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Biotic stress is caused by harmful microbes that prevent plants from growing

normally and also having numerous negative effects on agriculture crops

globally. Many biotic factors such as bacteria, fungi, virus, weeds, insects,

and nematodes are the major constrains of stress that tends to increase

the reactive oxygen species that affect the physiological and molecular

functioning of plants and also led to the decrease in crop productivity.

Bacterial and fungal endophytes are the solution to overcome the tasks

faced with conventional farming, and these are environment friendly microbial

commodities that colonize in plant tissues without causing any damage.

Endophytes play an important role in host fitness, uptake of nutrients,

synthesis of phytohormone and diminish the injury triggered by pathogens via

antibiosis, production of lytic enzymes, secondary metabolites, and hormone

activation. They are also reported to help plants in coping with biotic

stress, improving crops and soil health, respectively. Therefore, usage of

endophytes as biofertilizers and biocontrol agent have developed an eco-

friendly substitute to destructive chemicals for plant development and also

in mitigation of biotic stress. Thus, this review highlighted the potential

role of endophytes as biofertilizers, biocontrol agent, and in mitigation of

biotic stress for maintenance of plant development and soil health for

sustainable agriculture.
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Introduction

Agricultural strengthening is an important factor to the food safety for the rising
world population. The recovery of soil fertility and crop heath by the usage of chemical
fertilizers not only affects the soil health by decreasing the water holding capacity,
depleting soil fertility, and diminishing soil nutrient and microflora but also poses a
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threat to human health and ecosystem. By considering all
these problems, researchers are attentive for the substitution
of chemical fertilizers with microbial-based fertilizers (Granada
et al., 2018). Application of endophytes as biofertilizers can
be a better approach to improve soil microbial status that
stimulates the natural soil microbiota, therefore influencing
nutrient accessibility and decomposition of organic matter
(Fasusi et al., 2021). Endophytes are microbes that live within
the host plant and have the capability to colonize plant roots
without causing harm to the plants. They increase plant growth,
act as biocontrol agent and protect the host from pest naturally,
and endure tolerance against numerous biotic/abiotic stresses.
Endophytes capable of producing several growth hormones such
as IAA, ACC deaminase, increased in uptake of K ions in plant
tissues, and decreased ethylene level are an alternate mechanism
to alleviate stress conditions in various plants (Fan et al., 2020;
Agri et al., 2022). They are also able to improve the uptake
of nutrients such as nitrogen, magnesium, zinc, sulfur, and
phosphorus from soil and provide to the host plant for better
growth and survival (Agri et al., 2021).

Both bacterial and fungal endophytes hold tremendous
potential for being used as biocontrol agent. Endophytes show
antagonistic activity against disease-causing phytopathogens
and diminish the damage attributed to phytopathogens.
They produce several bioactive antimicrobial and antiviral
metabolites along with producing various antioxidants to
suppress pathogens (Gouda et al., 2016). Moreover, diverse
range of fungal species especially entomopathogenic fungi
have been known to exert long-term preventive measure
for insect population (Litwin et al., 2020). Different bacteria
such as Bacillus, Pseudomonas, Pedobacter, and Acidobacterium
involved in mineral solubilization, metabolite production, and
N2 fixation. Several fungal strains including Beauveria bassiana,
B. metarhizium, M. robertsii, Chaetomium globosum, and
Acremonium spp. are successful in plant protection (Grabka
et al., 2022). With a wide host range, endophytic fungus becomes
advantageous as compared to other biocontrol agents. Notably,
Trichoderma viride isolated from Spilanthes paniculata showed
broad range activity against Colletotrichum capsici, Fusarium
solani, and Pythium aphanidermatum (Qi et al., 2019).

Crop plants undergo various environmental stresses during
their growth period that ultimately results in reduced crop
productivity. Genetic and physical growth alteration due to
several environmental cues restricts the full plant development
in their growth period. One such biotic stress occurs by
the recurrent attack on plants by phytopathogens such as
bacteria, virus, fungi, and herbivores, which ultimately reduce
plant vigor and death of host plant in extreme conditions
(Pandey et al., 2017). In agricultural field, biotic stress especially
caused by bacteria and fungal phytopathogens is the major
cause of pre- and post-harvest losses. Plant being sessile
in nature responds to stress conditions accordingly through
various stimulatory mechanisms. They have evolved unique

physiological, biological, and molecular adaptation strategies
to adjust the adverse conditions and promote plant growth.
However, the extent of stress and climatic extremity makes them
unable to cope up with the challenges raised by the environment
(Chitnis et al., 2020). The generalized defense system in plants
is unable to fully relieve the pressure and meet the demands
of multistress tolerance to thrive and survive. So far, genetic
engineering and other chemical and physical methods have been
used to get stress tolerant cultivars. But they do not provide
stress tolerance capacity for a very long time, and also, they
are not ecofriendly. Thus, harnessing the potential of beneficial
endophytes present in the nature for disease management could
be an alternative strategy for improving plant resistance and
resilience in crop varieties (Zheng et al., 2021). This will not
only reduce chemical inputs but mitigate environmental stress
without causing adverse effects. Useful endophytic microbes
residing in the plant tissues are promising measure to remediate
stressful conditions in a natural way.

Endophytes

Plants are associated with a wide range of microbial
community having positive, negative, or neutral kind of
response in their host plant. Majority of the research is
focused on the known epiphytic beneficial microbes colonizing
the rhizosphere zones. However, plant growth-promoting
endophytes are the subset of rhizosphere microbiome that is
important determinants of plant microecosystems (Khati et al.,
2018; Chaudhary et al., 2021a). The potential of endophytes
as a bioinoculant is thus far to be sightseen to the completest
potential due to few shortcomings. Such endosymbiont groups
of microbes are diverse and harbored in almost every other
plant species found in nature (Nair and Padmavathy, 2014).
They mutually reside and proliferate within the plant tissues
such as stems, roots, seeds, fruit, buds, and leaves deprived of
producing any damage to the host plants (Specian et al., 2012).
A small change in the diversity of plant endophytic communities
can have significant impact over plant growth regulation and
environmental adaptation (Vandenkoornhuyse et al., 2015).
Gradual co-evolution in plant endophytic associations has
eventually led to a positive response toward each other existence
and influence vital activities in their host plant (Wang and Dai,
2011).

Endophytes are potent microbial resource needed to be
explored for their application in agriculture sector. Most of the
beneficial growth-promoting species belongs to the facultative
group of endophytes that live in soil freely but colonizes crop
plants under suitable conditions (Gaiero et al., 2013). Almost
every other plant species hosts various bacterial, fungal, or
actinomycete endophytes that may regulate plant and soil
health. Various plant growth parameters are regulated by the
colonization of endophytes and based on the microenvironment
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and the host’s metabolic capacity; they biosynthesize various
compounds emanating growth-promoting activities similar
to rhizospheric microbes (Chaudhary et al., 2021b, 2022).
They maintain stable symbiosis through secreting various
bioactive compounds contributing to colonization and
plant growth (Gouda et al., 2016). The attributes associated
with endophytes include the production of extracellular
enzymes (Khan et al., 2014), bioremediation, synthesis of
secondary metabolites against phytopathogens (Mousa and
Raizada, 2013), and induced systemic resistance (Constantin
et al., 2019). But mainly, endophytic bacterial and fungal
strains confer propound impacts on the overall health and
maintenance of crop plants under different environmental
conditions via nitrogen fixation, phosphate solubilization,
siderophore, and phytohormones production and by conferring
tolerance to various stresses. Additionally, N-fixing endophytes
Novosphingobium sediminicola, Ochrobactrum intermedium
(from sugarcane) and Bradyrhizobium, Kosakonia, and
Paraburkholderia (from rice) carry nitrogen fixation genes
(Muangthong et al., 2015; Okamoto et al., 2021).

Both climatic and edaphic factors equally contribute to the
nature and action of endophytes toward plants (Kandel et al.,
2017a). Under different condition, they also enhance the levels
of plant growth-promoting hormones (cytokines, gibberellins,
and auxin) and facilitate nutrient cycling whenever required
(Egamberdieva et al., 2017; Chaudhary and Sharma, 2019).
Few are known to produce polyamines, including putrescine,
cadaverine, spermidine, and spermine, which involved in lateral
root development and stress adaptations (Couee et al., 2004).
Numerous growth-promoting bacterial and fungal endophytes
have been reported till date. Microbial symbionts are suitable to
maximize crop productivity, but more research is required to
understand the significance in plant growth (Chaudhary et al.,
2021c). However, complete understanding of the mechanisms
and the genetic regulation utilized by endophytes in plant
growth regulation is an important aspect to be studied for their
application under field conditions.

Diversity and distribution of
endophytic microbes for
maintenance of soil health and
plant productivity

Microbial root endophytes

Roots are the main habitat and colonization route for
the bacterial and fungal endophytes. The main entry points
for bacterial colonization are root hairs, root cracks, or
wounds formed by microbial or nematode activities. The other
major sites for root colonization include intercellular spaces
in cortex and epidermis (Compant et al., 2005). Endophytes

such as Pseudomonas putida and P. fluorescens colonized
the olive through root hairs (Mercado-Blanco and Prieto,
2012). An axenically phytopromotional fungal root endophyte
Piriformospora indica begins root colonization in the cortex
region by a biotropic growth phase and continues with cell
death-dependent phase. Inoculation of P. indica promotes plant
growth, early flowering, higher seed yield, and adaptation
to stresses in various host plants such as Phaseolus vulgaris,
Triticum aestivum, and Cicer arientum (Varma et al., 2012;
Ansari et al., 2014).

Rhizospheric microorganisms are enriched with nutrients
and influence plant growth through soil nutrient recycling
and nutrient uptake (Kukreti et al., 2020; Kumari et al., 2020).
Overall root endosphere is metagenomically diverse and
most often dominated by beneficial Proteobacteria (50%),
Actinobacteria, Firmicutes, and Bacteriodetes (10%) (Liu et al.,
2017). In association with roots, such microbe produces
several compounds that influence plant development. Plant
hormones such as gibberellins, cytokinins, and indole acetic
acid (IAA) highly facilitate plant growth. In addition, few
are known to promote plant mycorrhization. For instance,
ACC deaminase (1-amonocyclopropane-1-carboxylic acid)
containing Arthrobacter protophorniae enhanced nodulation in
Pisum sativum (Barnawal et al., 2014). The other best-known
fungal root colonizers are known as dark septate endophytes
(DSE). The Phialocephala fortinii s.l- Acephala applanata
species complex (PAC) species of Ascomycetes are the DSE
fungi in forestry systems. In the study, dual inoculation of PAC
positively increases plant biomass in spruce (Reininger and
Sieber, 2013).

