 12), and the best initial weights and
thresholds for the GA-BP model were obtained. These statistics
were employed in the ensuing comparison of the BP and GA-BP
models.

The BP andGA-BPmodels were assessed independently. The
BP model obtained R2 = 0.79 and MSE = 0.06, whereas the GA-
BP model obtained R2 = 0.85 and MSE = 0.04, as depicted in
Figure 13. A higher R value and a lower MSE value indicated
greater algorithmic accuracy. Thus, the GA-BP model out-
performed the BP model.
4.3. Verification. Subsequently, the model underwent

validation to ensure that it satisfied the anticipated assessment
standards for steep coal seam mining methods. Ten data sets
from the prediction set were utilized to simulate the prediction
outcomes of the BP and GA-BP models. The prediction
outcomes of the BP and GA-BP models are presented in Figure
14, and the prediction errors of evaluation values I−III are
displayed in Table 6.

As shown in Table 7, the GA-BP model exhibited higher
average errors for evaluation values I, II, and III in comparison to
the BPmodel. In a sample of 10 instances, the BP neural network
accurately predicted the mining method in seven cases,
achieving a success rate of 70%. By contrast, the GA-BP neural
network achieved nine successful predictions, with a success rate
of 90%. These results underscore that optimizing the BP neural
network’s weights and thresholds through a genetic algorithm
can meaningfully enhance the network’s predictive accuracy.
Accordingly, the prediction outcomes of the GA-BP model in
identifying the appropriate mining method for steep coal seams
were more precise than those of the BP neural network model,
validating the superiority of the GA-BP model.

5. CASE ANALYSIS
The coal seam of the evaluated working face in the Zhong-Yu
coal mine has a dip angle ranging from 52 to 58°, with an average
of 55°. The coal seam is of bright black powder coal type,
containing 0−2 dirt bands, and has a simple structure, making it
a stable coal seam that can be fully exploited in the entire region.
The top plate is composed of mudstone, while the base plate is
composed of clayey mudstone. The average coal thickness of the
working face is 2.5 m, and the coal seam has a simple structure,
with stable occurrence, a strike length of 405 m, and a dip length
of 120 m. The upper part of the face is an old goaf, which can
infiltrate locally through faults and roof fractures. Water seepage
and dripping in the goaf may occur during the mining process.
To further analyze the superiority of the trained model in the
context of this case, an evaluation and prediction of the
appropriate mining process were performed based on the
parameters of this working face. The relevant parameters are
listed in Table 8.
After inputting the normalized data obtained from Table 8

into the well-established GA-BP neural network model, the
working face was assigned an evaluation index of “0.847, 0.09,
0.111”, suggesting that a fully mechanized mining process
should be implemented, which aligned with the prevailing on-
site conditions.

6. CONCLUSIONS
When evaluating coal mining technology, traditional expert-
based selection methods often suffer from subjectivity and
inefficiency in the decision-making process. However, employ-
ing theGA-BP neural network for selecting coal miningmethods
has partially addressed these issues. This approach provides

Figure 12. Optimization process of the genetic algorithm.

Figure 13. Comparison of the GA-BP and BP models at the testing stage: (a) BP and (b) GA-BP.
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objective and efficient selection solutions for the renovation of
coal mines in Guizhou while also offering valuable experience for
similar problems in other industries.
Herein, a system for evaluating mining methods for steep coal

seams was established. This system takes into account four
critical factors, including coal seam conditions, roof and floor
conditions, working face conditions, and other conditions. In
total, 20 factors were identified. Spearman correlation analysis

revealed that other than false roof thickness, hydrology, and
spontaneous combustibility, the remaining factors were the
primary sources of variability.
Taking the hyperparameters of the BP neural network and

genetic algorithm as experimental factors and utilizing the
coefficient of determination (R2) as the experimental metric, an
orthogonal experimental design was employed to determine the
optimal hyperparameter values for the GA-BP neural network.

Figure 14. Comparison of GA-BP and BP model prediction results: (a) evaluation value I, (b) evaluation value II, and (c) evaluation value III.

