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Abstract
Heat transfer of magnetothermal convection with the presence or absence of the magnetic

force acting on the susceptibility gradient (fsc) was examined by three-dimensional numeri-

cal computations. Thermal convection of water enclosed in a shallow cylindrical vessel

(diameter over vessel height = 6.0) with the Rayleigh-Benard model was adopted as the

model, under the conditions of Prandtl number 6.0 and Ra number 7000, respectively. The

momentum equations of convection were nondimensionalized, which involved the term of

fsc and the term of magnetic force acting on the magnetic field gradient (fb). All the computa-

tions resulted in axisymmetric steady rolls. The values of the averaged Nu, the averaged

velocity components U, V, andW, and the isothermal distributions and flow patterns were

almost completely the same, regardless of the presence or absence of the term of fsc. As a
result, we found that the effect of fsc was extremely small, although much previous research

emphasized the effect with paramagnetic solutions under an unsteady state. The magni-

tude of fsc depends not only on magnetic conditions (magnitudes of magnetic susceptibility

and magnetic flux density), but also on the thermal properties of the solution (thermal con-

ductivity, thermal diffusivity, and viscosity). Therefore the effect of fb becomes dominant on

the magnetothermal convection. Active control over the density gradient with temperature

will be required to advance heat transfer with the effect of fsc.

Nomenclature
br = radial component of magnetic flux density [T =Wb/m2 = V·s/m2]
bϕ = circumferential component of magnetic flux density [T =Wb/m2 = V·s/m2]
bz = vertical component of magnetic flux density [T =Wb/m2 = V·s/m2]
~b = magnetic flux density vector;~b ¼ ðbr; b�; bzÞ
BR = nondimensionalized radial component of magnetic flux density [–]
Bθ = nondimensionalized circumferential component of magnetic flux density [–]
BZ = nondimensionalized vertical component of magnetic flux density [–]
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~B = nondimensionalized magnetic flux density vector;~B ¼ ðBR; By; BZÞ
ba = representative magnetic flux density; ba = μ0 i /hz [T]
fb = magnetic force acting on the magnetic field gradient [N/m3]
fsc = magnetic force acting on the susceptibility gradient [N/m3]
fmR = radial component of magnetic force [N/m3]
fmθ = circumferential component of magnetic force [N/m3]
fmZ = vertical component of magnetic force [N/m3]
~fm = magnetic force vector; ~fm ¼ ðfmR; fmy ;fmZÞ
FmR = nondimensionalized radial component of magnetic force [–]
Fmθ = nondimensionalized circumferential component of magnetic force [–]
FmZ = nondimensionalized vertical component of magnetic force [–]
~Fm = nondimensionalized magnetic force vector; ~Fm ¼ ðFmR; Fmy ;FmZÞ
Gr = Grashof number; Gr ¼ g b0 ðΘhot�ΘcoldÞ h3z

n2 [–]
~g = gravitational vector;~g ¼ ð0; 0; � gÞ
g = gravitational acceleration (9.807) [m/s2]
hz = height of vessel, standard length for the nondimensionalization [m]
i = electric current in a coil [A]
Nu = Nusselt number [–]
Ocoil = Origin of the cylindrical coordinate system on the magnet coil (Fig 1)
Ovessel = Origin of the cylindrical coordinate system on the liquid vessel at its center (Fig 2)
p = pressure [N/m2]
P = nondimensionalized pressure [–]
p0 = pressure at Θ0 [N/m2]
p’ = perturbation term of pressure [N/m2]
Pover = representative point located on the z axis in the vicinity of the upper coil edge
Punder = representative point located on the z axis in the vicinity of the lower coil edge
Pr = Prandtl number; Pr = / [–]
r = radial component of the cylindrical coordinate system on the vessel to carry out the

computation of convection [m]
R = nondimensionalized radial component of the cylindrical coordinate system on the ves-

sel to carry out the computation of convection [–]
Rcoil = nondimensionalized radial component on the cylindrical coordinate system defined

at the center of the magnet coil [–]

Ra = Rayleigh number; Ra ¼ g b0 ðΘhot�Θcold Þ h3z
a n [–]

Ram = magnetic Rayleigh number; Ram ¼ Ra � 1þ g
2
� @ ðB2Þ

@ Z

� �
[–]

t = time [s]
T = nondimensionalized temperature [–]
u = radial velocity component [m/s]
~u = velocity vector;~u ¼ ðu; v;wÞ
U = nondimensionalized radial velocity component [–]
~U = nondimensionalized velocity vector; ~U ¼ ðU;V ;WÞ
v = circumferential velocity component [m/s]
velmax = actual maximum velocity [m/s]
V = nondimensionalized circumferential velocity component [–]
Velmax = nondimensionalized maximum velocity [–]
w = axial velocity component [m/s]
W = nondimensionalized axial velocity component [–]
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Fig 1. (a) is a schematic illustration of the positional relationship between the cylindrical vessel and the
solenoidal superconducting magnet coil. In the bore of the magnet, the vertical component of magnetic force

is symmetrical about the coil center (see bold arrows). The magnitude of gradð~b~2Þ becomes largest around
the representative points of Pover and Punder, and its direction is oriented to the vertical. Consequently, the
effect of gravity can be most efficiently controlled by the magnetic force. (b) the representative points a–i
marked on the vertical cross-section of the cylindrical vessel.

doi:10.1371/journal.pone.0160090.g001
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Fig 2. (a) and (b) show the horizontal and vertical cross-sections of the computation meshes used in this
study. (c) and (d) show the three-dimensional numerical computations of Rayleigh-Benard convection at
Pr = 6.0 and Ra = 7000. (c) is the isothermal distribution cross-sectioned on the Z = 0 plane. (d) is the
isothermal and velocity distributions cross-sectioned on the θ = 0 plane.

doi:10.1371/journal.pone.0160090.g002
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X = nondimensionalized x-direction of Cartesian coordinates system defined on the center
of the magnet coil Ocoil [–]

Y = nondimensionalized y-direction of Cartesian coordinates system defined on the center
of the magnet coil Ocoil [–]

z = axial component [m]
Z = nondimensionalized axial component [–]
Zcoil = nondimensionalized axial component on the coordinate system defined on the center

of the magnet coil Ocoil [–]

Greek letters
α = thermal diffusivity of solution [m2/s]

β = volumetric coefficient of expansion of fluid [1/K]
β0 = volumetric coefficient of expansion of fluid at Θ0 [1/K]

γ = nondimensional parameter representing the magnitude of the magnetic force; g ¼ χ0b0
2

m0 g hz
[–]

