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Abstract: A set of guanine-rich aptamers able to preferentially recognize full-length huntingtin with
an expanded polyglutamine tract has been recently identified, showing high efficacy in modulating
the functions of the mutated protein in a variety of cell experiments. We here report a detailed
biophysical characterization of the best aptamer in the series, named MS3, proved to adopt a stable,
parallel G-quadruplex structure and show high nuclease resistance in serum. Confocal microscopy
experiments on HeLa and SH-SY5Y cells, as models of non-neuronal and neuronal cells, respectively,
showed a rapid, dose-dependent uptake of fluorescein-labelled MS3, demonstrating its effective
internalization, even in the absence of transfecting agents, with no general cytotoxicity. Then, using a
well-established Drosophila melanogaster model for Huntington’s disease, which expresses the mutated
form of human huntingtin, a significant improvement in the motor neuronal function in flies fed with
MS3 was observed, proving the in vivo efficacy of this aptamer.

Keywords: G-quadruplex; aptamers; physico-chemical characterization; Huntington’s disease;
Drosophila melanogaster model

1. Introduction

Huntington’s disease (HD), also known as Huntington’s chorea, is an autosomal
dominant inherited neurodegenerative disease characterized by a plethora of progressive
motor, behavioural, cognitive, and psychiatric symptoms [1–3]. This debilitating disorder
typically has midlife onset but can manifest at any time between infancy and senescence,
showing mainly chorea and dystonia, incoordination, cognitive decline, and behavioural
difficulties as predominant signs [4–6]. Despite the exceptional advances made in HD
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research, unfortunately, no definitive treatment is available for this invalidating disease,
even if some potential therapeutics are in the pipeline [3,7–11].

Mutation in the first exon of Huntingtin (HTT) gene, which lies on the short arm
of chromosome 4, has been identified as the main cause of HD disorder. This mutation
consists of an abnormal repetition of the CAG triplet leading to the production of a mutant,
misfolded HTT protein (mHTT) featured by a long polyglutamine tract (polyQ) [12,13].
This change in the amino acid sequence affects both the structure and physiological activity
of the mutant protein. For example, the polyQ extension favours protein aggregation,
especially in the caudate nucleus and putamen of basal ganglia, causing cortico-striatal
dysfunction and degeneration [14–16]. In addition, polyQ expansion has a critical role in
stimulating the physiological activity of methyltransferase polycomb repressive complex
2 (PRC2), which catalyses the trimethylation of histone H3 lysine 27 (H3K27me3), an
epigenetic chromatin regulator [17,18].

Differences found between normal and mutant huntingtin suggested that molecules
able to preferentially bind to the altered structure of the protein can be exploited as po-
tential modulators of its activity. In this frame, oligonucleotide-based aptamers, being
highly specific ligands, may offer a promising approach to slow down the progression of
HD disease.

In detail, nucleic acid-based aptamers are short, single-stranded DNA or RNA molecules
generally identified from large random oligonucleotide libraries using an in vitro selection
procedure, known as SELEX (Systematic Evolution of Ligands by Exponential Enrich-
ment) [19,20]. Upon folding into their specific three-dimensional arrangements, aptamers
can specifically recognize with exceptionally high affinity and selectivity a wide range of
different molecular targets, including proteins [21–23].

Various DNA- and RNA-based aptamers have been identified as valuable therapeutic
candidates in several diseases [24–28], including neurodegenerative ones [29–33], and some
examples have been recently reported for HD treatment [34–40].

In this context, four guanine-rich DNA-based aptamers—named MS1, MS2, MS3, and
MS4, respectively—able to bind to the C-terminal CTD-II domain of a mutant huntingtin
protein with an expanded 78-residue polyQ tract were recently identified by SELEX [41]. In
this study, Shin and colleagues hypothesized that these aptamers could form G-quadruplex
(G4) structures, which are non-canonical DNA or RNA architectures generated by the stack-
ing of two or more guanine tetrads, i.e., cyclic planar arrangements of four guanines linked
through Hoogsteen-type hydrogen bonds [42–44]. However, only preliminary Thioflavin
T fluorescence-based assays were performed to support this structural hypothesis, and
no data on their conformational behaviour and solution properties were provided. In
addition, biological assays were carried out exclusively after aptamer transfection and no
information was given on the cellular uptake of the aptamers in the absence of transfecting
agents, as well as on their persistence in cells, that are crucial features for their bioactivity.

Among the investigated oligonucleotides, the strongest binder proved to be MS3,
carrying the sequence d(GGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGA).
This aptamer was found to co-localize with endogenous mutant huntingtin in neuronal
progenitor cells (NPCs). In addition, it proved to decrease PRC2 activity, and its transfection
significantly increased ATP levels protecting NPCs against starvation-dependent stress [41].

Considering the high therapeutic potential in HD of MS3 and aiming at providing a
deep insight into its physico-chemical features, we herein investigated the conformational
behaviour of this aptamer, along with its thermodynamic stability, nuclease resistance
in vitro and biological activity in vitro and in vivo [41].
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2. Results and Discussion
2.1. MS3 Aptamer Adopts a Stable, Parallel G-Quadruplex Structure: A Physico-Chemical Characterization
2.1.1. UV Spectroscopy Analysis

Buffer composition, and especially cation type and concentration, play fundamental
roles in G-quadruplex formation, by influencing the peculiar folding topology adopted by
a selected G-quadruplex-forming oligonucleotide [45–47].

In this study, the spectroscopic properties and conformational behavior of MS3 were
investigated in two different buffer solutions, one exclusively containing sodium ions
as cations—i.e., 10 mM NaH2PO4/Na2HPO4, 90 mM NaCl, indicated as Na+-containing
buffer—and the other containing small amounts of potassium ions so as to mimic pseudo-
physiological buffers (i.e., PBS: 137 mM NaCl, 2.7 mM KCl, 10 mM NaH2PO4/Na2HPO4,
1.8 mM KH2PO4/K2HPO4, pH 7.3).