Table 6. Prediction Errors of the BP and GA-BP Models

evaluation value I evaluation value II evaluation value III

BP GA-BP BP GA-BP BP GA-BP

sample no E E̅ E E̅ E E̅ E E̅ E E̅ E E̅

1 0.27 0.321 0.14 0.254 0.36 0.325 0.21 0.236 0.22 0.309 0.22 0.230
2 0.37 0.38 0.27 0.29 0.34 0.44
3 0.22 0.27 0.29 0.20 0.29 0.17
4 0.46 0.39 0.48 0.38 0.24 0.36
5 0.09 0.43 0.24 0.41 0.28 0.11
6 0.44 0.18 0.21 0.15 0.38 0.07
7 0.29 0.24 0.22 0.05 0.39 0.15
8 0.39 0.21 0.46 0.13 0.24 0.22
9 0.21 0.03 0.41 0.18 0.41 0.17
10 0.47 0.27 0.31 0.36 0.30 0.39
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The optimized hyperparameter values were determined as
follows: iterations, 1000; target error, 1 × 10−5; learning rate,
0.001; activation function, sigmoid; hidden layer units, 9;
population size, 60; evolutional times, 50; crossover probability,
0.6; and mutation probability, 0.2. Consequently, the GA-BP
neural network structure was confirmed to be “17-9-3”.
During the training phase, under equal conditions, the

successful iteration count, average iteration count, mean
variance, and minimum variance of the BP neural network
trained with the VSS + MT algorithm were 20, 305, 0.1490, and
0.04, respectively. The R2 and MSE values obtained from
training the GA-BP model were 0.85 and 0.04, respectively. The
VSS + MT algorithm outperformed other algorithms, and the
GA-BP model exhibited a superior performance compared to
the BP model. In the prediction phase, the GA-BP model
achieved a success rate 20% higher than that of the BP model,
which aligned with our expectations.
Subsequently, the model was applied to the evaluated working

face of the Zhong-Yu coal mine, and the evaluation index for the
working face conditions was determined to be “0.847, 0.09,
0.111”. The obtained evaluation result was consistent with the
current production status of the mine, attesting to the
dependability of the GA-BP model in the field.
The study findings can serve as a point of reference for

analogous inquiries. Initially, we incorporated all coal seams with

varying dip angles as learning samples for the GA-BP neural
network, yet the output accuracy consistently fell short of our
ideal expectations. Consequently, we developed an exploitation
feasibility evaluation model solely for steep coal seams. To
address this limitation, we intend to establish an exploitation
feasibility evaluation model suitable for coal seams with steep
dip angles, thereby enhancing the universality of this approach.
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■ NOMENCLATURE
BP backpropagation neural network
ANN artificial neural network
GA genetic algorithm
VSS variable step size algorithm
MT algorithm by appending momentum term
VSS + MT variable step size algorithm with the inclusion of

momentum term
LM Levenberg−Marquardt algorithm
ω weight
η variable step function

Table 7. Evaluation Results of BP and GA-BP Model Validation

output value evaluation result

no BP GA-BP BP GA-BP mining method

1 (0.63,0.46,0.32) (0.76,0.31,0.32) fully mechanized mining fully mechanized mining fully mechanized mining
2 (0.47,0.93,0.44) (0.48,0.61,0.54) ordinary mining ordinary mining ordinary mining
3 (0.32,0.39,0.81) (0.37,0.30,0.73) blast mining blast mining blast mining
4 (0.44,0.58,0.34) (0.51,0.48,0.46) ordinary mining fully mechanized mining fully mechanized mining
5 (0.81,0.34,0.38) (0.47,0.51,0.21) fully mechanized mining ordinary mining fully mechanized mining
6 (0.54,0.31,0.52) (0.28,0.25,0.83) fully mechanized mining blast mining blast mining
7 (0.39,0.68,0.49) (0.34,0.85,0.25) ordinary mining ordinary mining ordinary mining
8 (0.49,0.44,0.34) (0.31,0.77,0.32) fully mechanized mining ordinary mining ordinary mining
9 (0.69,0.51,0.51) (0.93,0.28,0.27) fully mechanized mining fully mechanized mining fully mechanized mining
10 (0.57,0.59,0.40) (0.37,0.54,0.49) ordinary mining ordinary mining ordinary mining