θ = angular coordinate for nondimensionalized equation [rad]
Θhot = hot surface temperature [K]
Θcold = cold surface temperature [K]
Θ0 = representative temperature [K]
μ = coefficient of viscosity [Pa�s]
μ0 = magnetic permeability of vacuum [H/m]
ν = kinematic viscosity [m2/s]
ρ(Θ) = density of solution, this is a function of temperature [kg/m3]
ρ0 = density of solution at Θ0 [kg/m3]
ρ1 = density of solution sufficiently away from the (Θ) [kg/m3]
τ = nondimensionalized time [–]
ϕ = angular coordinate [rad]
χm = mass magnetic susceptibility [m3/kg]
χ0 = volumetric magnetic susceptibility at Θ0 [–]
χv = volumetric magnetic susceptibility [–]
r2 = differential operator (Laplacian)

Introduction
Magnetic force, a body force, was characterized by M. Faraday in 1847 [1]. In order to utilize
the magnetic force as a driving force in heat and mass transfer, an extremely large magnetic
flux density is necessary, since the magnetic susceptibility of a diamagnetic substance, even that
of paramagnetic materials, is very small. Because generating such a large magnetic flux was dif-
ficult at that time, there was hardly any research on magnetic force until the control over ther-
mal convection with a magnetic force was published in 1991 by Braithwaite, et al. [2,3]. Owing
to the practical progress of a helium-free superconducting magnet, which makes it possible to
generate a strong and stable magnetic field for a long time, many kinds of studies related to
magnetic force rapidly spread into a variety of fields in the latter half of the 1990s. At present,
technical applications of magnetic force, such as heat and mass transfer [4–9] and magnetic
separation [10–16] are being explored in new fields of engineering, as well as in the fields of
biochemistry [17–21], crystal growth [22–28], and other magneto-sciences [29–35].

Generally, two different forces, i.e., χv
2m0

gradð~bÞ2 and ð~bÞ2
2m0

gradðχvÞ, are known as the magnetic

force. They are derived by the gradient of the magnetic energy, as shown in Ref. [36]. Further

details are also given in Ref [37]. The force of χv
2m0

gradð~bÞ2 is well known as a conventional
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magnetic force. On the other hand, the force of ð~bÞ2
2m0

gradðχvÞ is known as “(magnetic) concen-

tration gradient force” [36, 38–40], “paramagnetic (gradient) force” [41–43], or “concentration

gradient paramagnetic force” [44]. In this paper, the force of χv
2m0

gradð~bÞ2 is called “a magnetic

force acting on the magnetic field gradient (fb)”, and the force of
ð~bÞ2
2m0

gradðχvÞ is called “a mag-

netic force acting on the susceptibility gradient (fsc)”. Most studies using fsc are associated with
research on the magnetic effect on diffusive convection [28, 36–47]. On the other hand, most
studies on magnetothermal convection [3–6,8,9] have been conducted with the force of fb only.
The difference in the impact of these forces has been studied in the field of diffusive convection
[38, 39, 46], but it is virtually unknown in the field of thermal convection. This is one of the
motives of this study.

The volumetric magnetic susceptibility χv is a nondimensional property expressed by the
product of mass magnetic susceptibility χm and density ρ. Where there is a local specific change
in density due to temperature difference or the like, nonuniformity in a magnetic force occurs,

even if gradð~b2Þ stays constant. On the one hand, conventional thermal convection, i.e. Ray-
leigh-Benard convection, is induced by the nonuniformity in the medium due to the local tem-
perature differences, the driving force of which is attributable to the gravitational force.
Gravitational force is a body force, as is magnetic force, hence the driving mechanisms in Ray-
leigh-Benard convection and magnetothermal convection have many features in common,
except for one great difference between the two: the direction of the driving force in magnetic

force is dependent on that of gradð~b2Þ, while the driving force in Rayleigh-Benard convection
directs only vertically. Ozoe, et al. focused on the common features of the driving forces in
magnetothermal convection and Rayleigh-Benard convection, and nondimensionalized the
momentum equation where both the Boussinesq term and the magnetic force term of fb were
joined together [5,6]. The newly introduced nondimensional parameter is the magnetic Ray-
leigh number, Ram. The method by Ozoe, et al. is often utilized in numerical computations of
magnetothermal convection [8, 34].

In this study, the effect of fsc on convection was numerically examined. Nobody knows how
much influence the presence or absence of the term of fsc has on the isothermal distributions
and flow patterns. In Discussion, the effect of fsc was verified with actual magnet size and ther-
mal properties.

Equations
In many cases, the magnetothermal convection was approximated by the following momentum
equation.

r0

D~u
Dt

¼ �gradðpÞ þ mr2~u þ ðrðΘÞ � r1Þ~g þ
χv

2m0

gradð~b2Þ ð1Þ

The first term in the right-hand side denotes pressure. The second term denotes viscosity,
and the third term is buoyancy by Boussinesq approximation. The fourth term corresponds to
the term of fb.

In this study, the following equation was considered as the momentum equation of magne-
tothermal convection.

r0

D~u
Dt

¼ �gradðpÞ þ mr2~u þ ðrðΘÞ � r1Þ~g þ χv

2m0

gradð~b2Þ þ ð~bÞ2
2m0

gradðχvÞ ð2Þ

The first to fourth terms on the right-hand side are the same as those in Eq 1. The newly
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added fifth term corresponds to the term of fsc. A similar expression is presented in Ref [31].
Eq 2 can be arranged below.

r0

D~u
Dt

¼ �gradðpÞ þ mr2~u þ ðrðΘÞ � r1Þ~g þ
1

2m0

grad½χv ð~bÞ2� ð3Þ

In the process of the nondimensionalization of Eq 3, we advanced the Ozoe and Tagawa
approach [5,6]. We also adopted the Hellums and Churchill method [48]. As shown in Appen-
dix A, we succeeded in the nondimensionalization of Eq 3. In the bore of a solenoidal subper-
conducting magnet, we know the magnetic force distributes axisymmetrically. Thereby the
momentum equation was expressed with the cylindrical coordinate system (R, θ, Z) as given in
Eq 4 below. Here, B2 = BR

2 + Bθ
2 + BZ

2.

