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ABSTRACT

With the recent increase in the number of mamma-
lian genomes being sequenced, large-scale genome
scans for human-specific positive selection are
now possible. Selection can be inferred through
phylogenetic analysis by comparing the rates of
silent and replacement substitution between related
species. Maximum-likelihood (ML) analysis of codon
substitution models can be used to identify
genes with an accelerated pattern of amino acid
substitution on a particular lineage. However, the
ML methods are computationally intensive and
awkward to configure. We have created a database
that contains the results of tests for positive
selection along the human lineage in 13 721 genes
with orthologs in the UCSC multispecies genome
alignments. The Human PAML Browser is a
resource through which researchers can search
for a gene of interest or groups of genes by Gene
Ontology category, and obtain coding sequence
alignments for the gene and as well as results from
tests of positive selection from the software pack-
age Phylogenetic Analysis by Maximum Likelihood.
The Human PAML Browser is available at http://
mendel.gene.cwru.edu/adamslab/pbrowser.py.

INTRODUCTION

How are humans so genetically similar to the great apes,
yet so phenotypically divergent from the other members
of this family? This question has intrigued researchers for
decades (1,2). One approach to identifying genetic
determinants of phenotypic divergence is to examine
protein-coding genes for evidence of positive selection
(3,4). This type of selection is characterized by a new allele

that offers a fitness advantage to an organism, and is
rapidly pulled through the population until fixation of
the beneficial allele. Genes that have been positively
selected along the human lineage, yet remain constrained
or selectively neutral in our closest living relatives may
offer insight into the biologically significant genetic
changes that have occurred since the Pan–Homo split.

A variety of methods have been developed for the
prediction of positive selection. Some take advantage of
population-specific genetic patterns. One such method
uses allele frequency differences between populations
(5) to uncover loci that have been affected by a genetic
hitchhiking event. Similarly, the extended haplotype
heterozygosity method (6) measures linkage disequili-
brium between two markers with the intent of uncovering
a recent selective sweep and is particularly useful in
uncovering population-specific selection. Another techni-
que compares the rate of polymorphism within a species
to the rate of divergence (fixed difference) between
species (7). While these methods are extremely useful for
ascertaining genes subject to recent positive selection,
they are unable to fully uncover those very ancient and
fundamental changes that occurred around the time of
human-chimp divergence and are shared by all human
populations. For this purpose, analysis of evolutionary
rates in a phylogenetic context (3,8) can be used to identify
genes that are evolving more rapidly on a particular
lineage compared to the rest of the tree (9). The pattern of
codon substitution across a phylogenetic tree can be
inferred from a multiple sequence alignment using
maximum-likelihood methods (10). When the rate of
non-synonymous codon changes (dN) exceeds the rate of
synonymous codon changes (dS), positive selection can be
inferred. The codeml program from the Phylogenetic
Analysis by Maximum Likelihood (PAML) package can
be used to test different codon substitution models and
perform a likelihood ratio test of positive selection along
specified lineages based on the dN/dS ratio (11).
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Anisimova et al. (12,13) have performed large-scale
simulation studies to test the effect that parameters such
as the number of species, branch lengths, sequence
length and sequence divergence has on the tests of
positive selection as implemented in PAML. They
concluded that predictions of positive selection are
unreliable when the sequences being compared are highly
similar and when only a small number of species is used.
To expand the power and accuracy of the predictions,
it is suggested that the number of lineages used in the
analysis is increased. Finally, they conclude that multiple
models should be used in any analysis of selection in
order to ensure robustness in the predictions and to protect
against spurious results. In accordance with these
findings, our study was designed to include the maximum
number of mammalian sequences available to increase
the power to detect selection in sequences as similar as
human and chimpanzee. Multiple models have also
been included in the database to help differentiate between
positive selection and relaxation of selective constraint.