We firstly validated the ability of MS3 to fold into a G-quadruplex structure in the
selected Na+-rich solutions by UV spectroscopic studies.

In detail, UV thermal difference spectra (TDS, Figure S1) were obtained, recording
spectra at 2 µM oligonucleotide concentration at low and high temperatures (i.e., 5 and
100 ◦C) in both the tested saline conditions. The UV spectra difference between the unfolded
(at 100 ◦C) and folded (at 5 ◦C) oligonucleotide represents indeed a “fingerprint” of a
specific nucleic acid structure and can be used to confirm the formation in solution of a
G-quadruplex structure [48].

The normalized TDS profiles of MS3 were similar in the examined buffer solutions,
with two positive (at ca. 240 and 275 nm) and two negative bands (around 260 and 295 nm),
which are diagnostic of a G-quadruplex structure (Figure S1), according to the literature [48].

In addition, an estimation of the predominant G-quadruplex conformation in solution
was obtained by determining the TDS factors [49]. In both the analyzed saline conditions,
the ∆A240/∆A295, ∆A255/∆A295, and ∆A275/∆A295 factors provided values higher than 4,
3.5, and 4, respectively (Table S1), which were all consistent with a parallel G-quadruplex
folding, in accordance with literature data [49].

2.1.2. CD and DSC Analyses

Circular dichroism (CD) and differential scanning calorimetry (DSC) analyses were
exploited as complementary methodologies to derive information on the conformational
behaviour and thermodynamic stability of the G-quadruplex structure formed by MS3 in
solution. Indeed, these techniques allow determination of the melting temperature (Tm)
value and the energy needed to unfold the native structure of MS3.

In detail, circular dichroism is a powerful, quick methodology for the determination
of the topology and thermal stability of G-quadruplexes [50,51].

CD spectra of pre-annealed solutions of MS3 were first collected at 5 ◦C in both the
selected Na+-rich solutions (Figure 1a,d; black lines). In all cases, they showed the character-
istic profile of a parallel G-quadruplex structure with a maximum at 263 nm and a minimum
at 240 nm [52–54]. Notably, positive CD bands showed higher intensities in PBS than in the
Na+-containing solution, indicating a higher structuration degree in the first buffer, accord-
ing to the well-known ability of K+ to stabilize G4 structures better than Na+ ions [45–47]
and the overall higher ionic strength of PBS vs. the chosen Na+-containing solution.



Int. J. Mol. Sci. 2022, 23, 4804 4 of 18Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 19 
 

 

 

Figure 1. CD analysis of MS3 at 2 µM in the Na+-containing buffer (10 mM NaH2PO4/Na2HPO4, 90 

mM NaCl solution, pH 7.0): (a) CD spectra of MS3 at 5 °C before (black line), after melting/cooling 

(blue line) and at 100 °C (red line); (b) CD melting (black line) and cooling (red line) profiles of MS3 

recorded at 0.5 °C min−1; (c) CD melting curve (black line) and calculated Van ’t Hoff curve (green 

line). (d) CD spectra of MS3—recorded at 2 µM in PBS buffer (137 mM NaCl, 2.7 mM KCl, 10 mM 

NaH2PO4/Na2HPO4, 1.8 mM KH2PO4/K2HPO4, pH 7.3)—at 5 °C before (black line), after melt-

ing/cooling (blue line), and at 100 °C (red line). 

In order to definitively confirm the G4 structure topology adopted by MS3 in the 

examined solutions, CD spectra recorded at 5 °C were also processed by singular value 

decomposition (SVD) analysis, using a suitable software developed by del Villar-Guerra 

and coworkers [55]. This analysis provided fitted CD profiles in very good accordance 

with the experimental CD curves (Figure S2), indicating that MS3 exclusively adopts a 

parallel G4 conformation in both buffers, also in line with the calculated TDS factor values. 

CD-monitored thermal denaturation experiments were then carried out on MS3 dis-

solved in the Na+-containing buffer following CD signal changes at 263 nm as a function 

of temperature in the 5–100 °C range (Figure 1b). In this saline condition, the melting and 

cooling curves of MS3 were almost superimposable and showed no hysteresis, indicating 

reversible heating/cooling processes (Figure 1b). Different temperature gradients (0.5 and 

1 °C min−1) were also tested, obtaining similar results, thus demonstrating that the unfold-

ing/refolding process is not kinetically controlled (data not shown). In this buffer, the CD 

spectra of MS3 at 5 °C before and after a heating/cooling cycle were essentially superim-

posable (Figure 1a, black and blue lines, respectively), further corroborating the reversi-

bility of the unfolding/refolding process, and the aptamer proved to be fully denatured at 

100 °C (Figure 1a, red line). Thus, by applying the two-state model Van ’t Hoff analysis to 

the CD melting curve (Figure 1c, green line), a Tm value of 50 °C and a ΔvHH° value of 167 

kJ mol−1 were determined.  

Figure 1. CD analysis of MS3 at 2 µM in the Na+-containing buffer (10 mM NaH2PO4/Na2HPO4,
90 mM NaCl solution, pH 7.0): (a) CD spectra of MS3 at 5 ◦C before (black line), after melting/cooling
(blue line) and at 100 ◦C (red line); (b) CD melting (black line) and cooling (red line) profiles of
MS3 recorded at 0.5 ◦C min−1; (c) CD melting curve (black line) and calculated Van ’t Hoff curve
(green line). (d) CD spectra of MS3—recorded at 2 µM in PBS buffer (137 mM NaCl, 2.7 mM KCl,
10 mM NaH2PO4/Na2HPO4, 1.8 mM KH2PO4/K2HPO4, pH 7.3)—at 5 ◦C before (black line), after
melting/cooling (blue line), and at 100 ◦C (red line).

In order to definitively confirm the G4 structure topology adopted by MS3 in the
examined solutions, CD spectra recorded at 5 ◦C were also processed by singular value
decomposition (SVD) analysis, using a suitable software developed by del Villar-Guerra
and coworkers [55]. This analysis provided fitted CD profiles in very good accordance with
the experimental CD curves (Figure S2), indicating that MS3 exclusively adopts a parallel
G4 conformation in both buffers, also in line with the calculated TDS factor values.