@ U
@ t

þ U
@ U
@ R

þ V
R
@ U
@y

� V2

R
þW

@ U
@ Z

¼ � @ P
@ R

þ Pr
@

@ R
1

R
� @ ðR � UÞ

@ R

� �
þ 1

R2

@2U

@y2
� 2

R2

@ V
@y

þ @2U
@ Z2

� �
� g
2
� Pr � Ra � @ ðT � B2Þ

@ R

ð4aÞ

@ V
@ t

þ U
@ V
@ R

þ V
R
@ V
@y

þ U � V
R

þW
@ V
@ Z

¼ � 1

R
@ P
@ y

þ Pr
@

@ R
1

R
� @ ðR � VÞ

@ R

� �
þ 1

R2

@2V

@y2
þ 2

R2

@ U
@y

þ @2V
@ Z2

� �
� g
2
� Pr � Ra � 1

R
@ ðT � B2Þ

@ y

ð4bÞ

@W
@ t

þ U
@W
@ R

þ V
R
@W
@y

þW
@W
@ Z

¼ � @ P
@ Z

þ Pr
1

R
@

@ R
R � @W

@ R

� �
þ 1

R2

@2W

@y2
þ @2W

@ Z2

� �
� Pr � Ra � T � g

2
� Pr � Ra � @ ðT � B2Þ

@ Z

ð4cÞ

The nondimensionalization processes to introduce Eqs 4a–4c from Eq 3 are described in
Appendix A.

Eq 4c is expanded as follows.

@W
@ t

þ U
@W
@ R

þ V
R
@W
@y

þW
@W
@ Z

¼ � @ P
@ Z

þ Pr
1

R
@

@ R
R � @W

@ R

� �
þ 1

R2

@2W

@y2
þ @2W

@ Z2

� �

� Pr � Ra � T � g
2
� Pr � Ra � T � @ ðB

2Þ
@ Z

� g
2
� Pr � Ra � B2 @ T

@ Z

ð4dÞ

The fourth term in the right-hand side is the nondimensionalized fb, and the fifth term is
the nondimensionalized fsc.

By the use of Ram, Eq 4d is presented as follows.

@W
@ t

þ U
@W
@ R

þ V
R
@W
@y

þW
@W
@ Z

¼ � @ P
@ Z

þ Pr
1

R
@

@ R
R � @W

@ R

� �
þ 1

R2

@2W

@y2
þ @2W

@ Z2

� �

� Pr � Ram � T � g
2
� Pr � Ra � B2 @ T

@ Z

ð4eÞ

When we ignored the effect of fsc, the z-directional component of magnetic force is
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presented as follows.

@W
@ t

þ U
@W
@ R

þ V
R
@W
@y

þW
@W
@ Z

¼ � @ P
@ Z

þ Pr
1

R
@

@ R
R � @W

@ R

� �
þ 1

R2

@2W

@y2 þ @2W
@ Z2

� �
� Pr � Ram � T ð4fÞ

To conduct the three-dimensional numerical computation, the equation of continuity (Eq
5) and the energy equation (Eq 6), as presented below, are indispensable.

div~u ¼ 0 ð5Þ

DΘ
Dt

¼ ar2 Θ ð6Þ

In a way similar to that of Hellums and Churchill [48], Eqs 5 and 6 were nondimensiona-
lized as shown below.

1

R
@

@ R
ðR � UÞ þ 1

R
@ V
@�

þ @W
@ Z

¼ 0 ð7Þ

@ Τ

@ t
þ U

@ Τ

@ R
þ V

R
@ Τ

@y
þW

@ Τ

@ Z
¼ 1

R
@

@ R
ðR � @Τ

@ R
Þ þ 1

R2

@2Τ

@y2
þ @2Τ

@ Z2
ð8Þ

Finally, five unknown numbers of velocity, U, V, andW, temperature T, and pressure P,
were analytically solved by using the five Eqs 4a, 4b, 4e, 7 and 8.

In this study, other computations using the five eqs 4a, 4b, 4f, 7 and 8 were independently
conducted as described in the last paragraph in Introduction.

Models
In this study, thermal convection in the Rayleigh-Benard model was used for a comparison
between new types of magnetothermal convection with the terms of fb and fsc (e.g., Eq 3) and
the conventional magnetothermal convection with fb only (e.g., Eq 1). We used a cylindrical
vessel where the aspect ratio (diameter/height) was 6.0. For the conditions of velocity bound-
ary, the top and bottom surfaces and the sidewall were solid. For the conditions of temperature
boundary, the top surface was cooled, the bottom heated, and the sidewall adiabatic.

Fig 1(a) is a schematic illustration of the positional relationship between the cylindrical ves-
sel and the solenoidal superconducting magnet coil. The distribution of magnetic field was
numerically computed in accordance with an actual solenoidal superconducting magnet; i.e.,
the size of the solenoidal magnet corresponds to 200 mm in the inner diameter, 400 mm in the
outer diameter, and 200 mm in height in the direction z. The magnet coil was approximated
with a multi-layer coil where a single coil was uniformly arranged on the coil cross-section
(100 mm in width and 200 mm in height) with 40 turns in the radial direction and 80 turns in
the direction z, for 3,200 turns in all. The distribution of the magnetic field around the multi-
layer coil was calculated by the superposition of all the magnetic field distributions established
by each single coil. The magnet bore was orientated vertically and the inclination of the magnet
was disregarded.

In the bore of the magnet, the magnetic field was nondimensionalized by a process similar

to that of Ozoe, et al [5, 6]. The nondimensionalized magnetic force vector ~Fm ¼
ðFmR; Fmy ;FmZÞ was defined by using the nondimensionalized magnetic field hereinbefore. The
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vertical component of magnetic force (FmZ) is symmetrical about the coil center. On the other
hand, the radial component of magnetic force (FmR) directs axisymmetricaly, and the magni-
tude theoretically becomes zero as it approaches the axis z. For a diamagnetic substance like
water, the directions of FmZ and that of gravity are mutually reversed at the upper coil edge,
and the effect of gravitational force is cancelled by the magnetic force, weakening the intensity
of thermal convection. At the lower bore edge, the magnetic force enhances the magnitude of
convection because the directions of FmZ and gravitational force are equal. Hence in this study,
a representative point located on the z axis in the vicinity of the upper coil edge (Pover) and that
of the lower coil edge (Punder) were selected for the computations.

Fig 1(b) shows the representative points a–imarked on the vertical cross-section of the
cylindrical vessel. The cylindrical vessel was horizontally located so that the vessel center (point
d in Fig 1(b)) coincided with the Pover or the Punder. The reason why the representative points
of Pover and Punder were selected is that the solenoidal superconducting magnet has its largest

gradð~b2Þ in the vicinity of the bore edge and, what is more, the direction of gradð~b2Þ is oriented
to that of the direction of the bore axis. Consequently, the effect of FmR is relieved, and the
effect of gravity can be most efficiently controlled by the magnetic force FmZ. This simplifica-
tion is useful for investigating the effect of fsc on the heat transfer of convection.