Essential to the prediction of selection by phylogenetic
analysis is the availability of sequence data from a
variety of species. Multispecies alignments for orthologous
protein-coding genes are used to infer the ancestral
sequence at each internal node within a phylogenetic
tree that is necessary in the calculation of the rate
and direction of codon substitution. In this way,
differences in selective constraint can be predicted on
one or many lineages within a phylogeny. Currently, the
National Human Genome Research Institute (NHGRI)
has approved 43 mammalian species as sequencing
targets, many of which are currently underway (http://
www.genome.gov/10002154). Five of these have been
completed or are in genome refinement (14–20), 21 are
slated for draft assembly and the remaining 17 are to be
sequenced at low (�2X) coverage. The Genome Browser
group at UC Santa-Cruz has produced full-genome
multisequence alignments using all of the available
vertebrate genome assemblies (21). With the increasing
number of genomes being sequenced, phylogenetic
analyses can now be performed on a genome-wide scale.

We have collected alignments containing multiple
mammalian species for 13 721 orthologous protein-
coding genes and examined each for evidence of human-
specific positive selection using phylogenetic analysis.
The multispecies alignments and the results from the
genome-wide selection scan are housed in a web-accessible
database named the Human PAML Browser. Users
can search by gene or gene family and obtain results
from likelihood tests of positive selection on the gene of
interest.

These types of analyses can be computationally
intensive and time consuming, and the database offers
an alternative for many researchers to investigate selection
without the difficulty of performing the analysis them-
selves. The wide variety of species represented in the
database also avoids the need to sequence multiple
organisms for a comprehensive analysis. The data
presented in the Human PAML Browser provides the
opportunity for researchers to easily examine their gene(s)
of interest for human-specific positive selection and may

be a stepping stone for many future studies of selection
and its effect on the human genome.

DATA SOURCES AND PROCESSING

Input data

The availability of pre-computed genome alignments for
a diverse set of mammalian species represents an excellent
starting point for phylogenetic analysis of the pattern
of selection operating on individual genes. An assumption
of phylogenetic analysis is that the aligned sequences are
in fact orthologous. Several groups have constructed sets
of orthologous genes (22–25), but the genome-based
alignments have certain advantages. Orthology relation-
ships in the multiple alignments are in the context of
genomic segments, rather than inferred on the basis of
protein alignments, and are thus expected to be reasonably
robust. Studies comparing primary reads and finished
sequence from a selection of mammals with the human
genome suggests that >97% of alignable sequences match
at orthologous locations (26). Furthermore, coding
sequence information from incomplete (and incompletely
annotated) genomes can be used that is not available
in protein sequence databases. The disadvantage of using
genome alignments is that they do not completely account
for lineage-specific duplication and deletion, which can
make inference of orthology difficult (27–29).
Alignments of 16 vertebrate species with the human

reference sequence were downloaded from the UCSC
Genome Browser [http://hgdownload.cse.ucsc.edu/
goldenPath/hg18/multiz17way/, (21)]. The genome assem-
bly multiple alignments were constructed from draft
genome assemblies from the following organisms: chim-
panzee, rhesus macaque, mouse, rat, rabbit, dog, cow,
armadillo, elephant, tenrec, opossum, chicken, frog,
zebrafish, tetraodon and fugu. Initial results using
protein-coding sequence (CDS) coordinates resulted in
an unacceptable number of frameshifts, presumably due
to small alignment errors near exon/intron junctions.
We therefore determined CDS regions by alignment of the
longest representative RefSeq mRNA for each gene to the
human genome. CDS alignments were then extracted
representing all of the mammalian species from the
genomic alignment files, representing most mammalian
orders including the subclass Metatheria (Figure 1).
For codeml analysis, alignments were extracted corres-
ponding to each mammalian species with sequence data
at a given position. Total 13 721 genes were analyzed;
12 905 of these had at least a portion of the sequence
represented in at least eight species. At the time of the
analysis, more than 5� coverage of the orangutan genome
was available as shotgun sequence reads in the NCBI
Trace Archive, but these data had not yet been assembled.
We felt that including all available primate sequence
was important, so we added inferred protein coding
sequence from orangutan to the mammalian CDS
alignments by comparing human genomic sequence to
the orangutan Trace Archive at NCBI, initially using
BLAST, then assembling reads using phrap (www.phrap.
org) and producing final alignments with the lalign
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algorithm implemented in matcher from the EMBOSS
package (30,31), and extracting CDS regions based on
exon coordinates from the human genomic sequence.
Inclusion of orangutan sequence in the alignments had
only minimal impact on the human-specific dN/dS,
but improved prediction of human-specific substitutions
when using the branch+site models described below
(data not shown). Columns with gaps in the human
sequence were removed from the alignment to facilitate
analysis.