CD-monitored thermal denaturation experiments were then carried out on MS3 dis-
solved in the Na+-containing buffer following CD signal changes at 263 nm as a function of
temperature in the 5–100 ◦C range (Figure 1b). In this saline condition, the melting and
cooling curves of MS3 were almost superimposable and showed no hysteresis, indicating
reversible heating/cooling processes (Figure 1b). Different temperature gradients (0.5 and
1 ◦C min−1) were also tested, obtaining similar results, thus demonstrating that the un-
folding/refolding process is not kinetically controlled (data not shown). In this buffer,
the CD spectra of MS3 at 5 ◦C before and after a heating/cooling cycle were essentially
superimposable (Figure 1a, black and blue lines, respectively), further corroborating the
reversibility of the unfolding/refolding process, and the aptamer proved to be fully dena-
tured at 100 ◦C (Figure 1a, red line). Thus, by applying the two-state model Van ’t Hoff
analysis to the CD melting curve (Figure 1c, green line), a Tm value of 50 ◦C and a ∆vHH◦

value of 167 kJ mol−1 were determined.
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The CD analysis of MS3 in PBS showed that in this buffer solution, the aptamer was
folded in a much more stable G-quadruplex structure which, although recovering almost
completely the initial spectral features after the melting/cooling cycle (Figure 1d, blue line),
was not fully denatured even at 100 ◦C (Figure 1d, red line).

For a deeper insight into the thermal stability of MS3 G-quadruplex structure, DSC
measurements were also performed. A detailed thermodynamic analysis of MS3 could
be carried out only in the Na+-containing buffer, since the absence of a complete unfold-
ing of the G-quadruplex structure formed by MS3 in PBS, even at high temperatures
(cfr. Figure 1d), prevented an accurate calorimetric study in the latter buffer. The DSC
profile of MS3 in the selected Na+-containing solution is shown in Figure 2a. The melting
temperature as well as the enthalpy and entropy change values were directly obtained from
the experimental DSC curve without any model assumption and are reported in Table 1.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 19 
 

 

The CD analysis of MS3 in PBS showed that in this buffer solution, the aptamer was 

folded in a much more stable G-quadruplex structure which, although recovering almost 

completely the initial spectral features after the melting/cooling cycle (Figure 1d, blue 

line), was not fully denatured even at 100 °C (Figure 1d, red line). 

For a deeper insight into the thermal stability of MS3 G-quadruplex structure, DSC 

measurements were also performed. A detailed thermodynamic analysis of MS3 could be 

carried out only in the Na+-containing buffer, since the absence of a complete unfolding 

of the G-quadruplex structure formed by MS3 in PBS, even at high temperatures (cfr. Fig-

ure 1d), prevented an accurate calorimetric study in the latter buffer. The DSC profile of 

MS3 in the selected Na+-containing solution is shown in Figure 2a. The melting tempera-

ture as well as the enthalpy and entropy change values were directly obtained from the 

experimental DSC curve without any model assumption and are reported in Table 1. 

 

Figure 2. DSC analysis of MS3 in the Na+-containing buffer (10 mM NaH2PO4/Na2HPO4, 90 mM 

NaCl solution, pH 7.0). (a) Experimental DSC profile (black line), and (b) Van ’t Hoff calculated 

curves based on the two-states model (red line) superimposed on the experimental curve (black 

line). 

Table 1. Thermodynamic parameters of MS3 determined by DSC and CD measurements in the se-

lected Na+-containing buffer (10 mM NaH2PO4/Na2HPO4, 90 mM NaCl solution, pH 7.0). 

 Tm (°C) ΔexpH° (kJ mol−1) ΔvHH° (kJ mol−1) ΔexpS° (kJ K−1 mol−1) ΔexpG° (kJ mol−1) at 310 K 

MS3 53 205 
175 

167 1 
0.627 10.6 

1 From CD measurements. The error on Tm determination is ±1.0 °C and on the other thermody-

namic parameters is ±10%. 

The DSC data clearly showed that the denaturation of the G-quadruplex structure is 

an entropy-driven process. This favourable entropy change, as a result of the gain in con-

formational freedom degrees of the oligonucleotide upon unfolding, is compensated by 

an unfavourable enthalpy contribution, due to the loss of G-tetrad stacking interactions. 

Considering that the ΔexpH° value per tetrad typically falls in the range 60–80 kJ mol−1, as 

calculated taking into account the experimental values of a large number of G-quadru-

plexes depending on molecularity (unimolecular, bimolecular, tetramolecular), cations 

(Na+ or K+) and presence of loops (short or long) [56–59], it can be deduced that the G-

quadruplex structure of MS3 is stabilized by three guanine tetrads, corresponding to a 

ΔexpH° value per tetrad of ~68 kJ mol−1. 

Figure 2b shows the comparison between the experimental and calculated DSC 

curves, based on the two-state Van ’t Hoff equation. The calculated profile does not per-

fectly match the experimental DSC profile. The calculated Van ’t Hoff enthalpy change 

(ΔvHH°) is 175 kJ mol−1, close to the value obtained by using the CD melting profile. The 

Figure 2. DSC analysis of MS3 in the Na+-containing buffer (10 mM NaH2PO4/Na2HPO4, 90 mM
NaCl solution, pH 7.0). (a) Experimental DSC profile (black line), and (b) Van ’t Hoff calculated
curves based on the two-states model (red line) superimposed on the experimental curve (black line).

Table 1. Thermodynamic parameters of MS3 determined by DSC and CD measurements in the
selected Na+-containing buffer (10 mM NaH2PO4/Na2HPO4, 90 mM NaCl solution, pH 7.0).