Endophytes living under extreme conditions such as
Antarctica are also known to boost crop productivity. Under
stressed condition, where mycorrhizae are generally low in
abundance, different fungal endophytes potentially act as the
prime root mutualistic symbionts (Mandyam et al., 2010). In
terms of increasing nutrient acquisition of nutrients such as
phosphorus from the roots and increasing the host fitness,
both root-associated endophytes and mycorrhizal fungi provide
benefits in a very similar manner. However, furthermost
fungal endophytes do not endure an obligate biotrophic life
phase and live at smallest part of their life cycle separated
from the plant (Park and Eom, 2007). The only two known
vascular plant, i.e., Colobanthus quitensis and Deschampsia
Antarctica from such extreme condition harbors Penicillium
species. Penicillium (root endophyte) helps in growth of vascular
plants in Antarctic region via enhancing nitrogen acquisition
and nutrient uptake by significantly increasing yield. The
mechanism involved in nitrogen acquisition is attributed to the
litter protein breakdown and amino acid mineralization (Oses-
Pedraza et al., 2020). In total, two fungal strains isolated from
Antarctic plants rhizosphere, i.e., Penicillium brevicompactum
and P. chrysogenum isolated from plants rhizosphere, i.e.,
Colobanthus quitensis and Deschampsia Antarctica increased
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the final yield by 42% in lettuce and 68% in tomato plants
in comparison with control (Molina-Montenegro et al., 2020).
Several genera of beneficial root endophytes have been reported
from medicinal plants such as Pseudomonas, Xanthomonas,
Bacillus, Inquilinus, and Pedobacter. They have been associated
with stimulation of growth activities such as production of
secondary metabolites, solubilizing phosphate, and upregulating
the expression of certain stress regulating genes under stress
conditions (Rat et al., 2021).

Horizontal transmission colonization of the root
endosphere via the rhizosphere. Types of endophytes: Passive
endophytes – They penetrate through cracks present at root
emergence area, root tips, or those created by pathogens;
facultative endophytes – They live exterior to the host in certain
phase of their life cycle and are frequently allied with plants
from its adjoining soil; obligate endophytes – they depend plant
metabolism for their survival; endofungal bacteria – Bacterial
symbionts of fungi occur inside fungal spores and hyphae.

Endophytic community in aerial
tissues (phyllosphere)

Not all endophytes enter via root zones and move
through the xylem vessels, they harbor diverse communities
that enter the aerial tissues via above-ground surfaces too.
Different entry routes chosen by many plant-promoting
endophytes are stem (laimosphere), fruits (carposphere),
leaves (Phyllosphere), seeds (spermasphere), and flowers
(anthosphere) (Lindow and Brandl, 2003). Endophytes that
live within the leaf tissues and stems are well documented.
Phyllosphere microbes are an important component of
microbial communities that live asymptomatically within leaves
and also known for plant health maintenance (Ritpitakphong
et al., 2016). Besides being the largest microbial habitat on
Earth, the functional roles of phyllosphere residents are still less
understood over the rhizosphere microbiome. It is estimated
that their abundance in nature may exceed 1062 cells globally.
Proteobacteria, Actinobacteria, and Bacteroidetes were the most
abundant phyla associated with A. thaliana, Populas, and Salix
(Redford et al., 2010; Firrincieli et al., 2020). The most abundant
genus of phyllosphere region is Pseudomonas in tomato plants
(Dong et al., 2019). Leaf endophytes including bacteria and fungi
are the subset of phyllosphere endophytes. Leaf endophytes
most of the times comprise five phyla, Proteobacteria (90%),
Actinobacteria (2.5%), Plancomycetes (1.4%), Verrucomicrobia,
and Acidobacteria (1.1 and 0.5%) (Romero et al., 2014). They
live inside the leaf and maintain symbiotic relationship with the
host plants.

It is evident to suggest that endophytes enter leaves and
stems through openings such as stomata and hydathodes
through dispersion with the help of rain, soil, or pollinators
(Frank et al., 2017). For instance, Gluconobacter diazotrophicus

enters through stomata in sugarcane plants (James et al.,
2001). After reaching this site, endophyte strains multiply and
form a thin layer of biofilm. Apart from this, some may enter
to the inner tissues and start residing as endophytes where
further microbes could colonize themselves into xylem. They
further colonize and multiply in different organs including
anthrosphere, phylloplane, carposphere, and caulosphere
(Meyer and Leveau, 2012). Numerous growth-promoting foliar
endophytes have been identified through high-throughput
screening procedures. Despite this, the gaps still hinder their
field application and practical exploitation in agriculture. Not
only bacterial species but also fungal strains equally promote
plant growth through nutrient recycling, i.e., carbon and
nitrogen, provide resistance to pathogens and assist in leaf litter
decomposition (Arnold et al., 2007). Various fungal species
such as Penicillium aurantiogriseum, Fusarium incarnatum,
Trichoderma harzianum, and Fusarium proliferatum have
been reported from wheat plant (Ripa et al., 2019). Seed-
borne endophytic microbes are not fully explored and are
of great interest. They potentially produce phytohormones,
enzymes, and antimicrobial compounds and improve plant
development. The main property of seed endophytes is their
vertical transmission. Such microbes are naturally useful in
that they signify not only a termination for the community
assemblage in the seed, but also an early idea for community
gathering in the new seedling (Shahzad et al., 2018). Seed-borne
endophytes (bacterial and fungal) benefit seeds by facilitating
the germination of seeds in soil.

They are of great interest because they pass their characters
to next generation through vertical transmission. This provides
important traits in plant growth which are determined by
both microbe and plant genomes. Also, seed consists of a
limited range of microbial species and has progressed via
co-selection with the host plant species (Vujanovic et al.,
2019). Additionally, this could probably result in reducing
the phytopathogenic asset in demand to the sustenance of
plant development (Cope-Selby et al., 2017). In addition,
they have the ability form endospores and maintain plant
growth by phytase activity, regulating cell motility, modulating
endogenous phytohormones such as cytokinins that break
seed dormancy, enhancing soil structure, and degrading
xenobiotics. For instance, fungal endophytes Epichloe are
stated to support their host plants in growth promotion.
Similarly, fungi Penicillium chrysogenum, Trichoderma, and
Phoma sp. isolated from Opuntia spp. are known to be involved
in seed germination (Delgado-Sánchez et al., 2013). In a
study, Paraburkholderia phytofirmans PsJN actively colonized
different seeds of maize, soy, and pepper. Also, wheat seeds
colonized with Paraburkholderia phytofirmans PsJN showed
significant alteration in spike onset compared with non-
treated plants under pot and field experiments (Mitter et al.,
2017). There are different pathways adapted by seed-borne
endophytes. Few enter via xylem tissues, through stigma and
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exogenous pathway where seeds are dirtied from the exterior
source. The floral parts of the plant tissue have not been
studied extensively for the growth-promoting endophytes. An
endophytic fungus, Lasiodiplodia sp. ME4-2 isolated from
floral parts of Viscum coloratum which involved in production
of important metabolites regulating plants growth such as
indole-3 carboxylic acid and secondary metabolites such as
2-phenylethanol (Qian et al., 2014).

Endophytic plant
growth-promoting mechanisms

Endophytes being potential agent impart beneficial effects
on their host plant are well-acknowledged inoculants to
encourage the plant growth directly/indirectly. Plant growth
occurs directly (endophyte–pathogen interaction) through
regulating the attainment of vital nutrients such as phosphorous
and nitrogen, modulating level of hormones. Indirectly
through enhanced plant defense, endophytes could help in
biocontrol of phytopathogens by production of antibiotics,
regulating defense mechanism by induced systemic resistance,
declining the quantity of iron accessible to pathogen, and
pathogen inhibition through volatile compounds (Figure 1).
Here are the few direct mechanisms involved in plant
development.

Production of phytohormones

Numerous endophytes are identified to produce plant
growth hormones (Supplementary Table 1). Hormones
stimulate plant growth through regulating structural and
morphological changes in response to gravity or light stimuli.
They secrete gibberellic acid, cytokinin, auxins such as indole
acetic acid, and ethylene. They do not only increase the
overall root biomass through enhancing root surface area
and root length but are known to act as signal molecules
between endomicrobes and plants (Spaepen et al., 2007).
In addition, they have been well known to enhance root
length and root surface area, control the rate of vegetative
growth, and increase the rate at which root and xylem develop.
Other indole-related compounds such as indole-3-lactic acid
(ILA) and indole acetamide (IAM) also found in different
endophytic strains such as Azospirillum brasilense which is
formed as an intermediate during the auxin biosynthetic
pathways. For instance, the root endophyte Piriformospora
indica produced auxin through utilizing IAA biosynthetic
pathway (Xu et al., 2018). The IAA production by endophytes
is considered an important factor in plant growth regulation.
Khan et al. (2014) reported that Sphingomonas sp. (endophyte)
isolated from the foliar region of Tephrosia apollinea improved

growth activity in tomato plants through indole acetic acid
(11.23 µm mL−1). In another study, Micrococcus yunnanensis
RWL-2, Pantoea dispersa RWL-3, Micrococcus luteus RWL-3,
and Staphylococcus epidermidis RWL-7 were analyzed using
GC-MS and found to produce IAA (11.50–38.80 µg ml−1).
When inoculated in rice plants, they significantly increased
main growth-promoting attributes in rice plants, i.e., dry
biomass, shoot and root length, chlorophyll, and protein
contents (Shahzad et al., 2017). Endophytic fungi (Falciphora
oryzae) helped in lateral root growth while reduced the
primary root height (Sun et al., 2020). Also, IAA activity in
endophytes also reported to increase nitrogenase activity in
rice through showing transcriptional changes in nitrogen-
fixing root nodules (Defez et al., 2016). Fungi are also able
to produce gibberellins, auxins, and cytokinins important
as chemical signaling. Endophytic fungus (Porostereum
spadiceum) produces gibberellins and rescue growth of
soybean under normal and salt affected by promoting seed
germination and increasing chlorophyll content (Hamayun
et al., 2017). Several endophytic fungi including A. flavus,
Paecilomyces formosus, P. glomerata, Penicillium corylophilum,
Rhizopus stolonifer, and Pochonia chlamydosporia (Khan
et al., 2012). Almost all the gibberellic acid producing fungal
endophytes belong to Ascomycetes group; however, P. spadiceum
belonging to the Basidiomycota is the first endophyte to
produce gibberellic acid and involved in phytostimulation
(Waqas et al., 2012). Cytokinins are important group of plant
hormones that are involved in apical dominance, chloroplast
maturation, cell proliferation and differentiation, seed
germination, prevention of senescence, and plant–pathogen
signaling mechanisms. Bacterial endophytes Pseudomonas,
Sphingomonas, Stenotrophomonas, and Arthrobacter sp.
isolated from humic-treated cucumber plants produced
several cytokinins (cis-zeatin cytokinin, riboside type zeatin,
isopentyladenine, and isopentenyladenosine) greater than
30 pmol/ml (De Hita et al., 2020).