Statistical analysis

Markov process models of codon substitution, as imple-
mented in the PAML software package (11), were
used to analyze the selective pressures affecting each
gene along the human lineage. The PAML software
package is available at http://abacus.gene.ucl.ac.uk/soft
ware/paml.html. The program codeml v3.14b within the
PAML package was used to analyze the data. codeml
allows specification of several different codon substitution
models that allow testing of hypotheses related to selection
along certain branches of the tree and/or at a subset of
codons (sites).
For codeml analysis, a directory was made for each

gene containing the multiple sequence alignment in
PHYLIP format, codeml control files, and an appropriate
phylogenetic tree file for the species represented in the
alignment. Species tree files were constructed from the
consensus mammalian tree (Figure 1) (32) essentially by
pruning branches that were not represented for a given
gene. codeml was run on an Apple OSX compute
cluster consisting of 20 dual-processor nodes, each
equipped with 2GB of RAM. The compute time for
codeml analyses under all five models for the 13 721
alignments was 19 days using an average of 30 CPUs
concurrently. Following codeml analysis, a python
script parsed the codeml results and alignment files and
loaded information to a MySQL database. A web
interface was developed using python to provide
interactive access to the codeml results on a gene by gene
basis.
For each gene, codeml was run under two test models

and three null models, and results from each were then
compared as tests of positive selection on the human gene.
Each run produced a maximum-likelihood estimate,
which is the probability of observing the data under the
evolutionary conditions implemented in the model.
A likelihood ratio test (LRT) was used to determine
whether the test model is a significantly better fit to the
data than the null model. A P-value was calculated by
comparing two times the difference in log likelihood
values to a chi-squared distribution, with the degrees of
freedom equal to the difference in number of parameters
between the pair of nested tests. The branch model allows
the dN/dS ratio on a specified branch of the tree to differ
from the average dN/dS ratio across the rest of the tree.
The matching null model fixes dN/dS=1 on the specified
branch. If dN/dS> 1 in the branch model and the LRT
is significant, positive selection can be inferred. For tests
of selection on the human branch, we refer to these

branch models as model H and model Hnull, respectively.
A particular problem in the branch tests, which is due to
the short evolutionary time since the human-chimpanzee
divergence, occurs when there are only non-synonymous
substitutions on the branch between human and the
human-chimpanzee ancestor. In this situation, the rate of
synonymous substitution dS=0 and dN/dS is undefined;
this is represented in the database as 999. The branch test
also requires dN/dS to be elevated across the entire gene,
and therefore is considered somewhat unrealistic, partic-
ularly for multi-domain proteins where positive selection
may be acting on only one domain.

The branch+ site models were developed to address
positive selection at a subset of sites (codons) on one
branch of the tree (33,34). Model A defines four classes of
sites, where two of the classes have dN/dS� 1 on all
branches while two additional classes have dN/dS> 1 on
the lineage of interest (human), but dN/dS� 1 on the
other branches of the tree. Model Anull fixes dN/dS=1
for the latter two classes and thus comparison of Model A
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Figure 1. Unrooted mammalian species tree of the organisms used in the
construction of the database and the phylogenetic tree used in PAML
analysis. Orientation adapted from the UCSC Genome Browser.
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with Model Anull is a strict test of positive selection.
Model 1a assumes dN/dS� 1 at all sites across all
branches. A significant LRT in the comparison of
Model A with Model 1a can be due to either positive
selection or relaxation of selective constraint, since there is
no formal test of whether dN/dS is >1 on the human
branch, just whether there is a subset of sites on the
human branch with a dN/dS ratio that is elevated relative
to the rest of the tree. A summary of the models
and likelihood ratio tests performed in this analysis are
found in Table 1 and more thorough information is
available in the PAML documentation. A small number of
genes have also been run under site models in which
dN/dS is allowed to vary among sites, instead of between
lineages. This is helpful in interpreting whether positive
selection is occurring specifically along the human lineage
or if the gene is rapidly evolving in multiple species.