Tm (◦C) ∆expH◦ (kJ mol−1) ∆vHH◦ (kJ mol−1) ∆expS◦ (kJ K−1 mol−1) ∆expG◦ (kJ mol−1) at 310 K

MS3 53 205 175
167 1 0.627 10.6

1 From CD measurements. The error on Tm determination is ±1.0 ◦C and on the other thermodynamic parameters
is ±10%.

The DSC data clearly showed that the denaturation of the G-quadruplex structure
is an entropy-driven process. This favourable entropy change, as a result of the gain in
conformational freedom degrees of the oligonucleotide upon unfolding, is compensated by
an unfavourable enthalpy contribution, due to the loss of G-tetrad stacking interactions.
Considering that the ∆expH◦ value per tetrad typically falls in the range 60–80 kJ mol−1, as
calculated taking into account the experimental values of a large number of G-quadruplexes
depending on molecularity (unimolecular, bimolecular, tetramolecular), cations (Na+ or
K+) and presence of loops (short or long) [56–59], it can be deduced that the G-quadruplex
structure of MS3 is stabilized by three guanine tetrads, corresponding to a ∆expH◦ value
per tetrad of ~68 kJ mol−1.

Figure 2b shows the comparison between the experimental and calculated DSC curves,
based on the two-state Van ’t Hoff equation. The calculated profile does not perfectly
match the experimental DSC profile. The calculated Van ’t Hoff enthalpy change (∆vHH◦)



Int. J. Mol. Sci. 2022, 23, 4804 6 of 18

is 175 kJ mol−1, close to the value obtained by using the CD melting profile. The ratio
∆expH◦/∆vHH◦ is higher than one, suggesting the presence of significantly populated
intermediate(s) [60].

To check the presence of intermediate species, three-dimensional melting curves for
MS3 were obtained by collecting whole CD spectra as a function of temperature, every
two degrees, with a scan rate of 0.5 ◦C min−1 (Figure S3). The Tm value determined from
the analysis of 3D melting curves is in perfect agreement with those obtained at a single
wavelength at 0.5 ◦C min−1 scan rate. The 3D melting curves were submitted for single
value decomposition (SVD) analysis to verify the number of significant spectral species
involved in the equilibrium melting experiments [61]. SVD analysis showed that three com-
ponents must be considered when analyzing the data sets derived by melting experiments
(Table S2), confirming the presence of an intermediate state during the unfolding process,
which thus well explains the observed difference between the ∆expH◦ and the ∆vHH◦ data.

2.2. MS3 Aptamer Is Highly Resistant to Nuclease Degradation

The resistance of oligonucleotides to nuclease degradation occurring in serum is one
of the most crucial parameters determining their potential in vivo use.

Aiming at evaluating the stability to enzymatic digestion of MS3, this oligonucleotide—
previously dissolved and annealed in PBS—was incubated in 80% (v/v) fetal bovine serum
(FBS) at 37 ◦C and its integrity was monitored up to 48 h. Samples withdrawn from
these reaction mixtures at fixed times, as indicated in Figure 3, were then analyzed by gel
electrophoresis under denaturing conditions following the previously described proce-
dures [62,63]. The intensity of each oligonucleotide band on the gel was then calculated
and expressed as a normalized percentage with respect to that of the first monitored point,
taken 2 min after incubation in FBS (Figure 3b).
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Figure 3. Enzymatic resistance experiments performed on MS3 incubated in 80% fetal bovine serum
(FBS) as monitored by 20% denaturing polyacrylamide gel electrophoresis up to 48 h (time points:
0.1, 0.2, 0.5, 1, 2, 4, 6, 24, 30 and 48 h). (a) Representative 20% denaturing PAGE (8 M urea). Samples
were loaded at 3 µM concentration, and the gel was run at a constant 200 V at r.t. for 3.5 h in TBE
1× as running buffer. (b) Time-dependent degradation of MS3 in the presence of FBS. The intensity
of the band corresponding to the intact oligonucleotide on the gel is expressed as percentage of the
remaining intact aptamer with respect to that of the first monitored point and reported as a function of
the incubation time. Data are reported as mean values ± SD (error bars) for multiple determinations.

PAGE experiments revealed a slow reduction in the DNA band intensity up to 24 h,
where the remaining intact oligonucleotide was 50% of the initial amount. Indeed, starting
from 30 min of monitoring time, an additional band with faster mobility was observed,
in accordance with the expected fragmentation of MS3, forming shorter oligonucleotide
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species. Notably, the aptamer did not completely disappear even after 48 h incubation in
FBS, when MS3 was still detectable at least for ca. 40% of its initial amount.

These results proved that MS3 is a highly stable aptamer in serum, which makes it
potentially suitable for in vivo studies. Its good resistance to nucleases well correlates
with its ability to fold into a very stable G-quadruplex structure, as evidenced by both
spectroscopic and calorimetric data. Overall, these results indicate that MS3 adopts a very
compact three-dimensional G-quadruplex folding, with limited regions exposed to the
solvent, which protects the oligonucleotide backbone from rapid enzymatic degradation.

2.3. MS3 Aptamer Is Efficiently Internalized in Different Cell Types in Concentration- and
Time-Dependent Manner and Persists for a Long Time

To evaluate the biological activity of MS3 and its potential use in the treatment of HD,
we first analyzed its cellular uptake. To this aim, we selected two human cell lines, i.e.,
HeLa and neuroblastoma-derived SH-SY5Y cells, as models of non-neuronal and neuronal
cells, respectively. Both cell lines were incubated for 24 h with different concentrations
of fluorescein isothiocyanate (FITC)-conjugated MS3. Fluorescent signals were detected
both in HeLa and SH-SY5Y cells (Figure 4), indicating that this aptamer was efficiently
internalized in both the tested cell lines. The rate of cellular uptake increased in a dose-
dependent manner, as clearly shown by the quantitative analysis (Figure 4, bar graph on
the left), thus indicating that MS3 uptake is a concentration-dependent process in both the
examined cell types. Moreover, the number of cells displaying a fluorescent signal was
proportional to the MS3 concentration. At low concentrations, about 35–50% of cells gave a
detectable fluorescence signal; starting from 4 µM, almost all cells proved to incorporate
the aptamer (Figure 4, bar graph on the right).