Endophytic diazotrophic bacteria
as biofertilizer

Endophytes being successful colonizers of different plants
act potentially as biological nitrogen fixers and act as an
alternative nitrogen source for crop production. They face less
competition over other rhizospheric microbes and directly fix
atmospheric N2 make it accessible to plants. Moreover, the
partial pressure of oxygen inside the plant tissue is suitable in
comparison with the outer surface for efficient nitrogen fixation
as low partial pressure supports the proper functioning of O2-
sensitive nitrogenase enzyme (Cocking, 2003). Nitrogen is a
vital macronutrient that the plants require because it promotes
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FIGURE 1

Role of endophytes as biofertilizers, biocontrol, and biotic stress management in agricultural crops.

shoot growth and aid in reproduction and main constituent
of chlorophyll. Dinitrogen is an inaccessible form of nitrogen
present in air and converted by diazotrophs into soluble,
non-toxic form ammonia via biological process of nitrogen
fixation. The ammonia-oxidizing bacteria and the nitrifying
bacteria then transform this ammonia into nitrite and nitrate,
respectively. Denitrifying occurs in the deeper soil horizons,
converting the unused nitrate to atmospheric nitrogen, which
ultimately escapes to the atmosphere as dinitrogen gas. This
is the usual nitrogen cycle pathway (Mahanty et al., 2017).
Several nitrogen-fixing bacteria have been reported such as
Azospirillum brasilense, Acetobacter diazotrophicus, Klebsiella
oxytoca, Rhizobium sp., and Burkholderia cepacia (Kong and
Hong, 2020). In addition, various non-leguminous plants such
as wheat, sorghum, maize, and rice harbor free-living nitrogen-
fixing bacteria. For instance, Gluconacetobacter diazotrophicus,
Herbasprillum rubrisubalbicans, and Burkholderia silvantantica
can fix nitrogen in the intercellular spaces of sugarcane stems
(Lery et al., 2011). Endophytes isolated from rice such as
Bradyrhizobium sp. and Paraburkholderia sp., showed acetylene
reduction properties and high sugar content contributing to
high nitrogen-fixing ability. High content of sugar in different
crops such as sweet potato, pineapple, and sugar has known
to assist endophytic N-fixing activity among non-leguminous
plants (Okamoto et al., 2021). Acetobacter diazotrophicus and
Azoarcus isolated from sugarcane and kallar grass potentially
fixed atmospheric nitrogen up to 150 kg N ha−1 year−1 (Gupta
et al., 2012).

Phosphate solubilization

Phosphate solubilization is an important mechanism
involved in solubilizing the insoluble phosphate into soluble
form like orthophosphate. Plant requires a major amount of
phosphorus for enhanced productivity in the range of 30 µmol
l−1, but limited amount is available to plants which make this
nutrient a limiting factor in soil. Endophytes have the capability
to solubilize unsolvable phosphates or have the ability to liberate
organic phosphates though production of acids such as malic,
gluconic, and citric acids. Endophytic bacteria that have been
reported to mobilize phosphorus through mineralization and
solubilization include Pseudomonas spp., Bacillus megaterium,
Azotobacter, Paenibacillus, Thiobacillus, and Serratia (Jahan
et al., 2013; Kang et al., 2014).

Pseudomonas fluorescens strains isolated from Miscanthus
giganteus showed great variation in phosphate solubilization
capacity with highest solubilization recorded about 1,312 mg
L−1. Furthermore, when inoculated with the potential strains,
high weight of shoot and root was observed in pea plants as
compared to control (Otieno et al., 2015). The major endophytic
fungi belong to genera Curvularia, Piriformospora, Penicillium,
and Aspergillus and Trichoderma. Symbiotic association of
mycorrhizal fungi with plants has been recognized to surge the
passage of phosphorus in plants. It is evident from a study
that apart from mycorrhizal associations, endophytic bacteria
equally contribute to the P solubilization. Poplar samples when
inoculated with P solubilizing Rahnella and Burkholderia sp.
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strains showed a root architecture with greater root volume
under tomography-based root imaging (Varga et al., 2020).
Endophytic fungi Penicillium and Aspergillus isolated form roots
of Taxus wallichiana solubilized P and produced phosphatase
and phytase enzymes (Adhikari and Pandey, 2019). Kang et al.
(2014) observed that Bacillus megaterium regulates the content
of amino acids and carbohydrates to promote the growth of
mustard plant.

Siderophore biosynthesis

Siderophores are low molecular weight composites
produced by several microorganisms including endophytes
to scavenge iron and make it available to plants. Endophytes
are known to synthesize hydroxamate, carboxylate, and
phenolate type of siderophore to converse plant protection
against phytopathogens. It also assists plant growth and yield
by providing iron to plants under iron deficient conditions
(Rajkumar et al., 2010). It also facilitates better nutrient
mobilization in comparison with rhizospheric counterparts.
They are better adapted to the activities of internal tissues of the
plants, in terms of originating from the internal microbiome
(Verma et al., 2021). Large numbers of bacterial endophytes are
there to contain property of iron chelation such as Azotobacter,
Bacillus, Enterobacter, Arthrobacter, Nocardia, and Streptomyces
(Bokhari et al., 2019).

Biofortification of Enterococcus hirae and Arthrobacter
sulfonivorans in wheat grains not only efficiently makes
bioavailability of iron and zinc micronutrients but it also
significantly increases plant growth up to 20% in comparison
with control (Singh et al., 2018). Bacterial siderophore (catechol
and hydroxamate type) isolated from Arabidopsis thaliana,
F. rubra and Agrostis capillaris, growing on the heavy metals
contaminated area significantly improved growth rate in Festuca
rubra and Brassica napus (Grobelak and Hiller, 2017).

Role of endophytes as biocontrol
agents

Many researchers have previously reported the use of
bacterial and fungal endophytes for disease management
in plants. Serendipita indica conferred resistance against
Fusarium and Rhizoctonia solani and demonstrated antioxidant
capacity in vitro (del Barrio-Duque et al., 2019). In another
study, production of Bacillomycin D protein by Bacillus
amyloliquefaciens helped in showing antagonistic activity
against fungus Fusarium graminearum (Gu et al., 2017). Seed
application of B. bassiana 11-98 efficiently colonized tomato
and cotton seedling and protect plants against Rhizoctonia
solani and Pythium myriotylum. Possible mechanisms were
coiling of hyphae, induction of resistance, and production

of lytic enzymes, thus protecting the older plants from root
rot. However, biocontrol practices through endophytes may be
achieved through direct inhibition of pathogens or indirectly
by establishing the plant’s systemic resistance (Santoyo et al.,
2016). The other involved mechanisms include competition
for niche and resources, production of cell wall degrading
enzymes, initiation of induced systemic resistance (ISR), and
quenching the quorum sensing of pathogens (Rajesh and Rai,
2014). Apart from this, several antibiotic compounds and lytic
enzymes produced by endophytes reduce disease severity in
many plants. For instance, many fungal genera Fusarium,
Trichoderma, and Botryosphaeria secrete enzymes such as
cellulose, 1,3- glucanases, amylase, and glutaminase which can
aid in reducing phytopathogens through inhibiting the cell wall
(Ait-Lahsen et al., 2001). Biological control also depends upon
many factors such as host specificity, physical structure of soil,
inoculum used, and the prevalent environmental conditions.
The ability to colonize the plant tissue makes them a better
biological control agent than others in having better biological
compatibility when applied to plants (Rabiey et al., 2019). Under
genomic studies, endophytes were also found to contain several
notable genes pertaining to pathogenesis regulation which were
previously not found in rhizospheric bioinoculants (Brewer
et al., 2016). Also, endophytes are more protected from external
factors such as radiations, temperature, and pressure when
compared to epiphytes (Andreote et al., 2014). However, a
deeper understanding on their mechanism and mode of action
is still required to better exploit endophytes as biocontrol agents.
Here are the few mechanisms employed by endophytes in
controlling diseases in plants.

Production of secondary
metabolites with antifungal and
antibacterial properties

Most of the endophytes are known to produce secondary
metabolites exhibiting good antibacterial and antifungal
activities preventing the growth of harmful microorganisms.
Various metabolites such as alkaloids, phenols, flavonoids,
peptides, steroids, and terpenoids are isolated from both
bacterial and fungal endophytic strains (Supplementary
Table 2). Alkaloids possess firm potential in inhibiting
the proliferation of microbes. Fungal endophytes such as
Clavicipitaceae sp. isolated from grass family showed production
of alkaloids, which are harmful for aphids (Panaccione et al.,
2014). Alkaloids are identified as to contaminate precise hosts
and causes slight damage to non-target organisms. Altersetin
alkaloid isolated from Alternaria spp. displayed a strong
antibacterial effect on pathogenic bacteria (Hellwig et al.,
2002; Akutse et al., 2013). GS-MS analysis showed production
of thermostable metabolites such as d-norandrostane and
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longifolenaldehyde by A. alternata AE1 isolated from neem
leaves. Both the compounds have bactericidal and antioxidant
properties and showed zone of inhibition against numerous
gram-positive and gram-negative bacteria (Chatterjee et al.,
2019). Gond et al. (2015) evaluated the effect of antifungal
proteins such as iturin A, bacillomycin, and fengycin isolated
from Bacillus spp. in controlling fungal pathogen Fusarium
moniliforme. Antifungal protein designated as Efe-AfpA
isolated from Epichloe festucae showed disease resistance against
pathogen Sclerotinia homoeocarpa causing dollar spot disease
(Tian et al., 2017). Apart from this, many endophytes are widely
reported being associated with antibiotic activity. Lipopeptides
produced by several endophytes may show antimicrobial and
surfactant activities and well known for their antibiotic activity.
Bacillus amyloliquefaciens strain produces lipopeptides having
biocontrol activity toward Erysiphe cichoracearum (fungal
pathogen). The fengycin, iturin, and surfactin produced by
Bacillus sp. helped in inhibiting the growth of fungal pathogen.
Also, pellicle biofilm formation affected the colonization ability
of pathogens (Jiao et al., 2021).