Table 8. Parameters of a Working Face in Zhong-Yu Coal
Mine

index name raw data
normalized

data

1 coal seam thickness 2.5 m 0.571
2 coal seam dip 55° 1
3 compression strength of coal seam 32 MPa 0.733
4 compression strength of gangue 67 MPa 0.827
5 coal seam variability 15% 0.071
6 coal seam admissibility 100% 1
7 coal bed gangue rate 9.3% 0.331
8 immediate roof 69 MPa 0.557
9 floor 23 MPa 0.72
10 mining face length 80 m 0.429
11 mining faces advancing length 450 m 0.891
12 fault 1 band/km2 0.333
13 fault length index 0 km/km2 0
14 drop coefficient of fault 0% 0
15 fold 0% 0
16 fold complexity coefficient 0 rad/km2 0
17 gas 0 0
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d gradient of the error variation concerning the
weight

n stride
α momentum factor
H Hessian matrix of the energy function E at ωij (n0)
DH diagonal array with the same diagonal elements as

H
∇E matrix of derivatives of E at ωij(n0)
Yk normalization data
Xk original data
Xmin minimum value
Xmax maximum value
L number of nodes in the hidden layer
M number of nodes in the input layer
N number of nodes in the output layer
A a constant between 0 and 10
R correlation coefficient
R2 coefficient of determination
MSE mean squared error

■ REFERENCES
(1) Tu, H. S.; Liu, S. Y.; Huang, C. W. Failure mechanism and stable
control of floor in long wall mining face along strike with steep coal
seam. J. Min. Saf. Eng. 2022, 39 (2), 248−254.
(2) Dong, T. H.; Xie, Z. Z.; Zhang, N. Asymmetric deformation
characteristics of steep coal-rock interbedded roadway and cross-
boundary anchor-grouting combined differential support technology.
Saf. Coal Mine 2022, 53 (4), 113−120.
(3) Zhang, Z. G.; Qin, Y. Y.; Yi, T. S.; You, Z. J.; Yang, Z. B. Pore
Structure Characteristics of Coal and Their Geological Controlling
Factors in Eastern Yunnan and Western Guizhou, China. ACS Omega
2020, 5 (31), 19565−19578.
(4) Zhang, Z. G.; Qin, Y.; You, Z. J.; Yang, Z. B. Distribution
characteristics of in-situ stress field and vertical development unit
division of CBM in western Guizhou, China. Nat. Resour. Res. 2021, 30
(5), 3659−3671.
(5) Zhao, T.; Lu, Y.; Liu, C. Y. Comprehensive optimization and
engineering applications of thick residual coal re-mining methodology.
IFS 2017, 32, 2111−2122.
(6) Wang, C.; Yang, S.; Jiang, C. Y.; Wu, G. Y.; Li, Q. Z. Monte Carlo
analytic hierarchy process for selection of the longwall mining method
in thin coal seams. Journal of The Southern African Institute of Mining and
Metallurgy 2020, 119 (12), 1005−1012.
(7) Chander, B. B.; Gorai, A. K.; Jayantu, S. Design of Decision-
Making Techniques Using Improved AHP and VIKOR for Selection of
Underground Mining Method. Recent Findings in Intelligent Computing
Techniques; Springer, 2018; vol. 2(708), pp 495−504.
(8) Iphar, M.; Alpay, S. A mobile application based on multi-criteria
decision-making methods for underground mining method selection.
Int. J. Min. Reclamat. Environ. 2019, 33 (7), 480−504.
(9) Dogan, O. Process mining technology selection with spherical
fuzzy AHP and sensitivity analysis. Expert Syst. Appl. 2021, 178, 114999.
(10) Samuel, A. L. Some Studies inMachine Learning Using the Game
of Checkers. IBM J. Res. Dev. 1959, 3 (3), 210−229.
(11) Mustafa, A.; Tariq, Z.; Mahmoud, M.; Radwan, A. E.;
Abdulraheem, A.; Abouelresh, M. O. Data-driven machine learning
approach to predict mineralogy of organic-rich shales: An example from
Qusaiba Shale, Rub’ al Khali Basin, Saudi Arabia. Mar. Petrol. Geol.
2022, 137, 105495.
(12) Mustafa, A.; Tariq, Z.; Iqbal, A.; Naeem, M. A Data-Driven

Intelligent Approach to Predict Shear Wave Velocity in Shale Formations,
the 57th U.S. Rock Mechanics/Geomechanics Symposium; Onepetro,
2023..
(13)Wu, Y. Y.; Zhao, S. F.; Xing, Z. Z.; Wei, Z.; Li, Y.; Li, Y. Detection
of foreign objects intrusion into transmission lines using diverse
generation model. IEEE Trans. Power Deliv. 2023, 38 (5), 3551−3560.