Importantly, no evident effects of cytotoxicity were detected, as determined by moni-
toring both cell lines by morphological analysis (Figure S4) and appearance of nuclei stained
with DAPI (Figure 4). In addition, considering the intrinsic higher sensitivity of neuronal
cell types to exogenous agents, we also evaluated the cell viability by trypan blue assays
and the metabolic activity by MTT assays for SH-SY5Y cells (Figure 5). The percentage
of live/dead cells and metabolic activity proved to be comparable in cells treated with
the MS3 aptamer or with a scrambled oligonucleotide, used as a negative control, at all
the tested concentrations. Remarkably, no significant difference was observed comparing
treated with untreated cells (Figure 5), thus supporting the conclusion that MS3 does not
have relevant cytotoxic effects on the tested cells.

Successively, time-course experiments of the aptamer cell uptake were performed
by incubating SH-SY5Y cells with a 4 µM solution of FITC-MS3 (chosen for being the
minimum concentration with a good uptake rate) at different time points. MS3 was found
to be quickly internalized in the cells as early as 1 h (as evident from a significant fluorescent
signal) and reached maximum values between 12 and 24 h (Figure 6).

To evaluate the persistence/stability of MS3 in the cells, SH-SY5Y cells were incubated
with FITC-MS3 (4 µM) for 24 h (time 0), washed to remove the unincorporated MS3, and
then incubated for different time periods in the culture medium (Figure 7). Interestingly,
MS3 persisted in the cells at least until 72 h, although the fluorescent signal progressively
decreased (Figure 7), overall indicating good stability and compatibility with cell life.

Overall, the efficiency of MS3 cell uptake and its long persistence within cells, along
with the absence of detectable cytotoxic effects, proved to be favourable features of this
aptamer in vitro, which constitute a solid basis to advance its potential use for in vivo
therapeutic strategies.
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Figure 4. FITC-MS3 uptake in different cell lines. HeLa (a) or SH-SY5Y (b) cells were incubated
with FITC-conjugated MS3 (green) for 24 h at different concentrations, as indicated. Then, cells were
fixed, and nuclei were stained with DAPI (blue). Images were acquired with a confocal microscope.
Scale bars, 6 µM. Mean fluorescence intensity normalized per cell area (arbitrary unit, a.u.) of three
independent experiments is shown (left graph), n > 50 cells; error bars, mean ± SD. *** p < 0.0001,
Student t-test. The percentage of fluorescent cells, measured as number per field, is shown (right
graph); error bars, mean ± SD. Note that the percentage of fluorescent cells increased in dose-
dependent manner (p < 0.001, Student t-test), reaching a plateau at the concentration of 4 µM (no
statistical significance among 4, 8, 12 µM, Student t-test).
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Figure 5. Evaluation of cell viability and metabolic activity of SH-SY5Y cells after treatment with the
scrambled oligonucleotide or MS3 aptamer in comparison with untreated cells. (a) Percentage of
viable and dead cells after trypan blue staining. (b) MTT assay results. For both assays, the reported
values represent the mean of biological triplicate of two independent experiments; error bars, mean
± SD. No statistical significance, Student t-test.
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Figure 6. Time-course analysis of MS3 cell uptake. SH-SY5Y cells were incubated with a 4 µM
solution of FITC-MS3 (green) at the indicated time points and fixed; then, nuclei were stained with
DAPI (blue). Images were acquired with confocal microscope. Scale bar, 6 µm. Mean fluorescence
intensity normalized per cell area (arbitrary unit, a.u.) of three independent experiments is shown
(left graph), n > 50 cells; error bars, mean ± SD. *** p < 0.0001, Student t-test.
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Figure 7. Analysis of MS3 biological stability by time-course experiments. SH-SY5Y cells were
incubated for 24 h with FITC-MS3 (green). After removal of residual aptamers by extensive washings,
cells were incubated in culture medium for the different indicated times. Nuclei were counterstained
with DAPI. Images were acquired with confocal microscope. Scale bar, 6 µm. Mean fluorescence
intensity normalized per cell area (arbitrary unit, a.u.) of three independent experiments is shown
(left graph), n > 40 cells; error bars, mean ± SD. *** p < 0.0001, Student t-test; N.S., not significant.

2.4. MS3 Aptamer Improves Motor Neuronal Function in a Drosophila Huntington’s Disease Model

To evaluate the effects of MS3 aptamer in vivo, we studied the influence of dietary MS3
on locomotor activity of HD flies, as a parameter of improved health. To this aim, we used
a well-established Drosophila melanogaster model for HD (Q128HD-FL), which expresses
the mutated human HTT protein, containing 128 glutamine repeats in the exon 1, in all
neuronal tissues (genotype: elav-Gal4/+; UAS-HttFL-Q128/+) [64]. These Q128HD-FL
transgenic flies replicate most key hallmarks of the HD neuronal dysfunction, including de-
creased lifespan, progressive accumulation of aggregates in the cytoplasm, age-dependent
locomotor impairment, and experience a very aggressive course of HD disease. An initial
hyperactivity is followed by quickly progressive age-dependent motor dysfunction and
coordination difficulties due to impaired motor neuronal function [65,66].

In these experiments, a statistically significant number of Q128HD-FL transgenic flies
were fed with six different MS3 concentrations: a control diet devoid of MS3, and five
“Assay fly Food” (AF, see Section 3) media, each supplemented with different concentrations
of the MS3 aptamer (1.5, 3.5, 6.25, 12.5 and 25 µM). First, to be sure of the MS3 palatability,
we monitored adult feeding behavior by adding the red food dye no. 40 to AF medium for
each MS3 concentration used. The amount of food consumed in one day was estimated by
examining the fly abdominal coloring under a stereomicroscope. We found that Q128HD-
FL transgenic adult flies fed with both the MS3 at different doses and the food coloring
did not display variation in food intake, showing the same intensity of body coloring after
visual evaluation.

Then, to test whether the MS3 oral treatment was able to slow down the course of the
disease and the onset of pathological symptoms, adult motor function was measured as the
ability of Q128HD-FL flies to climb a vial wall as a function of MS3 assumption at days 1, 3,
6 and 9 post-eclosion.