Computational Methodology
We utilized an equal-interval staggered mesh on the cylindrical coordinate system. We also
used the Highly Simplify Marker and Cell method (HSMACmethod) [49] and solved the equa-
tions by means of the explicit method. The averaged Nusselt number (Nu) was measured on
the cooled surface by using the temperature gradient calculated on each spatially-weighted
mesh. The velocity distributions along the center axis of the cylindrical vessel were computed
by means of Ozoe and Toh’s approach [50].

The working fluid was assumed to be water at room temperature (26.5°C). Prandtl number
(Pr) was set at 6.0. The effect of the magnetic force on water is worth examining for a number
of studies of protein crystal growth [22,26] and magnetic separation [13,16]. In addition, we
referred to Silveston’s results [51]. Silveston’s results represent the relationship between Ra and
Nu on the double logarithmic chart. The most sensitive range of Ra to evaluate the effect of fsc
with the use of Nu is in the 5000< Ra< 8000 range. In this study, Ra was fixed at 7000.

As regards the number of meshes for the numerical computation, a preliminary three-
dimensional numerical computation of Rayleigh-Benard convection was carried out at Pr = 6.0
and Ra = 7000 by changing the number of meshes. The maximum number of meshes, where
almost no change in the Nu number was found, was utilized, even though the number of meshes
was large. All the results computed with different mesh sizes are shown in Table 1. Based on
these results, we adopted the numbers 31, 61, and 41 in directions R, θ, and Z. Fig 2(a) and 2(b)

Table 1. Influence of the number of computational meshes. Pr = 6.0, Ra = 7000.

R θ Z Nu

21 41 25 2.191

21 41 31 2.175

31 61 36 2.149

31* 61* 41* 2.145*

31 61 46 2.143

* The result of (R, θ, Z) = (31, 61, 41) was used as the initial condition in all the cases of computations of

magnetothermal convection.

doi:10.1371/journal.pone.0160090.t001

PLOSONE | DOI:10.1371/journal.pone.0160090 September 8, 2016 9 / 26



show the horizontal and vertical cross-sections of the computation meshes used in this study.
The horizontal cross-section passing through the center of the vessel was defined as the Z = 0
plane, and the height of the vessel was regarded as the standard length hz (= 1.0) for the nondi-
mensionalization. The condition for the nondimensional temperature at Z = ± 0.5 hz was T =
�0.5. Fig 2(c) and 2(d) show the temperature distribution on the Z = 0 plane and the isothermal
and velocity distributions on the θ = 0 plane in Rayleigh-Benard convection at Pr = 6.0 and
Ra = 7000 on the aforementioned computation meshes. This result was utilized as the common
initial condition for all the computations of magnetothermal convection.

The magnitude of magnetic force was adjusted with the nondimensional parameter γ,
which represents the intensity of magnetic force [6–8]. The value of γ was varied to
−1.25471×10−4 and −6.27353×10−5. When γ is −1.25471×10−4, a pseudo-weightless condition
is established at Pover, and a strong hyper-gravity condition about twice that of gravity is simul-
taneously established at Punder. When γ is −6.27353×10−5, a partial gravity condition about half
that of gravity is established at Pover, and a weak hyper-gravity condition of 1.5 times that of
gravity is simultaneously established at Punder. Table 2 show the magnitudes of FmR, FmZ, and
the resultant force between the FmZ and gravity, measured at the typical points (a ~ i) on the
vessel cross section shown in Fig 1(b) at Pover (z = 20 hz). Similarly, Table 3 summarized the
magnitudes of FmR, FmZ, and the resultant force, measured at the typical points in Fig 1(b) at
Punder (z = 20 hz). Notice that the magnitude of nondimensionalized gravitational force is pre-
sented as 1. In the pseudo-weightless condition, the maximum vertical driving force (i.e., FmZ

+ 1) was only 2.2% of gravity at point i (γ is −6.27353×10−5), and the maximum FmR was only
4.9% of gravity at the same point i. Thus, the representative points of Pover and Punder are suit-
able for evaluating the effect of fsc.

In this study, magnetothermal convection with the terms of fb and fsc was labeled as cases A
to D, while conventional magnetothermal convection, that is, the magnetic force term using fb
only, was labeled as cases E to H. The vessel center in cases A, B, E, and F was located at Pover.
The vessel center in cases C, D, G, and H was located at Punder. The magnitude of γ was set at
−1.25471×10−4 in cases A, D, E, and H, and was set at −6.27353×10−5 in cases B, C, F, and G.

Results
Fig 3 shows the isothermal distributions on the Z = 0 cross-section in cases A to D, and also the
isothermal and velocity distributions on the θ = 0 cross-section. Similarly, Fig 4 shows the

Table 2. Radial and vertical components of the magnetic force calculated at representative points on the vessel at Pover (z = 20 hz).

γ -1.25471×10−4 -6.27353×10−5

FmR FmZ FmZ +1 FmR FmZ FmZ +1

a* 0.000 -0.989 0.011 0.000 -0.494 0.506

b -2.127 ×10−2 -0.992 0.008 -1.063 ×10−2 -0.496 0.504

c -4.082 ×10−2 -1.001 0.001 -2.041 ×10−2 -0.501 0.499

d 0.000 -1.000 0.000 0.000 -0.500 0.500

e -2.344 ×10−2 -1.004 -0.004 -1.172 ×10−2 -0.502 0.498

f -4.500 ×10−2 -1.013 -0.013 -2.250 ×10−2 -0.506 0.494

g 0.000 -1.010 -0.010 0.000 -0.505 -0.495

h -2.565 ×10−2 -1.013 -0.013 -1.282 ×10−2 -0.507 0.494

i -4.926 ×10−2 -1.022 -0.022 -2.463 ×10−2 -0.511 0.489

* Representative points a—i are shown in Fig 1(B).

doi:10.1371/journal.pone.0160090.t002
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isothermal and velocity distributions in cases E to H. The figure numbers A to H in Figs 3 and
4 correspond to cases A to H, respectively. Fig 5 shows the transient response curves of the
velocity components U, V, andW and Nu in all cases. Table 4 summarizes the values of U, V,
andW and Nu under the steady state in the Rayleigh-Benard convection at Pr = 6.0 and
Ra = 7000 and the results of cases A to D. Table 5 summarizes the values of U, V, andW and
Nu in the cases E to H. In these tables, the actual averaged velocity components u, v, and w,
and the maximum velocities Velmax and velmax are also exhibited, considering the standard
length hz and thermal diffusivity α to be 0.005 m and 1.456×10−7 m2/s, respectively. Here, α is
the thermal property of water at 26.5°C.