(14) Kang, Y. L.;Ma, C. L.; Xu, C. Y.; You, L. J.; You, Z. J. Prediction of
drilling fluid lost-circulation zone based on deep learning. Energy 2023,
276, 127495.
(15) Guo, Z. X.; Zhao, J. Z.; You, Z. J.; Li, Y. Y.; Zhang, S.; Chen, Y. Y.
Prediction of coalbed methane production based on deep learning.
Energy 2021, 230, 120847.
(16) Xing, Z. Z.; Zhao, S. F.; Guo,W.;Meng, F. Y.; Guo, X. J.;Wang, S.
Q.; He, H. T. Coal resources under carbon peak: Segmentation of
massive laser point clouds for coal mining in underground dusty
environments using integrated graph deep learningmodel.Energy 2023,
285, 128771.
(17) Mustafa, A.; Tariq, Z.; Mahmoud, M.; Abdulraheem, A. Machine
learning accelerated approach to infer nuclear magnetic resonance
porosity for a middle eastern carbonate reservoir. Sci. Rep. 2023, 13 (1),
3956.
(18) Mustafa, A.; Tariq, Z.; Abdulraheem, A.; Mahmoud, M.; Kalam,
S.; Khan, R. A. Shale brittleness prediction using machine learning�A
Middle East basin case study. AAPG Bull. 2022, 106 (11), 2275−2296.
(19) Elkatatny, S. New Approach to Optimize the Rate of Penetration
Using Artificial Neural Network. Arabian J. Sci. Eng. 2018, 43 (11),
6297−6304.
(20) Rafie, M.; Samimi Namin, F. Prediction of subsidence risk by
FMEA using artificial neural network and fuzzy inference system. Int. J.
Min. Sci. Technol. 2015, 25 (4), 655−663.
(21) Rath, S.; Singh, A. P.; Bhaskar, U.; Krishna, B.; Santra, B. K.; Rai,
D.; Neogi, N. Artificial neural network modeling for prediction of roll
force during plate rolling process. Mater. Manuf. Process. 2010, 25 (1−
3), 149−153.
(22) Sedki, A.; Ouazar, D.; El Mazoudi, E. Evolving neural network
using real coded genetic algorithm for daily rainfall-runoff forecasting.
Expert Syst. Appl. 2009, 36 (3), 4523−4527.
(23) Ozyurt, M. C.; Karadogan, A. A new model based on artificial
neural networks and game theory for the selection of underground
mining method. J. Min. Sci. 2020, 56 (1), 66−78.
(24) Yu, J. Y.; Ren, S. J. Prediction and analysis method of mine
blasting quality based on GA-BP neural network. Mobile Inf. Syst. 2022,
2022, 9239381.
(25) Xu, J.; Zhao, Y. N. Stability analysis of geotechnical landslide
based on GA-BP neural network model. Comput. Math. Methods Med.
2022, 2022, 3958985.
(26) Tan, B.; Zhang, H. Y.; Cheng, G.; Liu, Y. L.; Zhang, X. D.
Constructing a gas explosion inversion model in a straight roadway
using the GA-BP neural network. ACS Omega 2021, 6 (48), 32485−
32494.
(27) Shan, P. F.; Sun, H. Q.; Lai, X. P.; Dai, J. J.; Gao, J. M.; Yang, P.;
Li, W.; Li, C.; Yan, C. Numerical method for predicting and evaluating
the stability of section coal pillars in underground longwall mining.
Front. Earth Sci. 2022, 10, 894118.
(28) Bagheripoor, M.; Bisadi, H. Application of artificial neural
networks for the prediction of roll force and roll torque in hot strip
rolling process. Appl. Math. Model. 2013, 37 (7), 4593−4607.
(29) Jin, G. Y.; Feng, W.; Meng, Q. P. Prediction of waterway cargo
transportation volume to support maritime transportation systems
based on GA-BP neural network optimization. Sustainability 2022, 14
(21), 13872−13896.
(30) Shixiang, T.; Chen, W. Evolving neural network using genetic
algorithm for mining method evaluation in thin coal seam working face.
Min. Miner. Eng. 2018, 9 (3), 228−238.
(31) Meng, F. Q. Safety warning model of coal face based on FCM
fuzzy clustering and GA-BP neural network. Symmetry 2021, 13 (6),
1082−1105.
(32) Zhang, Z. G.; Qin, Y.; Yang, Z. B.; Li, G.; You, Z. J. Primary
controlling factors of coalbed methane well productivity and high
productive well patterns in eastern Yunnan and western Guizhou,
China. Nat. Resour. Res. 2023, 32 (6), 2711−2726.
(33) Zheng, Y. Z.; Lv, X. M.; Qian, L.; Liu, X. Y. An Optimal BP
Neural Network Track Prediction Method Based on a GA-ACO
Hybrid Algorithm. J. Mar. Sci. Eng. 2022, 10 (10), 1399.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c03167
ACS Omega 2024, 9, 25309−25321