RESULTS OF TESTS OF SELECTION

Table 2 presents a summary of the results of tests
of positive selection for human genes. As expected,
the branch test, which requires dN/dS to exceed 1 over
the entire coding sequence, returned few significant results.
In the strict branch+site test that compares results
from Models A and Anull, 244 genes met the nominal
threshold for significance of P< 0.05. More than twice
as many genes met the significance threshold in a
comparison of Model A with Model 1a, which can
indicate a relaxation of selective constraint or positive
selection. Gene Ontology categories were matched to
the 244 genes with P< 0.05 in the strict branch+site test
to assess whether certain categories might be over-
represented among genes predicted to be positively
selected (Table 3). As has been reported previously
(17,35,36), transcription factors and olfactory receptors
are over-represented among positively selected genes.

Reflecting the abundance of transcription factors, the
cellular component category most over-represented is
the nucleus.
Several groups have performed genome scans for

positive selection on the human lineage using divergence
data (17,35,37,38). One feature that sets this study apart is
the large number and wide variety of mammalian
species used. When only a small number of
species is used (e.g. human–chimpanzee–mouse or
human–chimpanzee–macaque) or outgroups that are too
divergent (35,38,39) there can be a high degree of
uncertainty as to whether a substitution occurred on the
human or chimpanzee lineage. This can lead to both an
increase in the false positive rate, as well as a lack of power
to detect selection if multiple substitutions have occurred
at the same codon. The inclusion of a third great ape, the
orangutan, the Old World monkey rhesus macaque,
and several non-primate mammals adds considerable
power to model the substitution pattern. As recent studies
have concluded (35,37), there is a relative paucity
of human-specific positively selected genes and these

Table 2. Summary of results of tests of selection on human genes

Test Significance threshold Number of genesa

Model A versus Model Anull 0.05 244
[strict branch+site test] 0.01 152

0.001 48
Model A versus Model 1a 0.05 611
[relaxed branch+site test] 0.01 276

0.001 114
Model H versus Model Hnull 0.05 16
[strict branch test] 0.01 3

0.001 2

aOR5B3 is the only gene with P< 0.05 in both branch (Model H versus
Model Hnull) and branch+site (Model A versus Model Anull) tests.

Table 1. Evolutionary Models used by codeml

Model Description

Model H Non-neutral model: human !a allowed to vary
from other branches !HUMAN 6¼!OTHERS

Model Hnull Neutral model: human ! fixed at !=1 and allowed to vary from
other branches !HUMAN=1 and !HUMAN 6¼!OTHERS

Model A Sites on the human branch allowed to differ
Background lineages 4 site classes: 0<!0< 1 !1=1 0<!2a< 1 !2b = 1
Foreground lineage-human 4 site classes: 0<!0< 1 !1=1 !2a� 1 !2b� 1

Model Anull Sites on the human branch fixed at !=1
Background lineages 4 site classes: 0<!0< 1 !1=1 0<!2a< 1 !2b=1
Foreground lineage-human 4 site classes: 0<!0< 1 !1=1 !2a=1 !2b=1

Model 1a Sites on all branches nearly neutral
All lineages 2 site classes: 0<!0< 1, !1=1

Compare Likelihood ratio tests of significance
Model H, Model Hnull Branch test: non-neutral evolution
MA, M1a Relaxed branch+site test: positive selection

or relaxation of selective constraint
MA, MAnull Strict branch+site test: positive selection

a!=dN/dS.
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events appear to be relatively rare in the genome. Bakewell
(37) suggests that the small long-term effective population
size of humans as they migrated out of Africa may be
masking positive selection, as many advantageous alleles
have yet to become fixed in the human population.