We calculated the percentage of flies climbing over 9 cm (Figure 8a) and the average
climbing height reached (Figure 8b). Our results clearly show that MS3 treatment signifi-
cantly improved the climbing ability of Q128HD-FL transgenic flies in a dose-dependent
manner. At the lowest concentrations used (1.5 and 3.5 µM), we did not observe any effect
on the climbing ability of Q128HD-FL flies. As shown in Figure 8a,b, motor dysfunction of
flies treated with 1.5 and 3.5 µM MS3 and of untreated flies was similar; it was early and
progressive and on day 3 post-eclosion, more than 50% of flies could not reach the 9 cm
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target. In contrast, the climbing ability of flies fed with higher concentrations of the MS3
aptamer (i.e., 6.25, 12.5 and 25 µM) was significantly higher. At day 3 post-eclosion, about
70% of flies could reach the 9 cm target. Their motor disability arose later and was most
prominent on day 9 post-eclosion, when, in contrast, untreated flies tended to stay at the
bottom of the vial.
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Figure 8. Climbing ability of age-matched adult female flies grown on food supplemented with
different doses of MS3, evaluated at four different points: presymptomatic (pre-HD; 1 day post-
eclosion, not shown), early symptomatic (early-HD; 3 days post-eclosion) and late symptomatic
(late-HD; 6 and 9 days post-eclosion). (a) Percentage of treated flies that climbed over 9 cm was higher
in comparison to sibling flies in a dose-dependent manner; (b) average climbing height reached
by treated and untreated flies, both in pre- and late symptomatic periods. For each condition, the
climbing ability of three groups of 20 flies was monitored (n = 60) for a total of 3 trials (n = 180).
Analysis of data was conducted using ANOVA one way; data represents mean± SEM (**** p < 0.0001;
*** p < 0.001; compared with untreated as control).

In conclusion, both the percentage of flies that reached the target (9 cm) and the average
climbing height reached was significantly higher at each examined age point (p < 0.0001),
indicating that MS3 slowed down the progressive loss of motor function and the onset of
this pathological symptom in a dose-dependent manner. Dietary administration of doses
higher than 6.25 µM of MS3 suppresses motor dysfunction in flies expressing Q128HD-FL.
The 6.25 µM concentration seemed to be the minimum concentration of MS3 that was
effective in improving motor dysfunction in Q128HD-FL fly model.

Our findings strongly suggest that MS3 ameliorates polyQ-induced compromised neu-
ronal function in Q128HD-FL flies and, in consideration also of the absence of toxic effects,
not observed either in vitro or in vivo, can be a promising candidate for the development
of innovative drugs to reduce the effects of HD disease.
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3. Experimental Section
3.1. Materials

Acrylamide/bis-acrylamide (19:1) 40% solution, glycerol, formamide, urea and Gel-
Green Nucleic Acid Stain were purchased from VWR (Milan, Italy). Ammonium persulfate
(APS) and tetramethylethylenediamine (TEMED) were purchased from Sigma Aldrich
(Merck Life Science, Milan, Italy). Fetal bovine serum (FBS) was provided by Euroclone
(Pero, Milan, Italy).

3.2. Oligonucleotide Sample Preparation

MS3 aptamer [d(GGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGAGGGA)], 5′-FITC-
modified MS3 and a scrambled oligonucleotide of the same length as MS3, unable to form G-
quadruplex structures, [d(GTGAGTGAGTGAGTGAGTGAGTGAGTGAGTGAGTGA)], were
purchased from Biomers.net GmbH (Ulm, Germany) as HPLC-purified sequences. All the
used oligonucleotides were characterized by MALDI and proved to be >97% pure by HPLC
analysis, as provided by the manufacturer.

The concentration of each oligonucleotide was evaluated by UV measurements at
260 nm at a temperature of 95 ◦C, using molar extinction coefficient values calculated by
the nearest-neighbour model [67]. For the biophysical characterization, unmodified MS3
was analyzed either in sodium phosphate buffer (10 mM NaH2PO4/Na2HPO4, 90 mM
NaCl, pH 7.0) or in PBS (137 mM NaCl, 2.7 mM KCl, 10 mM NaH2PO4/Na2HPO4, 1.8 mM
KH2PO4/K2HPO4, pH = 7.3). The solutions were heated at 90 ◦C for 5 min and then slowly
cooled to room temperature.

3.3. UV Spectroscopy Analysis

UV spectra were acquired on a JASCO V-770 UV–Vis spectrophotometer equipped
with a Peltier Thermostat JASCO ETCS-761, by using a quartz cuvette with a 1 cm path
length (1 mL internal volume, Hellma). MS3 was dissolved in the selected phosphate
buffers so to obtain 2 µM solutions and then slowly annealed. In detail, absorbance spectra
were recorded at 5 and 100 ◦C in the range 220–320 nm using a scanning speed of 100 nm
min−1 and subtracting the proper baseline. Then, thermal difference spectra (TDS) were
obtained by subtracting the UV spectrum recorded at 5 ◦C, at which the aptamer is fully
structured, from the one obtained at 100 ◦C, where the G-quadruplex structure is completely
denatured [48,49]. UV measurements at each temperature were carried out in duplicate.

In order to facilitate the comparison of the spectral data, all the obtained TDS profiles
were then normalized to the maximum of absorbance simply by dividing the raw data by
the maximum absorbance value, so that the highest positive peak has a Y-value of +1 [48].
From normalized spectra, TDS factors (∆A240/∆A295, ∆A255/∆A295, and ∆A275/∆A295)
were also determined in both the analyzed buffer solutions as the ratios between the
absolute absorbance values at different wavelengths [48,49].