Bio control strategies through
quorum quenching

Quorum sensing (QS) is a signaling mechanism that
controls growth and metabolism in single-cell microorganisms
such as bacteria. Density-dependent cell-to-cell communication
controls most of the traits which are helpful in endophytes
as well a key controller of virulence in pathogens (Frederix
and Downie, 2011). The factors responsible for virulence such
as biofilm formation, toxin production, antibiotic resistance,
exopolysaccharides (EPS), and degradative exoenzymes
secretions are highly regulated by quorum sensing signaling.
This mechanism takes place via small diffusible signaling
molecules called autoinducers (Seitz and Blokesch, 2013). For
instance, many pathogenic bacteria such as Pseudomonas and
Ralstonia primarily use acylated homoserine lactones (AHLs)
to communicate while producing virulence (Mansfield et al.,
2012). They cause great damage to crops. Therefore, antiquorum
sensing approach could be harnessed to trigger the phenotype
of pathogen to block infection (Chen et al., 2013). Quenching
process is regulated by interfering with virulence-associated
activities such as modification of signals, catalysis of degrading
enzymes such as AHL-lactonase, and inhibition of signal
synthesis (Dong et al., 2002). Lactonase enzyme works through
removing the lactone ring from the acyl moiety of AHLs and
ultimately inactivates AHLs (Murugayah and Gerth, 2019).
Endophytic bacteria and fungi provide plethora of bioactive
molecules, which can act as an inhibiting agents including
QS quenching enzymes such as lactonase, acyclase, and QS
inhibitor molecules (LaSarre and Federle, 2013). Such agents
can provide promising approach to control phytopathogens

and suppress virulence expression in them. They assist in
degrading quorum-sensing signals from pathogenic microbes
and disrupt intercellular communication (Rutherford and
Bassler, 2012). Endophytes with quorum quenching activity
attenuate virulence factors rather than killing the microbes
or limit the cell growth. This property effectively reduces the
selective pressure associated with bactericidal agents (Chen
et al., 2013). QS and in- silico analysis showed antiquorum
sensing and antibiofilm potential of Alternaria alternata
isolated from Carica papaya against pathogen Pseudomonas
aeruginosa. Significant decrease in cyanin, alginate, and
rhamnolipid production was observed. Protease activity such
as LasA protease activity and Las B protease activity responsible
for virulence was correlated with decrease in biofilm formation
(Mishra et al., 2020).

Endophytes such as B. firmus and Enterobacter
asburiae PT39 showed effective degrading capability of
AHL by preventing violacein production (80%) in biosensor
strain. Still, cell-free lysate when applied to P. aeruginosa PAO1
and PAO1-JP2 biofilm caused decrease in biofilm formation
(Rajesh and Rai, 2014). In a study, AHL-degrading bacteria
Pseudomonas nitroreducens potentially degraded diverse
variety of AHL including N-(3-oxododecanoyl)-L-homoserine
lactone (OdDHL) in D. Zeac EC1. It fully degraded OdDHL
(0.2 mmol/L) in 48 h. Furthermore, the application of this
strain as a biocontrol agent might considerably reduce soft
rot disease produced by D. zeae EC1 to suppress tissue
maceration in numerous host plants (Zhang et al., 2021).
These observations demonstrate that QQ strains have
huge potential to reduce the disease harshness due to QS-
modified pathogenic bacteria. Antivirulence activity can
also be achieved by an engineered endophytic bacterium
through introducing quorum-quenching gene. For instance,
to control Burkholderia glumae which causes grain rots of
rice, an N-acyl-homoserine lactonase (aiiA) gene from Bacillus
thuringiensis was inoculated into Burkholderia sp. KJ006
to repress N-acyl-homoserine lactone (Cho et al., 2007).
Thus, quorum-quenching microbes provide great potential as
biocontrol agents. There are several advantages of introducing
quorum-quenching microbes into plants. Being compatible in
nature endophytes occupies most of the cellular space without
leaving space for later-invading phytopathogens (Kung and
Almeida, 2014).

General plant defense responses
against biotic stress

Plants are attacked by various pathogens, parasites, and
herbivores, all of which cause biotic stress. Various pests
belonging to Lepidoptera, Hemiptera, Orthoptera, and Diptera
are well known for damage crop plants. Pests destroy more
than 40% of the world’s crops every year (FAO, 2021). Also,
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the fungal parasites are hidden robbers that inhibit the plants
growth either by killing the host cell through secretion of toxin
or biotropic fungi that feed on living host cell. Host plants
become a source of nutrients for such harmful parasites. In
some biotropic fungi, haustoria plays a major role in absorbing
nutrients from host tissues (Szabo and Bushnell, 2001). Plant
viruses also cause leaf chlorosis, spotted wilt, stunted growth
in several important plants such as tomato, cucumber, potato,
and sugarcane (Roossinck et al., 2015). In addition, nematodes
feed on different plant parts (seeds, roots, flowers, leaves, and
stems) and cause wounds on the plants. Quick reproduction
ability in mites and insects also makes them vectors of other
pathogens such as virus and bacteria (Maafi et al., 2013; Adam
et al., 2014).

Plants have evolved a plethora of defense mechanisms
to combat broad-spectrum pests and pathogens (Rejeb et al.,
2014). The defense mechanism could be performed, with
toxic metabolites deposited, and it could be inducible. Upon
pathogen attack, the innate immune system gets activated that
prevents the pathogen entry and terminate their growth. It is
a primary defense that contains physical barriers such as waxy
cuticles, rigid cell wall, and trichomes to avoid phytopathogens.
Cuticle not only restricts the entry of liquid and gas fluxes
but also protects plants against pathogens, xenobiotics, and
irradiation (Serrano et al., 2014). Trichomes can also have
negative or positive effects depending on the target pests
through their impact on the behavior of herbivore natural
enemies. For instance, the presence of leaf trichomes positively
inhabited predatory mite Typhlodromus pyri on grapes. On
the other hand, European ride mite favored grape varieties
with low trichomes (Loughner et al., 2008). Plants can also
produce a variety of secondary metabolites to protect themselves
from herbivores and harmful microorganisms. Numerous
metabolites, such as amines, peptides, alkaloids, cyanogenic
glucosides, phenolics, polyacetylenes, non-protein amino acids,
and quinines, contribute significantly to disease reduction in
plants. Different concentrations and compositions of such
compounds work synergistically for defense mechanism (Wink,
2018).

Few defense mechanisms are consecutive (production
of phytoanticipins) that are preformed and induced
(phytoalexin production) that are activated after pathogen
attack. Phytoalexins are low molecular weight compounds that
possess antimicrobial. There are wide varieties of phenolic
compounds, which assist in phenotypic plasticity and act as
inhibitors, pesticides and contain anti herbivory roles (Kant
et al., 2015). As rapidly the host plant is infested by pathogen,
it displays accretion of phenolics and causes increase in
host metabolism. Mainly, hydroquinones, caffeic acid, gallic
acids, hydroxycinnamates, and 5-hydroxynapthoquinones are
effective allelochemicals (Cheng and Cheng, 2015). Caffeic
acid (200 µg/ml) in tobacco root exudates defends tobacco
plants from infection by Ralstonia solanacearum. It resulted in

FIGURE 2

Endophytes and their role in biotic stress management.

thinning of cell membrane and created irregular cavities in cells.
Moreover, expression of IecM and epsE genes associated with
inhibition of biofilm formation was also observed and exhibited
important prospect in plant defense (Li et al., 2021). In plants,
complex network of antioxidative defense system to counter
harmful reactive oxygen species (ROS) comprised free radicals
such as OH•, O·−, and non-radicals such as H2O2 and 1O2

which are formed under unfavorable circumstances (Huang
et al., 2019). ROS scavenging mechanism includes enzymatic
components such as catalase, guiacol peroxidase, superoxide
dismutase, dehydroascorbate reductase, and glutathione
reductase. Non- enzymatic antioxidants such as reduced
glutathione, ascorbic acid, carotenoids, and flavonoids help in
scavenging oxidative stress (Das and Roy Choudhury, 2014).

Additionally, plant hormones such as salicylic acid,
ethylene, and jasmonic acid play central role in biotic stress
signaling. Plants also possess an innate immunity system
to recognize microbe-associated patterns (PAMP) such as
lipopolysaccharides, peptidoglycan, and bacterial flagellin. Such
immunity is called PAMP triggered immunity. Herbivores are
recognized through herbivore-associated molecular patterns
(HAMPs) (Zhang and Zhou, 2010). Other immune response
includes transcription methods in the host nucleus and
recognizing Avr proteins that are avirulent in nature. Effector
triggered immunity arouses hypersensitive responses (HRs)
and causes programmed cell death (PCD) in diseased and
nearby cells (Howden and Huitema, 2012). A long-lasting
and broad-spectrum pathogen resistance against secondary
infection known as systemic acquired resistance (SAR) is
conserved among diverse plants (Figure 2). Diverse group of
molecules including salicylic acid is increased in tissues that
occur systematically after localized exposure to a pathogen or
after treatment with synthetic or natural compounds (War et al.,
2011).
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Endophytes as parasites:
Hyperparasitism

It is a biocontrol strategy in which the parasitic host is plant
pathogen. In fungi, hyperparasitism is frequently observed,
but it is rarely seen in bacteria. Instead of using chemicals,
it is frequently used to protect plants against pathogens.
Trichoderma species, a well-known necrotrophic mycoparasite
that targets host mycelium, is the most prevalent hyperparasite
(Steyaert et al., 2003; Qualhato et al., 2013). Fungal parasite
Trichoderma harzianum has a potential ability to parasitize
Epichloe typhina, an agent that causes choke disease in grasses
(Węgrzyn and Górzyńska, 2019). It showed the capability
of parasitizing the already-grown mycelium of E. typhina.
Predatory bacterium such as Bdellovibrio bacteriovorus has the
uncommon property to use the bacterial cytoplasm as nutrients
(Harini et al., 2013). Several pathogenic microbes are predated
by Xanthomonas vesicatoria including Erwinia carotovora,
Pseudomonas syringae, and E. herbicola (McNeely et al., 2017).
Trichoderma spp. has been found to parasitize Rhizoctonia
solani hyphae, thus inhibiting the disease production (Harman
et al., 2004). This property can be used to treat plant diseases
such as damping off in soybean seedlings and root rot in
sugar beet.