USER INTERFACE

The Human PAML Browser can be accessed at http://
mendel.gene.cwru.edu/adamslab/pbrowser.py and there
are a number of ways to query the database. A gene of
interest can be searched for by gene symbol, Entrez
Gene ID, mRNA accession (RefSeq) and gene name.
To examine genes by their biological process, molecular
function or cellular component, Gene Ontology IDs
(http://www.geneontology.org/) may also be used to
query the database. For sets of genes with similar
names, a wildcard � can be inserted. A more recent
addition is the ability to query the database by statistical
significance. The user can set the threshold P-value for
one of the three likelihood ratio tests to extract genes
by significance. The return screen from a query contains
one or more genes related to the search, and the user has
the ability to chose the alignment set used in the
analysis, which is primarily the UCSC alignments plus
orangutan.

Database organization

Upon gene choice, the user is presented with a summary
screen from the PAML analysis (Figure 2). This screen

contains direct links to the Entrez ID, the mRNA
accession and the GO terms for the gene. The organisms
used in this analysis are ordered by evolutionary distance
from humans, and information is given on the percent
coverage and average percent identity of the aligned
sequence from each organism as compared to the
orthologous human sequence. The results from the like-
lihood ratio tests in the form of a P-value are displayed
for all three tests of positive selection: the relaxed
branch+site test, the strict branch+site test and the
branch test. Also contained are links to the DNA and
protein multispecies alignments (Figure 3) as well as the
sequences in FASTA format to facilitate subsequent
analysis. It is of note that an asterisk in the protein
alignments refer to an unknown amino acid or gap in the
sequence, not a stop codon.

The bulk of the data is contained under the Branch and
Site Models link (Figure 4). To the right is the table of
results from the branch Models H and Hnull (Figure 4A).
The numbers under the branch heading refer to the
relationship of the branch from an internal node to a
terminal node or to another internal node. Terminal
branches are labeled by organism. One dN/dS ratio
is present across the entire tree with the exception of
the terminal branch to human (Hsa). dN/dS on the
human branch is calculated in Model H and fixed at 1 in
Model Hnull.

Figure 4B contains the results from branch+site
Model A. Model A is run under the assumption of four
site classes: class 0, sites under negative selection in all
branches; class 1, sites evolving neutrally in all branches;
class 2a, sites positively selected on the human branch,

Table 3. Gene ontology categories over-represented among genes with

P< 0.05 in the strict branch+site test

Gene Ontology ID Category name Corrected P-value

Biological process
GO:0006350 Transcription 0.003
GO:0006355 Regulation of transcription,

DNA-dependent
0.003

GO:0007608 Sensory perception of smell 0.02
GO:0006814 Sodium ion transport 0.02
GO:0007165 Signal transduction 0.02

Molecular function
GO:0005515 Protein binding 0
GO:0046872 Metal ion binding 0.00005
GO:0016740 Transferase activity 0.00009
GO:0008270 Zinc ion binding 0.001
GO:0003677 DNA binding 0.001
GO:0000166 Nucleotide binding 0.001
GO:0003676 Nucleic acid binding 0.006
GO:0004984 Olfactory receptor activity 0.006
GO:005524 ATP binding 0.01
GO:0031402 Sodium ion binding 0.02

Cellular component
GO:0005634 Nucleus 0
GO:0016020 Membrane 0.0004
GO:0005737 Cytoplasm 0.002

Gene Ontology classification was performed using Onto-Express
(43,44).

Figure 2. PAML database summary results for Iroquois homeobox 3
(IRX3). The likelihood ratio tests are as follows: the relaxed branch+site
test (Model A versus Model 1a), the strict branch+site test (Model A
versus Model Anull) and the branch test (Model H versus Model Hnull).
The three letter species codes are Hsa (human), Ptr (chimp), Mmu
(macaque), Rno (rat), Mms (mouse), Ocu (rabbit), Cfa (dog), Bta (cow),
Dno (armadillo), Laf (elephant), Ete (tenrec) and Mdo (opossum).
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but negatively selected on the other branches and class 2b,
sites positively selected on the human branch, but
neutrally evolving on the other branches. The proportion
refers to the fraction of sites within the protein that
fall into each of the four site classes. Foreground
and background ! is the dN/dS ratio for the human
lineage and all the other lineages, respectively. The version
of codeml implemented uses a Bayes Empirical
Bayes (BEB) method for calculating the posterior
probability that each site is from a particular site class;
sites with a high posterior probability from site class 2a
and 2b are inferred to be positively selected (34).
A summary table shows the total number of sites predicted
to be positively selected as well as the number with a
BEB posterior probability �95 and �99%. Finally, all
sites predicted to be positively selected are listed
along with the residue number, the affected amino acid
and the BEB probability specific to that residue. The
results from the null Model 1a can be retrieved through
the Site Models link on the original summary page
(Figure 2).