As shown in Figs 3 and 4, every convection (cases A to H) resulted in axisymmetric steady
rolls. Therefore, the circumferential velocity component V became nearly zero in the transient
response curves in Fig 5.

As the effect of fsc, no differences were revealed in any of the comparisons of the isothermal
and velocity distributions between case A and case E, case B and case F, case C and case G, and
case D and case H. Furthermore, as shown in Tables 4 and 5, the averaged Nu and the U, V,
andW coincided almost completely, with or without the term of fsc. In addition, as shown in
Fig 5, the transient response curves were completely the same regardless of the presence or
absence of the term of fsc. In summary, the computational results strengthen the fact that the
effect of fsc was extremely small.

Discussions

Verification of the effect of fsc
We investigated the effect of fsc by using practical data of a magnetic field and thermal proper-
ties. When the thermal convection of water at 26.5°C is completely suppressed by an upward
magnetic force, the intensity of the magnetic force should be almost equal to the gravitational
force of water. This is calculated by the product of water density (996.6 kg/m3) and gravita-
tional acceleration (9.807 m/s2), and is estimated as 9774 N. Hence a magnetic field condition
of 1362 T2/m is necessary to completely suppress the thermal convection of water (See Appen-
dix B).

With reference to the helium-free superconducting magnet (13T-100, JASTEC Co., Ltd) in
the National Institute for Materials Science in Tsukuba, the maximum values of the vertical

magnetic induction bz and bz
d bz
dz
are 13.00 T and 585.94 T2/m, respectively. Under such

Table 3. Radial and vertical components of the magnetic force calculated at representative points on the vessel at Punder (z = 20 hz).

γ -6.27353×10−5 -1.25471×10−4

FmR FmZ FmZ +1 FmR FmZ FmZ +1

a* 0.000 0.505 1.505 0.000 1.010 2.010

b -1.282 ×10−2 0.507 1.507 -2.565 ×10−2 1.013 2.013

c -2.463 ×10−2 0.511 1.511 -4.926 ×10−2 1.022 2.022

d 0.000 0.500 1.500 0.000 1.000 2.000

e -1.172 ×10−2 0.502 1.502 -2.344 ×10−2 1.004 2.004

f -2.250 ×10−2 0.506 1.506 -4.500 ×10−2 1.013 2.013

g 0.000 0.494 1.494 0.000 0.989 1.989

h -1.063 ×10−2 0.496 1.496 -2.127 ×10−2 0.992 1.992

i -2.041 ×10−2 0.501 1.501 -4.082 ×10−2 1.001 2.001

* Representative points a—i are shown in Fig 1(B).

doi:10.1371/journal.pone.0160090.t003
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Fig 3. The isothermal and velocity distributions of magnetothermal convection in cases A, B, C, and D cross-sectioned
with Z = 0 plane and θ = 0 plane. The figure numbers A to D correspond to each case. Pr and Ra are 6.0 and 7000, respectively.
The magnitudes of γ were set at −1.25471×10−4 in cases A and D, and at −6.27353×10−5 in cases B and C.

doi:10.1371/journal.pone.0160090.g003
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Fig 4. The isothermal and velocity distributions of magnetothermal convection in cases E, F, G, and H cross-sectioned
with Z = 0 plane and θ = 0 plane. The figure numbers E to H correspond to each case. Pr and Ra are 6.0 and 7000,
respectively. The magnitudes of γ were set at −1.25471×10−4 in cases E and H, and at −6.27353×10−5 in cases F and G. Ram of
cases E to H corresponds to 0, 3500, 10500, and 14000, respectively.

doi:10.1371/journal.pone.0160090.g004
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conditions, the magnetic induction at Pover and Punder becomes 9.16 T. If this magnet is to have
the capability of generating a magnetic field condition of 1362 T2/m, the magnetic induction
should be increased up to 19.82 T or more (See Appendix C), and the magnetic flux density at
Pover and Punder should be 13.97 T (See Appendix D).

On the other hand, in order to realize the Rayleigh-Benard convection of Pr = 6.0 and
Ra = 7000 in a cylindrical vessel of 0.005 m in height, the temperature difference between the

Fig 5. The transient response curves of velocity componentsU, V, andW and Nu in all cases.We can find that these curves
were completely the same regardless of the presence or absence of the term of fsc.

doi:10.1371/journal.pone.0160090.g005
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cooled and heated surfaces should be modulated to 2.80°C (See Appendix E). This system is
practicable when the cooled surface of the vessel is adjusted to 25.1°C and the heated one to
27.9°C. The density of water was estimated to be 996.9 kg/m3 at 25.1°C, and 996.2 kg/m3 at
27.9°C, respectively (the equation F1 and F2 in Appendix F). Then, the value of d

d z
ð rðΘÞ Þ was

deduced for 140 kg/m3 (the equation F3 in Appendix F). Finally, when the vessel was located at
Pover and Punder and the magnetic field condition of 1362 T2/m was applied, the value of fsc, i.e.,
ð~bÞ2χm
2m0

d
d z
ðrðΘÞ Þ, could be estimated as −98.39 N (the equation F4 in Appendix F). This value

was only a 1.007% contribution as compared to the value of 9774 N.
If a thermal convection with the same magnitude mentioned above (Ra = 7000) is realized

in a half-sized cylindrical vessel (hz = 0.0025 m and Ra = 7000), the temperature difference
between the hot and cold surfaces should increase to eight times larger than that of the present

Table 4. Computational results of the magnetothermal convection with the terms of fb and fsc. All the computations converged on a stable solution.