Competition for space, infection,
and nutrients

Pathogen adapts to nutrient-rich niches such as the
rhizosphere, phyllosphere, phloem, and xylem. Pathogens
choose different routes into the plant based on their survival
needs. Few enter through stomata such as Pseudomonas
syringae, while others use nectarthodes such as Erwinia
amylovora, which causes potato fire blight disease (Melotto
et al., 2008; Gudesblat et al., 2009). Furthermore, some
pathogens have a distinct acquisition strategy and rely
entirely on the host plant for nutrition (Fatima and Senthil-
Kumar, 2015). Biotrophic pathogens consume nutrients from
host tissues. Such pathogens invading plant tissues are
competitively prevented by non- pathogenic endophytes already
residing in the tissue. Endophytes being ubiquitously present
can act through colonization and can resist the pathogen
attack through competing for resources which could be
available to pathogens through niche overlap. This could
be understood from the study by Blumenstein et al. (2015)
showing elm (Ulmus spp.) endophytes exhibiting extensive
niche overlap against Dutch elm disease pathogen. Carbon
utilizing profiles of asymptomatic endophytes showed high
competition with respect to the utilization of sugar alcohols,
monosaccharides, and tri- and tetra-saccharide. In another
study, Lecanicillium reduced the available nutrients on the leaves

while also inducing plant responses during root colonization
(Litwin et al., 2020).

Lytic enzymes as plant disease
antagonist

Extracellular enzymes that exhibit biocontrol activity
are being increasingly explored as potential antimicrobials
to target pathogenic microbes. Numerous endophytes have
been reported to produce different lytic enzymes such as
chitinase, cellulose, proteases, hemicelluloses, and amylase,
which aid the hydrolysis of polymers (Dutta et al., 2014;
Bodhankar et al., 2017). Lytic enzymes play vital role in the
colonization of endophytes in the host cells through formation
of polysaccharide and protein biofilms (Limoli et al., 2015).
However, it also helps in controlling plant pathogens through
cell wall degradation process (Cao et al., 2009). Specifically,
fungal cell wall mostly comprises of polysaccharides that
provide structural stiffness to the cell wall in phytopathogens.
Therefore, the interference in the glycosidic bonds through
enzymatic lysis can deteriorate the cell wall and thereby cause
cell death. For instance, extracellular enzyme chitinase isolated
from P. aeruginosa suppressed phytopathogen Xanthomonas
campestris, which causes black rot disease in cruciferous
vegetables (Mishra and Arora, 2012).

Lytic enzymes chitinases, β 1-3 glucanases, and proteases
secreted from Trichoderma harzianum, and Trichoderma viride
significantly reduced the incidence of collar rot disease
by Aspergillus niger (Gajera and Vakharia, 2012). It assists
in the breakdown of glycosidic bond. Similarly, β-1, 3-
glucanases synthesized from Trichoderma harzianum showed
antagonistic activity through hydrolyzing O-glycosidic linkage
of β- glucan chains in cell wall of parasitic fungi Sclerotinia
sclerotiorum. It is a serious disease that causes white mold
in Phaseolus vulgaris (Vázquez-Garcidueñas et al., 1998).
However, individual applications of lytic enzymes producers are
ineffective, whereas application with another mechanism works
well.

Induced resistance in plants

It is an indirect mechanism through which endophytes
inhibit pathogens. Endophytes behold the property to decrease
disease susceptibility upon pathogen attack by triggering
induced resistance in their host plant (Card et al., 2016).
Resistance patterns primarily ISR mediated by phytohormones
such as ethylene or jasmonic acid and systemic acquired
resistance (SAR) linked with the salicylic acid regulation is
the known signaling pathways (Figure 2). Root colonization
by endophytes and expression of pathogenesis-related genes
is often correlated with the elicitation of induced systemic
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resistance against infection. For instance, root endophyte
Fusarium solani has been shown to reduce infection in tomato
through activating pathogenesis-related genes such as PR5 and
PR7 (Kavroulakis et al., 2007). The endophyte Bacillus pumilus
along with synthetic benzothiadiazole triggered ISR in contrast
to bacterial spot disease in pepper occurred due to Xanthomonas
axonopodis (Yi et al., 2013). Fusarium oxysporum strain Fo47 via
endophytic-mediated resistance (EMR) was found to suppress
various wilt diseases in tomato, flax, watermelon, and pepper
(Larkin and Fravel, 1999; Trouvelot et al., 2002). Epichloe spp.
showed the ability to potentiate expression of salicylic acid
defense mechanism against Blumeria graminis (Kou et al., 2021).
Expression of pathogenesis-related PR1 protein and callose
deposition by Bacillus cereus induced ISR against Botrytis cinera
and simultaneously activated the SA- and JA/ET (Nie et al.,
2017).

Modulation of biotic stress
controlling mechanisms by
endophytes

Microbial endophytes are well identified for their potential
role in plant growth-promoting activities. However, their
multidimensional interaction with broad range of host plants
makes them potential candidate in stress tolerance mechanism
(Tamosiune et al., 2017). Endophytic microbes are reported
to have numerous beneficial effects in comparison with other
PGPRs in colonizing the internal tissues and remain protected
from the harsh environment and less nutritional requirement
(Pandey et al., 2019). Endophytes commonly reside in plant
tissues and benefit their host plant by eliciting defense response
toward pathogen outbreak and protect them from different
environmental stress (Nanda et al., 2019). Microbial endophytes
being inhabitants of plant tissues are known to exhibit unique
host’s gene expression, physiological and metabolic response
essential in conferring resistance against pests, herbivores, and
phytopathogens. Pathogens cause various harmful diseases in
plants and interfere with growth mechanisms of plants. It
reduces photosynthetic rate, results in stunted growth, and
damages plant tissues (Pérez-Bueno et al., 2019). Endophytes
produce numerous compounds that help plants to interfere with
pathogen by recognizing pathogen related structures. Several
metabolites such as volatiles and antibiotics and hormones
effectively control the expression genes related to stress response
and improve plant growth through induced resistance (Lu et al.,
2021).

Some studies reported the similarity of bioactive compounds
by endophytic microbes to those formed by host plants
(Puri et al., 2006). Different antioxidant enzymes such
as peroxidase (POD), polyphenol oxidase, phenylalanine
ammonia lyase (PAL), lipoxygenase, and chitinase alleviate
biotic stress. Peroxidase enzymes are involved in the wide

range of progressions with hypersensitive response, cross-
linking of phenolics, lignifications, phytoalexin production,
and suberization (Prasannath, 2017). Lipoxygenase belongs to
non-heme iron containing deoxygenase that participates in
stress response through lipid oxidation and acts as signal
molecule to communicate with plants, pathogens, and allied
endophytes as reported by Veronico et al. (2006). Different
endophytes are known to produce peroxidase enzyme, which
play important part in the conversion of H2O2 into H2O as
reported by Caverzan et al. (2012). Endophytes boost plant
immunity by ISR, SAR, pathogenesis-related proteins and via
production of numerous phytohormones to overcome the
pathogen stress (Romera et al., 2019; Oukala et al., 2021). Several
microbes produce surfactin, mycosubtilin, and lipopeptides,
which activated the plant innate immune response. It was
observed that surfactin production suppresses the Fusarium
invasion during seed germination (Eid et al., 2021). Suppression
of virulence genes such as vir A and vir G and expression of
defense-related genes such as PR1, STS, and ANTS induced
resistance toward N. parvum and B. cinerea as reported by
Haidar et al. (2016).

Remodeling and reinforcement of
cell wall to cause physical barriers
against pathogens

Bacterial and fungal endophytes change chemical
and physical characteristic to confer resistance against
phytopathogens and herbivory (Supplementary Table 3). High
deposition levels of callose in guard cells protect plants from
herbivory that cause extensive tissue damage. Callose is β-(1,3)-
D-glucan which protects plant tissues from pathogen attack. It
is usually deposition among the cell wall and plasma membrane
at site of pathogen invasion, at the plasmodesmata and on
other plant tissue to slow down pathogen attack (Wang et al.,
2021). For instance, endophytic bacteria B. amyloliquefaciens
and P. fluorescens increase callose deposition in guard cells and
immunize the W. somnifera plant leaves against A. alternata
(Mishra et al., 2018). Callose deposition and increased lamina
density provides resistance to the host plants. It protects plants
from different herbivores precisely from leaf wounding ants
and aphids (Khare et al., 2018). Upregulation of genes related
to cellulose and lignin deposition and hardening of host cell
wall were enhanced through inoculation of foliar endophytic
fungus Colletotrichum tropicale isolated from T. cocoa. High
cellulose and lignin deposition protects cocoa tree from black
pod disease caused due to Phytophthora spp. (Mejía et al.,
2014). In most cases, fungal endophytes limit insect growth
rate, reducing insect survival and oviposition. Consortium of
chitinase producing endophytes Chitiniphilus sp. MTN22 and
Streptomyces sp. MTN14 showed uniform lignifications and
callose deposition in B. moneri protecting against Meloidogyne
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incognita nematode. Callose deposition in leaves was found
preferentially in the interveinal region of host leaves (Gupta
et al., 2017). Succession of structural variations is observed in
Arabidopsis thaliana seedlings through callose deposition when
inoculated with Gluconacetobacter diazotrophicus and protected
the plant from Ralstonia solanacearum infection (Rodriguez
et al., 2019).

Protection efficacy of B. phytofirmans PsJN against Botrytis
cinera was correlated with the callose deposition and H2O2

production. Further primer expression of PR genes (PR1,
PR2, PR5, and JAZ) and modulation in leaf carbohydrate
metabolites and sugar levels after pathogen attack were reported
from the study (Miotto-Vilanova et al., 2016). Rapid creation
of papillae upon pathogen attack especially against fungal
pathogens acts as physical fence to limit pathogen entry into the
host tissues. Resistance to fungal pathogen is often correlated
with the rapid formation of cell wall appositions called papillae,
which forms specifically upon interaction between plant and
endophytes in response to pathogen attack (Collins et al., 2003).
Furthermore, to papillae, phenolic conjugates associated with
papillae contribute directly in antifungal activity that forms
cross-linking to form a toughened wall that cannot be simply
degraded by pathogens and their associated enzymes (Zeyen
et al., 2002). These are some successful cell wall-associated
defense response mediated through endophytes that can stop
invasive pathogens at an initial phase, before the creation of
disease in plants.