25321

https://doi.org/10.13545/j.cnki.jmse.2020.0490
https://doi.org/10.13545/j.cnki.jmse.2020.0490
https://doi.org/10.13545/j.cnki.jmse.2020.0490
https://doi.org/10.1021/acsomega.0c02041?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c02041?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c02041?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s11053-021-09882-w
https://doi.org/10.1007/s11053-021-09882-w
https://doi.org/10.1007/s11053-021-09882-w
https://doi.org/10.3233/JIFS-161816
https://doi.org/10.3233/JIFS-161816
https://doi.org/10.1080/17480930.2018.1467655
https://doi.org/10.1080/17480930.2018.1467655
https://doi.org/10.1016/j.eswa.2021.114999
https://doi.org/10.1016/j.eswa.2021.114999
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1016/j.marpetgeo.2021.105495
https://doi.org/10.1016/j.marpetgeo.2021.105495
https://doi.org/10.1016/j.marpetgeo.2021.105495
https://doi.org/10.1109/TPWRD.2023.3279891
https://doi.org/10.1109/TPWRD.2023.3279891
https://doi.org/10.1109/TPWRD.2023.3279891
https://doi.org/10.1016/j.energy.2023.127495
https://doi.org/10.1016/j.energy.2023.127495
https://doi.org/10.1016/j.energy.2021.120847
https://doi.org/10.1016/j.energy.2023.128771
https://doi.org/10.1016/j.energy.2023.128771
https://doi.org/10.1016/j.energy.2023.128771
https://doi.org/10.1038/s41598-023-30708-7
https://doi.org/10.1038/s41598-023-30708-7
https://doi.org/10.1038/s41598-023-30708-7
https://doi.org/10.1306/12162120181
https://doi.org/10.1306/12162120181
https://doi.org/10.1007/s13369-017-3022-0
https://doi.org/10.1007/s13369-017-3022-0
https://doi.org/10.1016/j.ijmst.2015.05.021
https://doi.org/10.1016/j.ijmst.2015.05.021
https://doi.org/10.1080/10426910903158249
https://doi.org/10.1080/10426910903158249
https://doi.org/10.1016/j.eswa.2008.05.024
https://doi.org/10.1016/j.eswa.2008.05.024
https://doi.org/10.1134/S1062739120016491
https://doi.org/10.1134/S1062739120016491
https://doi.org/10.1134/S1062739120016491
https://doi.org/10.1155/2022/9239381
https://doi.org/10.1155/2022/9239381
https://doi.org/10.1155/2022/3958985
https://doi.org/10.1155/2022/3958985
https://doi.org/10.1021/acsomega.1c03926?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.1c03926?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3389/feart.2022.894118
https://doi.org/10.3389/feart.2022.894118
https://doi.org/10.1016/j.apm.2012.09.070
https://doi.org/10.1016/j.apm.2012.09.070
https://doi.org/10.1016/j.apm.2012.09.070
https://doi.org/10.3390/su142113872
https://doi.org/10.3390/su142113872
https://doi.org/10.3390/su142113872
https://doi.org/10.1504/ijmme.2018.10017388
https://doi.org/10.1504/ijmme.2018.10017388
https://doi.org/10.3390/sym13061082
https://doi.org/10.3390/sym13061082
https://doi.org/10.1007/s11053-023-10260-x
https://doi.org/10.1007/s11053-023-10260-x
https://doi.org/10.1007/s11053-023-10260-x
https://doi.org/10.1007/s11053-023-10260-x
https://doi.org/10.3390/jmse10101399
https://doi.org/10.3390/jmse10101399
https://doi.org/10.3390/jmse10101399
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c03167?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