3.4. Circular Dichroism (CD) Analysis

CD experiments were carried out on a Jasco J-815 spectropolarimeter (JASCO Inc.,
Tokyo, Japan) equipped with a PTC-423S/15 Peltier temperature controller, or on Jasco
J-1500 spectropolarimeter equipped with a Jasco CTU-100 circulating thermostat unit,
using a quartz cuvette with a path length of 1 cm. All the spectra were recorded at 5 ◦C
in the 220–340 nm wavelength range and averaged over three scans. The scan rate was
100 nm min−1, with a 4 s response and 1 nm bandwidth. Oligonucleotide concentration was
2 µM for all the CD samples. CD melting and cooling curves were recorded in the 5–100 ◦C
range at 0.5 or 1 ◦C min−1 by following changes of the CD signal at the wavelength
of maximum intensity (263 nm). Three-dimensional melting curves were obtained by
recording the CD spectra as a function of temperature using the same parameters reported
above. CD spectra were recorded every two degrees. The CD melting curves at 263 nm
were fitted by a two-state transition equation according to the Van ’t Hoff analysis using
Origin 7.0 software (OriginLab Corp., Northampton, MA, USA). The melting temperature
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(Tm) and enthalpy change (∆vHH◦) values provide the best fit of the experimental melting
data. All experiments were performed in duplicate, and the reported values were the
average of two measurements.

For the singular value decomposition (SVD) analysis performed on the CD spectra
acquired at 5 ◦C, the obtained spectra were treated so as to convert the Y-axis unit from
mdeg to molar ellipticity, as previously reported [68]. The resulting spectra were then
processed as reported in the literature [55].

Data from CD thermal denaturation/renaturation profiles were also converted into
folded fraction, as previously described [69,70].

3.5. Differential Scanning Calorimetry (DSC) Analysis

DSC measurements were carried out on a nanoDSC (TA Instruments, New Castle, DE,
USA), using a 200–400 µM G4 sample dissolved in the 10 mM NaH2PO4/Na2HPO4, 90 mM
NaCl solution at pH 7.0. The apparent molar heat capacity vs. temperature profiles were
obtained at 0.5 ◦C min−1 scan rate. The excess heat capacity function 〈∆CP

◦〉 was obtained
after buffer-buffer baseline subtraction. No baseline difference was observed before and
after the transition, indicating a negligible heat capacity difference between the initial
and final states. The experimental enthalpy change, ∆expH◦, was obtained by integrating
the area under the 〈∆CP

◦〉 vs. temperature curve and the entropy change, ∆expS◦, was
obtained by integrating the area under the 〈∆CP

◦〉/T versus temperature curve. The Tm
value was obtained from the maximum of each DSC curve. The Gibbs energy change,
∆expG◦, was calculated at 37 ◦C, from the equation ∆expG◦ = ∆expH◦ − 310.15·∆expS◦.
The reported thermodynamic parameters were the average of at least three independent
heating experiments.

3.6. Singular Value Decomposition Analysis (SVD)

Three-dimensional melting curves were analyzed by singular value decomposition
(SVD) to evaluate the number of significant spectral species during the transition. SVD
was performed using Matlab R2020b software (The MathWorks Inc., Natick, MA, USA).
The matrix of the CD spectra A is decomposed into product matrices U, S, and V by SVD
(A = U·S·VT). S is a diagonal matrix that contains the singular values. U is a matrix of
basis spectra for each spectral component. The V matrix consists of amplitude vectors for
each basis spectrum, corresponding to a spectral component change with temperature. The
autocorrelation function of the basis spectra and amplitude vectors represents a measure of
nonrandom shapes within each column and allows determining the minimum number of
component spectra required to describe the data. A value of the autocorrelation functions
higher than 0.6 was selected as a cutoff criterion for accepting a significant spectral species.

3.7. Enzymatic Stability Assays Monitored by Gel Electrophoresis Analysis

The MS3 stability in serum was determined by gel electrophoresis analysis according to
reported procedures [62,63], with minor modifications. Briefly, MS3—previously annealed
in PBS buffer at 50 µM conc.—was incubated in 80% FBS at 37 ◦C. Then, at fixed times, 3 µL
of the samples (corresponding to 30 pmol) were collected, mixed with formamide (1:2, v/v)
to immediately quench the enzymatic degradation, heated at 95 ◦C for 5 min, and finally
stored at −20 ◦C until subsequent analysis. Thereafter, all the samples—supplemented
with 5% glycerol immediately before loading—were analyzed by gel electrophoresis on
20% denaturing PAGE using 8 M urea in TBE 1X as running buffer. The gels were run at r.t.,
at constant 200 V for 3.5 h, then stained with GelGreen Nucleic Acid Stain (supplemented
with 0.1 M NaCl) for 30 min and finally visualized with a UV transilluminator (BioRad
ChemiDoc XRS, Milan, Italy). The experiment was repeated 3 times. The intensity of the
DNA bands on the gel, at each collected time, was then calculated by using the FiJi software
and normalized with respect to the first monitoring point. Percentages of the remaining
intact oligonucleotide are reported as mean values ± SD for multiple determinations.
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3.8. Cell Cultures

HeLa and SH-SY5Y cells were maintained in RPMI-1640 (Euroclone, Pero, Italy) with
10% fetal bovine serum (FBS; Hyclone, Fisher Scientific, Waltham, MA, USA), and 2 mM
L-glutamine (Euroclone, Pero, Italy). All cell lines were maintained at 37 ◦C in a saturated
humidity atmosphere containing 95% air and 5% CO2.

3.9. Cytotoxic Assays
3.9.1. MTT Assay

To evaluate cell viability, the selected cell lines were seeded in 24-well plates at
5 × 104 cells per well and incubated with the scrambled oligonucleotide or MS3 aptamer
as above described. After 72 h, cells were washed with RPMI and incubated with 3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) solution (0.5 mg/mL; Sigma-
Aldrich, St Louis, MO, USA) for 1 h at 37 ◦C under 5% CO2. Then, the MTT assay media
were discarded. The crystals of formazan were dissolved using 500 µL of dimethyl sulfox-
ide (DMSO) and the resulting coloured solution was analyzed by measuring the absorbance
values at 595 nm with a Microplate Reader according to the manufacturer’s protocol.