Stimulation of bioactive
metabolites

Secondary metabolites involved in defense response
toward pests, herbivores, and pathogens. Different plant
microbes specially endosymbionts secrete various metabolites
and regulate defense mechanisms and having antimicrobial
properties. Plant secondary metabolites such as steroids,
alkaloids, phenolics, flavonoids, and terpenoids function in
innate immunity and defense response signaling (Isah, 2019).
Phomopsis sp. (fungal endophyte) produce VOCs comprised of
butanol, acetone, sabinene, 1-butanol, and phenethyl alcohol,
which inhibit the Ascomycetes and Deuteromycetes growth
(Singh et al., 2011). VOCs such as caryophyllene, 2-methoxy-
4-vinylphenol, and 3,4-dimethoxystyrol having antifungal
actions released from Sarocladium brachiariae endophytic fungi
found to be effective against Fusarium oxysporum (Yang et al.,
2021). Colonization of asexual Epichloe festucae in agricultural
forage grasses provided protection against herbivorous insects
(Hennessy et al., 2016).

Alkaloid production from Clavicipitaceae and Ascomycota
decreases herbivore feeding and virus transmission. Oxidative
burst and phytoalexin production improved resistance against
Botrytis cinera by grapevine cells and leaf-associated bacteria

Pseudomonas fluorescens (Verhagen et al., 2011). Phytoalexins
are low molecular compound containing antimicrobial,
antifungal, and antiviral activities, which involved in electron
transport and phosphorylation, causes rapid and complete
termination of respiration in B. cinerea conidia (Pezet and
Pont, 1990). Endophytic bacteria (P. migulae 8R6) showed
ACC deminase activity, which limits the phytoplasma-
induced damages in periwinkle through regulating the
stress-related hormone such as ethylene. It improved resistance
toward infection of phytoplasma and reduced the quantity
of symptomatic plants up to 93% (Gamalero et al., 2017).
Analysis of free amino acid in diseased leaves showed significant
impact of P. citrinum and A. terreus to disease resistance and
promotion of sunflower growth (Waqas et al., 2015). Change
in the amino acids delays and changes the progression of
pathogenic microbes. Surfactin especially surfactin A and
other lipopeptides purified from Bacillus subtilis, Fusarium
oxysporum, F. moniliforme, and F. solani were known to play
major role in antifungal activity (Sarwar et al., 2018).

Priming of the plant defense
system

Endophytes can protect plants against pathogen attack
via the host by triggering induced resistance via several
molecular events. Upon pathogen attack, the interaction
between plant endophytic associations leads to an alteration
in second messenger such as Ca2+ in the cytosol (Vadassery
and Oelmüller, 2009). It acts as signaling molecule in sensing
microbe-associated molecular patterns (MAMPs) and initiates
induction of complex immune response. After activation of
certain signals, bacterial and fungal endophytes that are attached
to cell surface receptors activate kinases (cell surface receptor).
When kinases are stimulated, they phosphorylated and send
signals to ethylene/jasmonic acid or salicylic acid against
phytopathogens which triggers ET/JA transduction pathways
(Conn et al., 2008; Ryan et al., 2008). Endophytic colonization
with the host plants downregulates the expression of genes
associated with biotic stress defense response.

Usually, different phytohormones such as jasmonic acid,
ethylene, and salicylic acid triggers induced resistance. JA
and ET pathways are known to encourage resistance toward
necrotrophic pathogens, but the SA pathway activates resistance
toward the biotrophic and hemibiotrophic pathogen (Ding
et al., 2011). ISR is normally triggered upon endophytic
colonization of roots and immunes the plant body for future
attack from pathogens. Several compounds such as flavonoids,
polyphenols, phytoalexins, and signal transduction pathways
were activated by jasmonate/SA or ethylene (Leon-Reyes et al.,
2009; Lebeis et al., 2015). The first report indicating the induced
systemic resistance by Pseudomonas fluorescens 89B-61 elicited
resistance against cucumber anthracnose (Wei et al., 1991).
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Increased synthesis of phenolic metabolites is often correlated
with induced systemic resistance. Contact among B. distachyon
and Microdochium bolleyi (endophytic fungus) isolated from
wheat roots induced ISR against pathogen attack of Fusarium
culmorum. Endophytic fungi upregulated expression of certain
genes such as chitinase 1, BdLOX3, and TaBH1 induced ISR in
wheat (Matušinsky et al., 2022).

Some endophytes can also regulate stress management
through SAR mediated by salicylic acid (Pieterse et al., 2014).
SA is often associated with building up of pathogenesis-related
(PR) proteins and chitinase. Paenibacillus strain (PB2) used
to control Mycosphaerella graminicola induced pathogenesis-
related proteins (PR1), which is considered as a marker of
SAR (Samain et al., 2019). Bacillus subtilis activated a durable
defense response in Arabidopsis thaliana against P. syringae pv.
tomato DC3000 facilitated through salicylic acid/ethylene
and NPR1 protein (Rudrappa et al., 2010). Bacillus subtilis
and Pseudomonas fluorescens-mediated systemic alleviated the
biotic stress in Solanum lycopersicum against Sclerotium rolfsii
(Cappellari et al., 2019). B. aryabhattai showed induction of
defense-related genes protein (PR1) and phytoalexin-deficient 3
in A. thaliana. PR1 gene expression was higher in treated plants
(Portieles et al., 2021). Endophytes shows the upregulation
of different genes and unique signaling pathway according to
dissimilar colonization tactics as reported by Morelli et al.
(2020).

There are reports indicating the distinction of endophytic
mediated resistance from ISR and SAR as jasmonate, salicylic
acid, and ethylene are not involved (Pieterse et al., 2014). Root
endophytes Fusarium oxysporum strains Fo 47 and CS-20 have
the ability to induce endophytic mediated resistance in tomato
and cucumber and protect them against vascular and root
pathogens such as Verticillium dahliae and Pythium ultimatum
(Benhamou et al., 2002). Endophytic mediated resistance in
case of Fusarium species differs from ISR and SAR in terms of
no association of resistance with jasmonic acid and ethylene.
Also, tomato plant established a tri-partite interaction with
endophytic Fusarium oxysporum and other organisms residing
in the host plants. Grasses often establish tripartite association
among endophytic fungi, arbuscular Mycorrhizal fungi, and
Leymus chinensis (Liu et al., 2020).

Defense-related enzymes

Defense mechanisms through endophytes are mediated
through the activation of multiple defense compounds and
enzymes at the site of pathogen attack. Various enzymes such
as PAL, POD, and superoxide dismutase (SOD) are important
antioxidant enzymes, which help in defense oxidative stress
and lipid peroxidation during pathogen invasion (Birben et al.,
2012). Other defense enzymes such as ammonia lyase, chitinase,
and β-1-3 glucanase are associated with resistance induction in
plants. Several endophytic strains confirmed the production of

chitinase enzyme. Some of them are Colletotrichum sublineolum,
Streptomyces hygroscopicus, and Bacillus cereus, which are
known to inhibit the growth of phytopathogenic fungi such as
Rhizoctonia solani, Fusarium oxysporum, Aspergillus niger, and
B. cinerea (Wang et al., 2001; Brzezinska and Jankiewicz, 2012).
ROS that are harmful for plants are neutralized enzymes such
as superoxide dismutases, catalases, peroxidase, glutathione-S-
transferases, and alkyl hydroperoxide reductases. Consortium
of Polyporus vinctus, Trichoderma reesei, and Sphingobacterium
tabacisoli accumulated defense enzymes such as PAL, POD, and
polyphenol oxidase. It triggered systemic resistance contrary to
Fusarium wilt of banana and showed first line of defense (Savani
et al., 2020). Various enzymes are known to mitigate oxidative
stress. Bacillus subtilis (EPC5) isolated from coconut root
samples showed biocontrol activity against Ganoderma lucidum,
which is the causal agent of basal stem rot on coconut palm
through higher induction of phenols, peroxidase, polyphenol
oxidase, and phenylalanine lyase (Rajendran et al., 2015).

Evaluation of potential Streptomyces spp. viz. S. diastaticus,
S. olivochromogenes, S. collinus, and S. griseus triggered
systemic resistance and significantly increased total phenolics,
flavonoids, superoxide dismutase, ascorbate peroxidase, and
guiacol peroxidase which ultimately induced resistance against
Sclertium rolsfii in chickpea (Singh and Gaur, 2017). Endophytic
fungi (Fusarium sambucinum) isolated from mangrove forest
efficiently produced defense enzymes such as laccase (41.5
U L−1), manganese peroxidase (23.6 U L−1), endo-xylanase,
and biosurfactant (Martinho et al., 2019). These enzymes
promote the hydrolysis of lignin and decrease the degree of
polymerization exposing the microfibrils to other enzymatic
attack. Lipoxygenase genes detected in fungal endophyte
Paraconiothyrium variabile isolated from conifer Cephalotaxus
harringtonia showed inhibitory effect on Fusarium oxysporum,
which causes vascular wilt in conifers. Lipoxygenase genes
pvlox1 and pvlox2 unregulated the stress response and acted
as stress marker and signaling compound when exposed
to invading phytopathogens (Bärenstrauch et al., 2020). It
is observed that stress factors affect growth of plants and
productivity. In the present situation, thorough and efficient
research on the response of endophytes on different essential
crops is comparatively inadequate under field conditions.
Indeed, understanding the association between crop and
beneficial microbes can lead to better agricultural performs that
augment plant fitness and improved the yield.