Case Ra Ram
1) U 1) V 1) W Velmax

3) Nu
2) (u) [mm/s] 2) (v) 2) (w) 2) (velmax)

7000 7000 11.48 9.539×10−3 7.972 30.53 2.145

(3.343×10−1) (2.778×10−4) (2.321×10−1) (8.890×10−1)

A 7000 0 8.799×10−1 2.237×10−6 3.952×10−1 1.690 1.011

(2.562×10−2) (6.514×10−8) (1.151×10−2) (4.921×10−2)

B 7000 3500 5.629 4.381×10−6 4.130 12.62 1.573

(1.639×10−1) (1.276×10−7 (1.203×10−1) (3.676×10−1)

C 7000 10500 15.44 2.503×10−6 10.53 52.78 2.403

(4.496×10−1) (7.289×10−8) (3.066×10−1) 1.537

D 7000 14000 18.67 2.991×10−6 12.57 75.36 2.567

(5.473×10−1) (8.710×10−1) (3.660×10−1) (2.194)

1) U, V, andW are the averaged velocity components calculated under steady state, respectively.
2) u, v, w and velmax were actual velocities calculated by the method of Hellums and Churchill (see A19 in Appendix A). For example, u = u0U = (α / hz)

U = 2.912×10-5U [m/s] = 2.912×10-2U [mm/s]. Here, α and hz are 1.456×10−7 m2/s and 0.005 m, respectively.
3) Nu is the averaged Nu calculated on the cold surface under steady state.

doi:10.1371/journal.pone.0160090.t004

Table 5. Computational results of the magnetothermal convection with the term of fb only. All the computations converged on a stable solution.

Case Ra Ram
1) U 1) V 1) W Velmax

3) Nu
2) (u) [mm/s] 2) (v) 2) (w) 2) (velmax)

E 7000 0 8.833×10−1 6.705×10−6 3.973×10−1 1.699 1.011

(2.572×10−2) (1.952×10−7) (1.157×10−2) (4.948×10−2)

F 7000 3500 5.665 3.192×10−5 4.154 12.69 1.577

(1.650×10−1) (9.295×10−7) (1.210×10−1) (3.695×10−1)

G 7000 10500 15.42 1.426×10−3 10.52 52.68 2.402

(4.490×10−1) (4.153×10−5) (3.063×10−1) (1.534)

H 7000 14000 18.65 2.763×10−3 12.55 75.17 2.566

(5.431×10−1) (8.046×10−5) (3.655×10−1) (2.189)

1) U, V, andW are the averaged velocity components calculated under steady state, respectively.
2) u, v, w and velmax were actual velocities calculated by the same procedures as in Table 4.
3) Nu was calculated by the same procedures as in Table 4.

doi:10.1371/journal.pone.0160090.t005

PLOSONE | DOI:10.1371/journal.pone.0160090 September 8, 2016 15 / 26



case (since Ra is proportional to the cube of hz). This causes an increase in the temperature gra-
dient and leads to the enhancement of grad(χv). On the other hand, the distance between the
vessel and the magnet coil is doubled in the nondimensinalized space. According to the Biot-
Savart law, the magnetic induction is inversely proportional to the square of distance. There-

fore, the magnitude of~b becomes a quarter-magnitude, and hence the magnitude of ð~bÞ2
becomes a sixteenth part. The temperature gradient in the half-sized cylindrical vessel equili-
brates by doubling that of the initial vessel to correspond to the same interval in the computa-
tional grid. In summary, if the temperature gradient is linearly approximated as calculated in

the previous paragraph, the magnitude of ð~bÞ2
2m0

gradðχvÞ is constant, regardless of the vessel size.
Through the above verifications, there is no doubt that the effect of fsc on convection becomes
negligibly small.

The effect of fsc has been emphasized in many previous studies [28, 36, 38–47]. These stud-
ies are related to the unsteady mass transfer with paramagnetic solutions when a locally large
grad(χv) was spontaneously realized. In contrast, the present study evaluated the effect of fsc
with a diamagnetic solution under steady conditions. Then, inducement of large grad(χv) is
suppressed due to thermal diffusion of water. Consequently the effect of fsc was changed sub-
stantially negligible, compared with the effect of fb. In other words, the effect of fsc on convec-

tion depends not only on magnetic conditions χ and~b, but also thermal properties of the fluid,
e.g. thermal conductivity, thermal diffusivity, and viscosity.

Magnetothermal convection and Rayleigh-Benard convection
The difference between magnetothermal convection and Rayleigh-Benard convection was
examined with Ra and Ram being equal. Four types of Rayleigh-Benard convection, Pr = 6.0
and Ra = 0, 3500, 10500, and 14000, were independently computed with the same mesh num-
bers and computational method, and they were labeled as cases I, J, K, and L, respectively.

Fig 6 shows the isothermal and velocity distributions in cases I to L. Table 6 shows the aver-
aged Nu and the averaged velocities of U, V, andW in these cases. The actual averaged velocity
components of U, V, andW, and the maximum velocities Velmax are also exhibited.

As shown in Fig 6, all the convections resulted in axisymmetric steady rolls. The results of
the flow patterns and heat transfer performance (see Table 6) were similar to those of the mag-
netothermal convections, provided that Ra and Ram were equal. This also suggests that the
effects of magnetic force on convection depend on the magnitude of fb, not so much on the
term of fsc.

Conclusions
The effect of magnetic force acting on the susceptibility gradient (fsc) was examined by three-
dimensional numerical computations, with thermal convection of water (diamagnetic sub-
stance) enclosed in a shallow cylindrical vessel of the Rayleigh-Benard model. We succeeded in
nondimensionalizing the momentum equations of magnetothermal convection, which
involved the term of fsc and the term of the magnetic force acting on a magnetic field gradient
(fb). As a result, the transient response curves of the averaged velocity components U, V,W,
and Nu, and the isothermal distributions and the flow patterns (axisymmetric steady rolls)
coincided almost completely, regardless of the presence or absence of the term of fsc. These
results are different from those of previous reports, which considered unsteady phenomena
with a paramagnetic solution. The effect of fsc depends not only on the magnetic conditions of

χ and~b, but also on the thermal properties of the fluid. When water is used as the working
fluid, the inducement of a locally large grad(χv) is suppressed more than in the case of
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Fig 6. The isothermal and velocity distributions of Rayleigh-Benard convection in cases I, J, K, and L. The figure numbers
correspond to each case. Pr is 6.0. Ra of cases I to K is 0, 3500, 10500, and 14000, respectively.

doi:10.1371/journal.pone.0160090.g006
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paramagnetic solution. Therefore, the effect of fb on the magnetothermal convection becomes
dominant. Active control over the density gradient with temperature will be required to
advance heat transfer with the effect of fsc,.