3.9.2. Trypan Blue Assay

Cells were trypsinized and diluted 1:1 with trypan blue stain (10 µL cells and 10 µL
of 0.4% trypan blue stain). The viable and dead cells were differentiated by trypan blue
exclusion and counted by Corning Cell Counter (Corning Inc., New York, NY, USA) using
CytoSMART™ software (CytoSMART Technologies, Eindhoven, The Netherlands).

3.10. Fluorescence Microscopy

To monitor MS3 aptamer internalization, FITC-MS3 was added to the cells in culture
medium at 37 ◦C at different concentrations or for different time periods, as indicated.
Then, cells were washed with PBS and fixed with 4% paraformaldehyde (PFA), quenched
with 50 mM NH4Cl. Images were collected using confocal laser scanning microscope LSM
700 (Carl Zeiss, Jena, Germany) equipped with a Plan Apo 63 X oil immersion objective
(NA 1.4). Diode lasers at 405 and 488 nm were used as light source; fluorescence emission
was revealed by 505–530 band pass filter for Alexa Fluor 488 and by 410–460 band pass
filter for DAPI. Images were acquired with the confocal pinhole set to one Airy unit using
the same setting (laser power, detector gain, threshold of fluorescence intensity) in all
experimental conditions. Three-dimensional reconstructions of Z-slices collected from the
top to the bottom of the cells was carried out using Zeiss ZEN Black software as well as
quantification analyses. In particular, the mean fluorescence intensities were measured by
drawing regions of interest (ROI) around the entire cell as previously described [71] and
the values were normalized per cell area.

3.11. Drosophila Stocks

Flies were reared on standard cornmeal-agar with a 12 h on–off light cycle at 25 ◦C. Fly
stocks used in the current study were obtained from the Bloomington Stock Center (Bloomington,
IN, USA): 33,808 w*; P{UAS-HTT.128Q.FL}f27b-8765 w; 438 P{w[+mW.hs]=GawB}elav[C155].

3.12. MS3 Treatment and Crosses

During the assays, flies were reared in tubes containing 2 mL of “Assay fly Food”
(AF) (2% agar, 10% powdered yeast, 10% sucrose, 0.1% nipagin) or on the same AF sup-
plemented with different MS3 concentrations. Proper volumes of MS3 stock solutions in
PBS were added onto the surface of “Assay fly Food” (AF; 2% agar, 10% powdered yeast,
10% sucrose, 0.1% nipagin), and left under gentle agitation for 3 h at r.t. until dryness. PBS
was supplemented in equal quantity in all the tested concentrations and in the control food,
devoid of aptamer. Expression of polyglutamine-containing hHTT was obtained through
the bipartite expression system (UAS)-GAL4 [72], in trans-heterozygous F1 progeny gener-
ated by crossing females carrying the pan-neural driver elav-Gal4 to males carrying the
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UAS HTT128QFL construct at 28 ◦C. Only F1 adult females elav-GAL4/UAS HTT128QFL
were used in this study.

3.13. Feeding Assay

To check if the presence of MS3 aptamer in the “Assay fly Food” could affect the
feeding of HD and parental flies, the red food dye no. 40 was added to AF medium for
each MS3 concentration used [73]. The flies were allowed to feed on the dye-supplemented
medium for 1 day, and their abdominal coloring was examined under a stereomicroscope.

3.14. Negative Geotaxis Assay and Statistics

Negative geotaxis assay was carried out as previously described [64]. Briefly, a group
of 20 sex-matched flies were placed in a graduated empty plastic vial (18 × 2.5 cm) and
allowed to recover for 30 min. Negative geotaxis was measured by recording the number
of flies that climbed above the 9 cm mark within 20 s after a tap down of the flies to the
bottom of the vial. This assay was repeated for the same group twice, allowing for a 1 min
rest period between each trial. The number of flies per group that passed the 9 cm mark
was recorded as a percentage of total flies. The number of flies per group in each segment
was also recorded to calculate the average climbing height. For each condition, 3 groups
of 20 flies each were tested in the marked tube in three independent experiments, and the
data were expressed as an average of the replicates (n = 180).

Statistical analysis was performed using one-way analysis of variance (ANOVA)
followed by Dunnett’s multiple comparisons test, in Graph Pad Prism 9.

4. Conclusions

Mutation in the structure of huntingtin protein has emerged as the main player in
the progression of HD. Therefore, the mutant protein is considered a privileged target of
many cutting-edge pharmacological strategies to fight HD, a significant neurodegenerative
disease for which, currently, only limited, palliative treatments are available. Among
the potential candidate drugs developed to specifically bind the mutant protein, a set of
guanine-rich aptamers have recently been evolved and analyzed in a variety of biochemical
experiments which demonstrate their capability of binding to a mutant huntingtin protein,
with a 78-residue polyglutamine tract expansion, and influence its activity [41].

Aiming at profitably contributing to this research field, we have here provided a
detailed biophysical characterization of the best aptamer in the series, named MS3. Our
data proved that this aptamer adopts a very stable, parallel G-quadruplex structure, as
determined by UV, CD, and DSC measurements, and shows high resistance to nuclease
digestion in pseudo-physiological solutions. The in vitro characterization picture of this
anti-huntingtin aptamer has been completed by confocal microscope analyses. These
experiments proved that fluorescein-labelled MS3 is rapidly internalized in both non-
neuronal HeLa and neuronal SH-SY5Y cells in a dose-dependent process and persists
in the examined neuronal cells for a long time (up to 72 h), not causing evidence of
general cytotoxicity. This result is particularly relevant, demonstrating the feasibility of
its in vivo use, even in the absence of transfecting agents. Finally, using a well-established
Drosophila melanogaster model for Huntington’s disease (Q128HD-FL), which expresses the
mutated form of human huntingtin, the neuronal function improved after MS3 treatment,
definitively proving the in vivo efficacy of this aptamer.

The intriguing properties shown by the MS3 aptamer open new valuable perspectives
in the therapeutic approaches for Huntington’s disease based on specifically targeting
mutant huntingtin.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23094804/s1.
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