Molecular mechanism of
host–endophyte interaction

It is less understood how the endophyte and host interact.
To effectively manipulate the mutualistic link between the two,
it is crucial to identify, isolate, and characterize the genes
involved in such beneficial interactions. A novel approach for
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closely examining endophytism and revealing the characteristics
required to harbor plants as a habitat has been made available
through endophyte genome analysis (Kaul et al., 2016). It
has revealed genes important for endophytic lifestyle that
are found frequently in endophyte genome such as those
involved in N fixation, mineral acquisition, and stress tolerance
related (Martinez-Garcia et al., 2015). Exudates such as organic
acids, proteins, and amino acids are released by plants
from their roots, acting as communications signals between
host plant and bacterial endophytes (Kawasaki et al., 2016).
Endophytic bacterial colonization is a multistage process that
includes chemotactic movement toward roots, attachment to
root surfaces, entry inside the root, and movement (Kandel
et al., 2017b). There are various genes such as fliC3, MgIB,
pilX, FliI, Aer, and CheZ, which involved in chemotaxis and
motility (Samanta et al., 2016; Liu et al., 2018). Gilmaniella
sp. inoculation in Atractylodes lancea upregulated the genes
and proteins such as terpene skeleton biosynthesis as well as
farnesene synthase related to primary metabolism (carbohydrate
metabolism, carbon fixation) which improve plant growth
(Yuan et al., 2019). Additionally, they noticed an increase in
genes related to signaling such as those related to ethylene
response factors, heat stress, trielix, and basic loop helices.
Sequiterpenoid, phytoalexins such as gossypol and heliocides
can protect cotton plants from herbivores infections (Yang
et al., 2013). The overexpression of oryzalexin’s genes (OsTPS19)
and monoterpene S-limonene serve protective metabolite
against Magnaporthe oryzae and provide resistance to plants
toward infection (Chen et al., 2018). Wheat plants have
improved resistance to Fusarium head blight due to the
presence of Fhb7 gene in endophytic Epichloe fungus, which
encodes glutathione-S-transferase involved in trichothecenes
detoxification (Wang et al., 2020). Dinkins et al. (2017) observed
that Epichloe coenophiala altered the expression of several
WRKY transcription factors linked to the increased resistance
in Lolium arundinaceum. Endophytic fungus increased the
expression of iron transporters and genes involved in fatty
acid production to encourage the Noccaea plant development
(Ważny et al., 2021).

Omics approach to study
endophytes and host plants
interaction

Multiomics, which includes genomes, transcriptomics,
proteomics, and metabolomics, are becoming increasingly
important in plant–microbe interaction (Kaul et al., 2016).
The potential value of endophytes can be investigated using
modern high-throughput genomic technology. An in-depth
examination of endophytes in terms of sequencing and
biological evolution has greatly increased interest in endophyte

research (Selosse et al., 2022). Endophyte genome-wide
analysis directly reflects endophyte colonization preferences
and genetic characteristics on various hosts. This makes
it much easier to find the related genes involved in host
growth, development, insertion elements, metabolism, and
surface attachment (Subudhi et al., 2018). Pantoea ananatis,
an endophytic bacterium with enormous biological potential,
contains genes for hydrolase and fusylic acid resistance protein
(Wu et al., 2020).

Proteomic analysis using mass spectrometry identified
differentially expressed proteins (DEPs) related to the
endophytic Gluconacetobacter and sugarcane interaction
which involved in signaling and cellular recognition (Lery
et al., 2011). Using multiomics analysis, researchers discovered
that liposaccharide and adhesins are potential molecular
determinants underlying the divergent phenotypic behavior
of closely related species during plant–host colonization
(Monteiro et al., 2012). RNA sequencing and microarray
enables the identification of differentially expressed genes,
which involved in upregulation of nutrient acquisition and
chemotaxis (nifH, sbpA, and trpB) in wheat roots colonized
by Azospirillum brasilense (Camilios-Neto et al., 2014).
Proteomics and transcriptomics were used to decode the effect
of endophytes on the host Atractylodes lancea as reported by
Yuan et al. (2019). Metabolomic analysis is a popular technique
for quantifying metabolites. It can be used to complement
transcriptomic and proteomic data, allowing for a well
understanding of host phenotypical structures and elucidating
plant–microbe interaction and mechanism (Chen et al., 2022).
During various stages of plant development, endophytes
synthesize a variety of secondary metabolites and mediate
an increase in metabolites biosynthesis in particular species
and organs (Zhai et al., 2017). The DEGs and metabolites of
anthracnose-resistant cultivars of Camellia oleifera indicate the
critical function of flavonoid biosynthesis in the defense toward
anthracnose using transcriptome and metabolomics (Yang et al.,
2022). Barley metabolo-transcriptome profiling revealed the
activation of the HvCERK1 gene, which confers resistance to
Fusarium graminearum as reported by Karre et al. (2017).

Microarray-based gene expression analysis revealed single
inoculation of endophytic Bacillus megaterium isolated from
black pepper root encouraged growth elevation in A. thaliana
Col O seeds by upregulation of biotic stress related genes
such as MYB4, MYB7, WRR4, ATOSM34, and ATHCHIB.
Also, the bacterial colonization inside the host tissues triggered
ethylene-responsive genes such as ERF71 and RAP2. Other
genes such as BAP1, BTK4, MKK9, and AIBI were found
associated with jasmonic acid and salicylic acid transduction
pathways (Vibhuti et al., 2017). In another study, rice seed
primed with Pseudomonas putida BP25 endogenously colonized
rice and altered root growth and defensive response against
Megnaphorthe oryzae. Defense-related phenols, peroxidase,
and both volatile and nonvolatile metabolites were found in
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primed plants. Also, pathogenesis-related genes associated with
systemic acquired resistance, i.e., OsPR1-1 and OsPR3 were
downregulated by endophytic colonization. Growth-related
genes playing important role in intermodal elongation such as
OsAcO4 and OsACS6 were observed regulating plant growth and
protecting it against blast disease (Ashajyothi et al., 2020).

Although endophytic microorganisms possess great
potential in the agricultural field still, there are certain
challenges involved with the field application of endophytes
that are restricting their wide use. When introduced into a
crop plant, many factors prevail which must be evaluated for
their wide application from lab to field. First, many fungal
endophytes produce toxic secondary metabolites such as
mycotoxins which cause infection in their host plants upon
colonization and reach up to fruits and seeds. There is still
a need to study upon their colonization and viability of the
desired inoculants (Chitnis et al., 2020). It is important to focus
on their unpredictable behavior and inadequate colonization
of the target site in field trial. Instead of proper establishment
of the biological strain, single-strain endophyte inoculants
under application do not show desired plant growth activity.
Well-formulated consortia could be more promising and help
in plant growth promotion through circumventing some of
the critical limitations such as crop specificity of microbes. In
addition, it is necessary to raise awareness among the farmers
about the product’s efficacy of endophytes in comparison with
harmful chemical fertilizers. Main attention for the introduction
of endophytes is the better understanding of plant–microbe
interactions under different sets of conditions that will help
in reducing bulk production of inoculum doses (Fadiji and
Babalola, 2020). Modifying the root exudation chemistry of
plants to choose a more beneficial microbiome is one of the
most effective strategies. The use of advance biotechnological
tools to investigate both the community and functionalities
of endophytic microorganisms could be helpful (White et al.,
2019). Understanding the genetics and engineering of their
complex interactions through next generation sequencing
could be helpful in revealing their taxonomic and functional
diversity. However, multiple field trails, sampling at different
times and locations under different environmental factors, are
an important factor to improve their performance under field
conditions. Also, future studies can focus on the development
of endophytic nanoparticle which could provide a new aspect of
metabolism regulation under extreme condition.

Conclusion

At present, increasing the productivity of crops is important
without any disturbance to the soil fertility, to fulfil food needs
and provide a healthy environment for our future generations.
But due to the incidence of diverse kind of pest and pathogen
in crops, it leads to the decrease in yield of crop plants resulting

substantial crop losses every year. To diminish the loss of crop
yield and to control the diseases, different effective methods
should be used. Endophytes are eco-friendly, non-toxic, easily
applicable, and cost-effective in nature, so farmers use them
as a substitute to fertilizers for sustainable agriculture. More
research needs consideration on the biochemical, molecular, and
genetic mechanisms of endophytes decisive for stress resistance
in different crops. Omics approach can help unravel the
functions of complex plant microbiome, providing information
about competent microbes in terms of stress tolerance and
plant productivity. Endophytes and their metabolites must be
explored to the multiomics level as potentially fruitful research
in the biological control of plant diseases.
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Litwin, A., Nowak, M., and Różalska, S. (2020). Entomopathogenic fungi:
Unconventional applications. Rev Environ Sci Biotechnol. 19, 23–42. doi: 10.1007/
s11157-020-09525-1

Liu, H., Carvalhais, L. C., Crawford, M., Singh, E., Dennis, P. G., Pieterse,
C. M., et al. (2017). Inner plant values: Diversity, colonization and benefits from
endophytic bacteria. Front. Microbiol. 8:2552. doi: 10.3389/fmicb.2017.02552

Liu, H., Wu, M., Liu, J., Qu, Y., Gao, Y., and Ren, A. (2020). Tripartite
interactions between endophytic fungi, arbuscular mycorrhizal fungi, and Leymus
chinensis. Microb. Ecol. 79, 98–109. doi: 10.1007/s00248-019-01394-8

Liu, W., Sun, Y., Shen, R., Dang, X., Liu, X., and Sui, F. (2018). A chemotaxis-
like pathway of Azorhizobium caulinodans controls flagella-driven motility, which
regulates biofilm formation, exopolysaccharide biosynthesis, and competitive
nodulation. Mol. Plant Microbe Interact. 31, 737–749. doi: 10.1094/MPMI-12-17-
0290-R

Loughner, R., Goldman, K., Loeb, G., and Nyrop, J. (2008). Influence of leaf
trichomes on predatory mite (Typhlodromus pyri) abundance in grape varieties.
Exp. Appl. Acarol. 45, 111–122. doi: 10.1007/s10493-008-9183-5

Lu, H., Wei, T., Lou, H., Shu, X., and Chen, Q. (2021). A critical review
on communication mechanism within plant-endophytic fungi interactions
to cope with biotic and abiotic stresses. J. Fungi 7:719. doi: 10.3390/jof70
90719

Maafi, Z. T., Taheri, Z. M., and Subbotin, S. A. (2013). First report of the
giant stem nematode. Ditylenchus gigas, from broad bean in Iran. Plant Dis. 97,
1005–1005. doi: 10.1094/PDIS-01-13-0069-PDN

Macedo-Raygoza, G. M., Valdez-Salas, B., Prado, F. M., Prieto, K. R., Yamaguchi,
L. F., Kato, M. J., et al. (2019). Enterobacter cloacae, an endophyte that establishes
a nutrient-transfer symbiosis with banana plants and protects against the black
sigatoka pathogen. Front. Microbiol. 10:804. doi: 10.3389/fmicb.2019.00804

Madhaiyan, M., Peng, N., Te, N. S., Hsin, C. I, Lin, C., Lin, F., et al. (2013).
Improvement of plant growth and seed yield in Jatropha curcas by a novel

nitrogen-fixing root associated Enterobacter species. Biotechnol. Biofuels 6, 1–13.
doi: 10.1186/1754-6834-6-140

Maela, M. P., van der Walt, H., and Serepa-Dlamini, M. H. (2022). The
antibacterial and anticancer activities and bioactive constituents’ identification of
Alectra sessiliflora bacterial endophytes. Front. Microbiol. 13:870821. doi: 10.3389/
fmicb.2022.870821

Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh,
A., et al. (2017). Biofertilizers: A potential approach for sustainable agriculture
development. Environ. Sci. Pollut. Res. 24, 3315–3335.