Appendix A: Deduction of the momentum equation of Eq 3
The pressure perturbation at representative temperature Θ is assumed to be p = p0 + p’. In addi-
tion, it is assumed that density ρ and mass magnetic susceptibility χm of the solution are func-
tions of temperature Θ, and that ρ = ρ (Θ), χm = χm (Θ). Eq 2 is changed into the equation
below.

r0

D~u
Dt

¼ �gradðp0 þ p0Þ þ mr2~u þ ðrðΘÞ � r1Þ~g þ
1

2m0

gradðrðΘÞ χmðΘÞ b2Þ ðA1Þ

In Eq (A1) when Θ = Θ0, it is assumed that~u ¼ 0 at, p(Θ0) = p0, and ρ(Θ0) = ρ0. Hence the
following equation is obtainable:

0 ¼ �gradðp0Þ þ 0þ ðr0 � r1Þ~g þ
1

2m0

gradðr0 χmðΘ0Þ b2Þ ðA2Þ

By the calculation of Eqs (A1) and (A2), the following relation is obtained.

r0

D~u
Dt

¼ �gradðp0Þ þ mr2~u þ ðrðΘÞ � r0Þ~g

þ 1

2m0

gradfðrðΘÞ χmðΘÞ � r0 χmðΘ0Þ Þb2g
ðA3Þ

ρ(Θ) and χm (Θ) are put into first order approximation by Taylor expansion.

rðΘÞ � r0 � ð@rðΘÞ
@Θ

Þ0ðΘ � Θ0Þ ðA4aÞ

χmðΘÞ � χmðΘ0Þ � ð@χmðΘÞ
@Θ

Þ0ðΘ � Θ0Þ ðA4bÞ

For the density, deformation of equation is performed with the use of coefficient of

Table 6. Computational results of four types of Rayleigh-Benard convection. All the computations converged on a stable solution.

Case Ra 1) U 1) V 1) W Velmax
3) Nu

2) (u) [mm/s] 2) (v) 2) (w) 2) (velmax)

I 0 0.000 0.000 0.000 0.000 1.000

(0.000) (0.000) (0.000) (0.000)

J 3500 5.490 1.224×10−3 5.123 21.59 1.668

(1.599×10−1) (3.564×10−5) (1.492×10−1) (6.288×10−1)

K 10500 15.48 4.789×10−2 10.53 53.14 2.407

(4.508×10−1) (1.395×10−3) (3.066×10−1) (1.548)

L 14000 18.73 7.842×10−1 12.56 76.48 2.574

(5.454×10−1) (2.284×10−2) (3.657×10−1) (2.227)

1) U, V, andW are the averaged velocity components calculated under steady state, respectively.
2) u, v, w and velmax were actual velocities calculated by the same procedures as in Table 4.
3) Nu was calculated by the same procedures as in Table 4.

doi:10.1371/journal.pone.0160090.t006
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volumetric expansion β.

b ¼ � 1

rðΘÞ
@rðΘÞ
@Θ

ðA5Þ

When Θ = Θ0:

ð@rðΘÞ
@Θ

Þ0 ¼ �b0r0 ðA6Þ

By substituting Eq (A6) for Eq (A4a),

rðΘÞ � r0 ¼ �r0b0ðΘ � Θ0Þ ðA7Þ

For a paramagnetic substance, Curie’s law [52] is applied to the magnetic susceptibility.

χmðΘÞ ¼ A
Θ

ðA8Þ

;
@χmðΘÞ
@Θ

¼ � A

Θ2 ¼ � χmðΘÞ
Θ

ðA9Þ

When Θ = Θ0:

ð@χmðΘÞ
@Θ

Þ0 ¼ � χ0

Θ0

ðA10Þ

For a diamagnetic substance, temperature difference is very small in the magnetic suscepti-
bility.

ð@χmðΘÞ
@Θ

Þ0 ¼ 0 ðA11Þ

By substituting Eq (A11) for Eq (A4b),

χmðΘÞ � χmðΘ0Þ ¼ 0 ðA12Þ

Similarly, χm(Θ) ρ(Θ) is put into first order approximation by Taylor expansion.

rðΘÞχmðΘÞ ¼ rðΘ0ÞχmðΘ0Þ þ
@ðrðΘÞχmðΘÞÞ

@Θ 0

ðΘ � Θ0Þ þ 1

2

@2ðrðΘÞχmðΘÞÞ
@Θ2

����
����
0

ðΘ � Θ0Þ 2 þ � � ��

� r0χ0 þ ½ðrðΘÞ @χmðΘÞ
@Θ

Þ þ ðχmðΘÞ @rðΘÞ
@Θ

Þ�0ðΘ � Θ0Þ

¼ r0χ0 þ ½r0ð
@χmðΘÞ
@Θ

Þ0 þ χ0ð
@rðΘÞ
@Θ

Þ0� ðΘ � Θ0Þ

ðA13Þ

Eqs (A6) and (A11) are substituted for Eq (A13), and the following equation is obtained.

rðΘÞχmðΘÞ ¼ r0χ0 þ ½r0 0þ χ0ð�b0r0Þ� ðΘ � Θ0Þ
¼ r0χ0 � r0χ0b0 ðΘ � Θ0Þ

ðA14Þ

If the working fluid is paramagnetic, Eq (A13) is altered as follows, by using Eqs (A6) and
(A10).

rðΘÞχmðΘÞ ¼ r0χ0 � r0χ0b0 1þ 1

b0Θ0

	 

ðΘ � Θ0Þ ðA15Þ
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Eqs (A7) and (A14) are substituted for Eq (A3).

r0

D~u
Dt

¼ �grad p0 þ mr2~u � r0b0ðΘ � Θ0Þ~g

� 1

2 m0

grad½r0 χ0b0 ðΘ � Θ0Þ ð~bÞ2�
ðA16Þ

Here, the relationship ofr p =r p’ is introduced, and the equation below is obtained.

D~u
Dt

¼ � 1

r0

r pþ nr2~u � b0ðΘ � Θ0Þ g ð0; 0; 1ÞT �
χ0b0

2 m0

grad½ ðΘ � Θ0Þ ð~bÞ2� ðA17Þ

Component r:

@ u
@ t

þ u
@ u
@ r

þ v
r
@ u
@�

� v2

r
þ w

@ u
@ z

¼ � 1

r0

@ p
@ r

þ n
@

@r
1

r
� @ ðr � uÞ

@r

� �
þ 1

r2
@2u

@�2 �
2

r2
@ v
@�

þ @2u
@z2

� �

� χ0b0

2m0

@

@ r
½ ðΘ � Θ0Þ ð~bÞ2�

ðA18aÞ

Component ϕ:

@ v
@ t

þ u
@ v
@ r

þ v
r
@ v
@�

þ u v
r
þ w

@ v
@ z

¼ � 1

r0

1

r
@ p
@ �

þ n
@

@r
1

r
� @ ðr � vÞ

@r

� �
þ 1

r2
@2v

@�2 þ
2

r2
@ u
@�

þ @2v
@z2

� �

� χ0b0

2m0

1

r
@

@�
½ðΘ � Θ0Þ b2�

ðA18bÞ

Component z:

@ w
@ t

þ u
@ w
@ r

þ v
r
@ w
@φ

þ w
@ w
@ z

¼ � 1

r0

@ p
@ z

þ n
1

r
� @
@r

r � @ w
@r

	 

þ 1

r2
@2w

@�2 þ
@2w
@z2

� �

� b0ðΘ � Θ0Þ g � χ0b0

2m0

@

@z
½ ðΘ � Θ0Þ b2�

ðA18cÞ

Next, nondimensionalization is performed by the method of Hellums and Churchill.

r
r0

¼ R; � ¼ y;
z
r0

¼ Z;
t
t0

¼ t;

u
u0

¼ U ;
v
u0

¼ V ;
w
u0

¼ W;
Θ � Θ0

Θhot � Θcold

¼ T;

p
p0

¼ P; u0 ¼ a
hz

; t0 ¼
r0
u0

¼ r0
2

a
;
b
b0

¼ B:

ðA19Þ

PLOSONE | DOI:10.1371/journal.pone.0160090 September 8, 2016 20 / 26



It is assumed that the following relationship holds:

r0
t0 u0

¼ 1;
p0
r0u2

0

¼ 1;
a

r0u2
0

¼ 1;
r0
hz

¼ 1;

Pr ¼ n
a
; Gr ¼ gb0 ðΘhot � ΘcoldÞ h3

z

n2
; g ¼ χ0 b

2
0

m0 g hz

ðA20Þ

By substituting Eqs (A19) and (A20) for Eq (A18a),

@ ðu0UÞ
@ ðt0tÞ

þ u0U
@ ðu0UÞ
@ ðr0RÞ

þ u0V
r0R

@ ðu0UÞ
@y

� ðu0VÞ2
r0R

þ u0W
@ ðu0UÞ
@ ðr0ZÞ

¼ � 1

r0

@ ðp0PÞ
@ ðr0RÞ

þ n
@

@ ðr0RÞ
1

r0R
� @ ðr0R � u0UÞ

@ ðr0RÞ
� �

þ 1

ðr0RÞ2
@2ðu0UÞ
@y2

� 2

ðr0RÞ2
@ ðu0VÞ

@y
þ @2ðu0UÞ

@ ðr0ZÞ2
" #

� χ0b0

2m0

@

@ ðr0RÞ
½ðΘhot � ΘcoldÞT ðb0BÞ2�

ðA20aÞ

By substituting Eqs (A19) and (A20) for Eq (A18b),

@ ðu0VÞ
@ ðt0tÞ

þ u0U
@ ðu0VÞ
@ ðr0RÞ

þ u0V
r0R

@ ðu0VÞ
@y

þ u0U � u0V
r0R

þ u0W
@ ðu0VÞ
@ ðr0ZÞ

¼ � 1

r0

1

r0R
@ ðp0PÞ
@ y

þ n
@

@ ðr0RÞ
1

r0R
� @ ðr0R � u0VÞ

@ ðr0RÞ
� �

þ 1

ðr0RÞ2
@2ðu0VÞ
@y2

þ 2

ðr0RÞ2
@ ðu0UÞ

@y
þ @2ðu0VÞ

@ ðr0ZÞ2
" #

� χ0b0

2m0

1

r0R
@

@ y
½ðΘhot � ΘcoldÞT ðb0BÞ2�

ðA20bÞ

By substituting Eqs (A19) and (A20) for Eq (A18c),

@ ðu0WÞ
@ ðt0tÞ

þ u0U
@ ðu0WÞ
@ ðr0RÞ

þ u0V
r0R

@ ðu0WÞ
@y

þ u0W
@ ðu0WÞ
@ ðr0ZÞ

¼ � 1

r0

@ ðp0PÞ
@ ðr0RÞ

þ n
1

r0R
@

@ ðr0RÞ
r0R

@ ðu0WÞ
@ ðr0RÞ

� �
þ 1

ðr0RÞ2
@2ðu0WÞ
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Both sides are multiplied by r0
u2
0

and deformed.
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The relational expression of r0
t0 u0

¼ 1; a
r0 u0

¼ 1; p0
r0u

2
0

¼ 1 is substituted and the other rela-

tional expression of Pr ¼ n
a ; Gr ¼ g b0 ðΘhot�ΘcoldÞ h3z

n2 ; g ¼ χ0 b
2
0

m0 g hz
is introduced. Then, Eqs (A21a),

(A21b) and (A21c) are arranged as follows:
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Appendix B

r0 g ¼ r0 χm

m0

bz
@bz
@z

bz
@bz
@z

¼ m0 g
χm

¼ 4p� 10�7 � 9:807

0:905� 10�8 ¼ 1362 ½T2=m� ðB1Þ

Appendix C

13:00�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1361:75

585:94

r
¼ 19:82 ½T� ðC1Þ

Appendix D

19:82� 9:16

13:00
¼ 13:97 ½T� ðD1Þ

Appendix E

Θhot � Θcold ¼ Ra
a n

g b0 hz
3
¼ 7000� 1:456� 10�7 � 0:872� 10�6

9:807� 0:259� 10�3 � 0:0053 ¼ 2:799 ½�C� ðE1Þ

Appendix F
According to Ref. [53, 54], the density of water is 998.2 kg/m3 at 25°C and 995.7 kg/m3 at
30°C, respectively.

At 25.1°C

r ¼ 998:2 þ ð25:1� 20:0Þ=ð30:0� 20:0Þ � ð995:7� 998:2Þ ¼ 996:9 ½kg=m3� ðF1Þ

At 27.9°C

r ¼ 998:2 þ ð27:9� 20:0Þ=ð30:0� 20:0Þ � ð995:7� 998:2Þ ¼ 996:2 ½kg=m3� ðF2Þ

d
d z

ðrðΘÞÞ ¼ 996:9� 996:2

0:005
¼ 140:0 ðF3Þ

According to Appendix D, the magnetic flux density at Pover and Punder was 13.97 [T]. Then,
the magnitude of fsc was estimated as follows.

b2χm

2 m0

d
dz

ð rðΘÞ Þ ¼ 13:972 � ð�9:05� 10�9Þ
2� 4p� 10�7 � 140:0 ¼ �98:39 ½N� ðF4Þ
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