IMPORTANT LIMITATIONS

There are several limitations of the data and analyses
presented in the Human PAML Browser that the user
should consider. The results presented in the browser were
obtained using an automated process at multiple steps
from alignment creation to extraction of coding

sequences, to maximum-likelihood analysis, to database
loading and web display. Most alignments and result sets
have not been examined manually or curated in any way.
Bad alignments lead to bad phylogenetic inferences.
In particular, some genes with very low P-values in tests
of selection appear to have alignment problems with many
human-specific substitutions clustered at adjacent resi-
dues. Incorrect assignment of orthology could also result
in misleading P-values. The whole-genome alignments
used here have the advantage of aligning coding sequences
in a larger (often much larger) syntenic framework, but a
gene family approach that accounts for gene duplication
and deletion events would be a useful adjunct to
interpretation of the information presented in the
Human PAML Browser. Differential gene loss following
duplication can lead to 1:1 paralogs being mistaken for 1:1
orthologs. This problem is particularly acute in organisms,
such as yeast, which have experienced whole-genome
duplication events (40), but could also affect vertebrate
alignments, particularly given the extent of lineage-specific
segmental duplication in primates (41). Gene trees have
not been constructed for the alignments used here,
but reconciliation of the gene tree with the species tree
using a program such as NOTUNG (42) would be a useful
exercise in the context of follow-up study.
The P-values in the Human PAML Browser have not

been corrected for multiple tests, and so care should be
taken in interpretation of results. Another factor that
potentially impacts the P-values is that in some cases, the
ML methods fail to converge to a global optimum,
resulting in an inappropriately low P-value. Finally,
genome assemblies and assembly alignments are
improving over time. It is strongly recommended that
the user validate the results presented here for any
gene of interest by re-extracting gene sequences and
repeating the codeml analysis. This will serve the
dual purposes of incorporating new and improved
genome assembly data and ensuring that the ML
analysis is stable.

CONCLUSION

We have generated a database containing the PAML
results for tests of human-specific positive selection.
The simple web interface makes access to PAML results
readily available, compared to the tasks of preparing
properly formatted alignment, phylogenetic tree, and
codeml control files and parsing five different codeml
output files. The multispecies alignments used in each
analysis are readily available in FASTA file format for
further analysis using other methods or to examine
selection among other orders/families of mammals or in
individual species. The Human PAML Browser is
intended to aide other researchers as they search for the
selective pressures that have affected their gene or gene
family of interest, and can be a stepping stone for
many future studies of positive selection and the human
genome.

Figure 3. Multispecies protein alignment for IRX3. Coding sequence was
extracted from whole-genome sequence alignments available from the
UCSC Genome Browser and trimmed to include only coding regions
based on matches with the human CDS. Alignment columns with gaps in
the human sequence were excluded. Residues 1–180 of 501 are shown.
Residues 36 and 44 were predicted to be positively selected in human with
Bayes Empirical Bayes posterior probability of 0.886 and 0.997,
respectively (Figure 4B).
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Figure 4. Likelihood test data and results for IRX3. (A) Branch tests for selection, Model H (test model) and Model Hnull (neutral model). The
variables in the table are as follows: t, the length of the branch; s and n, the number of synonymous and non-synonymous sites, respectively; dN/dS,
the ratio of the rate of non-synonymous and synonymous substitution for the branch; dN and dS, the rate of synonymous and non-synonymous
substitution on the branch; S�dS and N�dN, a rough estimate of the absolute number of synonymous and non-synonymous substitutions.
(B) Branch+site tests for selection, including the proportion of codons in each site class for the background and foreground (human) lineage,
and the posterior probability that a given site is positively selected.
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