Mandyam, K., Loughin, T., and Jumpponen, A. (2010). Isolation and
morphological and metabolic characterization of common endophytes in annually
burned tallgrass prairie. Mycologia 102, 813–821.

Manganyi, M. C., Regnier, T., Tchatchouang, C. D. K., Bezuidenhout, C. C.,
and Ateba, C. N. (2019). Antibacterial activity of endophytic fungi isolated from
Sceletium tortuosum L. (Kougoed). Ann. Microbiol. 69, 659–663. doi: 10.1007/
s13213-019-1444-5

Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P.,
et al. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Mol.
Plant Pathol. 13, 614–629. doi: 10.1111/j.1364-3703.2012.00804.x

Martinez-Garcia, P. M., Ruano-Rosa, D., Schiliro, E., Prieto, P., Ramos, C.,
and Rodríguez-Palenzuela, P. (2015). Complete genome sequence of Pseudomonas
fluorescens strain PICF7, an indigenous root endophyte from olive (Olea europaea
L.) and effective biocontrol agent against Verticillium dahlia. Stand. Genomic Sci.
10:10. doi: 10.1186/1944-3277-10-10

Martinho, V., dos Santos Lima, L. M., Barros, C. A., Ferrari, V. B., Passarini,
M. R. Z., Santos, L. A., et al. (2019). Enzymatic potential and biosurfactant
production by endophytic fungi from mangrove forest in Southeastern Brazil.
AMB Express. 9, 1–8. doi: 10.1186/s13568-019-0850-1

Matušinsky, P., Sedláková, B., and Bleša, D. (2022). Compatible interaction of
Brachypodium distachyon and endophytic fungus Microdochium bolleyi. PLoS
One. 17:e0265357. doi: 10.1371/journal.pone.0265357

McNeely, D., Chanyi, R. M., Dooley, J. S., Moore, J. E., and Koval, S. F. (2017).
Biocontrol of Burkholderia cepacia complex bacteria and bacterial phytopathogens
by Bdellovibrio bacteriovorus. Can. J. Microbiol. 63, 350–358. doi: 10.1139/cjm-
2016-0612

Mejía, L. C., Herre, E. A., Sparks, J. P., Winter, K., García, M. N., Van Bael,
S. A., et al. (2014). Pervasive effects of a dominant foliar endophytic fungus on
host genetic and phenotypic expression in a tropical tree. Front. Microbiol. 5:479.
doi: 10.3389/fmicb.2014.00479

Melotto, M., Underwood, W., and He, S. Y. (2008). Role of stomata in plant
innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 46, 101–
122. doi: 10.1146/annurev.phyto.121107.104959

Mercado-Blanco, J., and Prieto, P. (2012). Bacterial endophytes and root hairs.
Plant Soil 361, 301–306.

Metwaly, A. M., Kadry, H. A., Atef, A., Mohammad, A. E. I., Ma, G., Cutler, S. J.,
et al. (2014). Nigrosphaerin A a new isochromene derivative from the endophytic
fungus Nigrospora sphaerica. Phytochem. Lett. 7, 1–5. doi: 10.1016/j.phytol.2013.
09.001

Meyer, K. M., and Leveau, J. H. (2012). Microbiology of the phyllosphere: A
playground for testing ecological concepts. Oecologia 168, 621–629. doi: 10.1007/
s00442-011-2138-2

Miotto-Vilanova, L., Jacquard, C., Courteaux, B., Wortham, L., Michel, J.,
Clément, C., et al. (2016). Burkholderia phytofirmans PsJN confers grapevine
resistance against Botrytis cinerea via a direct antimicrobial effect combined with a
better resource mobilization. Front. Plant Sci. 7:1236. doi: 10.3389/fpls.2016.01236

Mishra, A., Singh, S. P., Mahfooz, S., Singh, S. P., Bhattacharya, A., Mishra, N.,
et al. (2018). Endophyte-mediated modulation of defense-responsive genes and
systemic resistance in Withania somnifera (L.) Dunal under Alternaria alternata
stress. Appl. Environ. Microbiol. 84, e2845–e2817. doi: 10.1128/AEM.02845-17

Mishra, R., Kushveer, J. S., Khan, M. I. K., Pagal, S., Meena, C. K., Murali, A.,
et al. (2020). 2,4-Di-tert-butylphenol isolated from an endophytic fungus, Daldinia
eschscholtzii, reduces virulence and quorum sensing in Pseudomonas aeruginosa.
Front. Microbiol. 11:1668. doi: 10.3389/fmicb.2020.01668

Mishra, S., and Arora, N. K. (2012). Evaluation of rhizospheric Pseudomonas
and Bacillus as biocontrol tool for Xanthomonas campestris pv campestris. World
J. Microbiol. Biotechnol. 28, 693–702. doi: 10.1007/s11274-011-0865-5

Mitter, B., Pfaffenbichler, N., Flavell, R., Compant, S., Antonielli, L., Petric,
A., et al. (2017). A new approach to modify plant microbiomes and traits by
introducing beneficial bacteria at flowering into progeny seeds. Front. Microbiol.
8:11. doi: 10.3389/fmicb.2017.00011

Mohamad, O. A., Li, L., Ma, J. B., Hatab, S., Xu, L., Guo, J. W., et al. (2018).
Evaluation of the antimicrobial activity of endophytic bacterial populations from

Frontiers in Microbiology 19 frontiersin.org

https://doi.org/10.3389/fmicb.2022.933017
https://doi.org/10.1099/mic.0.070581-0
https://doi.org/10.3390/jof7080615
https://doi.org/10.3390/jof7080615
https://doi.org/10.1094/PHYTO.1999.89.12.1152
https://doi.org/10.1094/PHYTO.1999.89.12.1152
https://doi.org/10.1128/MMBR.00046-12
https://doi.org/10.1128/MMBR.00046-12
https://doi.org/10.1126/science.aaa8764
https://doi.org/10.1126/science.aaa8764
https://doi.org/10.1104/pp.108.133926
https://doi.org/10.1094/MPMI-08-10-0178
https://doi.org/10.1094/MPMI-08-10-0178
https://doi.org/10.3389/fpls.2021.690586
https://doi.org/10.1080/14786419.2018.1478824
https://doi.org/10.1128/microbiolspec.MB-0011-2014
https://doi.org/10.1128/AEM.69.4.1875
https://doi.org/10.1007/s11157-020-09525-1
https://doi.org/10.1007/s11157-020-09525-1
https://doi.org/10.3389/fmicb.2017.02552
https://doi.org/10.1007/s00248-019-01394-8
https://doi.org/10.1094/MPMI-12-17-0290-R
https://doi.org/10.1094/MPMI-12-17-0290-R
https://doi.org/10.1007/s10493-008-9183-5
https://doi.org/10.3390/jof7090719
https://doi.org/10.3390/jof7090719
https://doi.org/10.1094/PDIS-01-13-0069-PDN
https://doi.org/10.3389/fmicb.2019.00804
https://doi.org/10.1186/1754-6834-6-140
https://doi.org/10.3389/fmicb.2022.870821
https://doi.org/10.3389/fmicb.2022.870821
https://doi.org/10.1007/s13213-019-1444-5
https://doi.org/10.1007/s13213-019-1444-5
https://doi.org/10.1111/j.1364-3703.2012.00804.x
https://doi.org/10.1186/1944-3277-10-10
https://doi.org/10.1186/s13568-019-0850-1
https://doi.org/10.1371/journal.pone.0265357
https://doi.org/10.1139/cjm-2016-0612
https://doi.org/10.1139/cjm-2016-0612
https://doi.org/10.3389/fmicb.2014.00479
https://doi.org/10.1146/annurev.phyto.121107.104959
https://doi.org/10.1016/j.phytol.2013.09.001
https://doi.org/10.1016/j.phytol.2013.09.001
https://doi.org/10.1007/s00442-011-2138-2
https://doi.org/10.1007/s00442-011-2138-2
https://doi.org/10.3389/fpls.2016.01236
https://doi.org/10.1128/AEM.02845-17
https://doi.org/10.3389/fmicb.2020.01668
https://doi.org/10.1007/s11274-011-0865-5
https://doi.org/10.3389/fmicb.2017.00011
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-933017 October 13, 2022 Time: 10:16 # 20

Chaudhary et al. 10.3389/fmicb.2022.933017

Chinese traditional medicinal plant licorice and characterization of the bioactive
secondary metabolites produced by Bacillus atrophaeus against Verticillium
dahliae. Front. Microbiol. 9:924. doi: 10.3389/fmicb.2018.00924

Molina-Montenegro, M. A., Acuña-Rodríguez, I. S., Torres-Díaz, C., Gundel,
P. E., and Dreyer, I. (2020). Antarctic root endophytes improve physiological
performance and yield in crops under salt stress by enhanced energy production
and Na+ sequestration. Sci. Rep. 10, 1–10. doi: 10.1038/s41598-020-62544-4

Monteiro, R. A., Balsanelli, E., Tuleski, T., Faoro, H., Cruz, M. L., and Wassem,
R. (2012). Genomic comparison of the endophyte Herbaspirillum seropedicae
SmR1 and the phytopathogen Herbaspirillum rubrisubalbicans M1 by suppressive
subtractive hybridization and partial genome sequencing. FEMS Microbiol. Ecol.
80, 441–451. doi: 10.1111/j.1574-6941.2012.01309.x

Morelli, M., Bahar, O., Papadopoulou, K. K., Hopkins, D. L., and Obradović, A.
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