
11Biomedical Informatics Insights 2016:8

Background and Significance
Epilepsy is characterized by chronic recurrent unprovoked 
seizures. About 2,000,000 people in the United States and 
50 million people worldwide have epilepsy, making it the most 
common neurological disorder.1,2

The current recommendation from the International 
League Against Epilepsy is that a patient with epilepsy whose 
seizures have not responded to at least two appropriately cho-
sen and prescribed antiepileptic drugs is considered to have 
drug-resistant epilepsy, and additional interventions such as 
epilepsy surgery evaluation should be considered. Epilepsy 
surgery has become a well-established treatment option for 
children with drug-resistant epilepsy.3

Growing evidence suggests that early surgery has a favor-
able prognostic implication.4,5 However, it typically takes 
several years before a patient with drug-resistant epilepsy 
is referred for an epilepsy surgery evaluation. Patients who 

have been referred for epilepsy surgery have sometimes had 
epilepsy more than 18 years and often more than 10 years after 
the failure of two antiseizure medications.6,7 While delays in 
referral may be most common at primary and secondary care 
centers, at the institution studied here, the mean time from 
development of epilepsy to surgery is approximately six years. 
This indicates that there is work to be done even at a tertiary 
referral center like this one.

Although the number of epilepsy surgeries in children 
has steadily increased in the United States in the past two 
decades, current data suggest that epilepsy surgery is still 
underutilized. For example, a recent study of trends in epi-
lepsy surgery utilization in children using a national health-
care cost and utilization database revealed that less than 35% 
of expected epilepsy surgeries in children was performed.8 
There are several factors contributing to this underutilization 
such as lack of clinician awareness of the need and possible  
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outcomes or the family’s lack of knowledge regarding this 
option. A clinical decision support system could help clinicians 
and families realize that a patient is a potential epilepsy sur-
gery candidate in line with the established American Acad-
emy of Neurology standards.9

The results in computational techniques suggest that 
machine learning and natural language processing can be 
incorporated into decision support systems that help physicians 
decrease the elapsed time to a surgery referral. Machine learning 
is a computational technique for developing computer programs 
that can learn for themselves to make classifications.10 Natural 
language processing is a set of computational techniques for using 
computers to process data that are in the form of language.11 
There are many approaches to natural language processing. In 
the neurology domain, natural language processing has already 
been used to capture disease severity from the electronic health 
record (EHR) in multiple sclerosis12; several decision support 
tools are available in neurological disease, including Simulcon-
sult (www.simulconsult.com). However, these methods have as 
yet not been integrated into the clinical workflow.

This work is innovative from both the clinical neurology 
perspective and the informatics perspective. From a clinical 
perspective, it could form the basis of the first clinical deci-
sion support system for epilepsy surgery treatment. From an 
informatics perspective, the analysis is unusual in that it sys-
tematically explores the impact of a number of factors on a text 
classification task, ie, data source, data size, data balance, clas-
sification algorithm, and feature set. It is also unusual in that 
it reports the measures of dispersion of the figures of merit. Of 
course, many of these factors have been examined before, but 
not typically all of them and not typically in the context of a 
clinically relevant task.

Materials and Methods
EHR data. This study was approved by the Cin-

cinnati Children’s Hospital Medical Center’s (CCH-
MC’s) Institutional Review Board. We collected a data 
set of free-text clinical notes by querying the electronic 
medical record at CCHMC, a large academic pediatric 
neurology practice.

We first identified all current and past patients who were 
assigned International Classification of Disease version 9 
(ICD-9) codes for epilepsy or convulsions.† Only patients who 
had seen a physician or practitioner in the Division of Neurol-
ogy for at least one year and had at least four progress notes 
since 2009 were included. A total of 6,343 patients fulfilled 
these criteria.

From this group, positive and negative examples were iden-
tified for training an epilepsy surgery candidate classifier.

•	 Positive instances were patients who underwent resective 
epilepsy surgery, defined as either lobectomy, corticec-

† �345.*, 780.3*, 779.0

tomy, or hemispherectomy. These were identified using 
procedure codes corresponding to craniotomies for resec-
tion‡ (N = 100).

•	 Negative instances were nonsurgical patients identified 
as seizure free for at least 12 months before their latest 
visit, using the last seizure date found in structured and 
unstructured EHR data (N = 423).

Manually annotated subset. To assess human perfor-
mance on this task, a group of pediatric epileptologists manu-
ally annotated a subset of the data with the classes that the 
system is intended to assign. The labeling was done at the 
patient level and at the level of each clinic visit note, corre-
sponding to that patient.

A sample of 62 patients with unknown outcomes and 
their clinic visit notes were chosen for manual annotation. Pos-
sible annotations were “surgery candidate”, “non-candidate”, 
and “undetermined”. Manual labeling was done by three 
clinicians, with a fourth (senior) neurologist resolving cases 
where there was no agreement between any of the three raters. 
The product of this annotation is what is used to calculate the 
inter-annotator agreement numbers given in the “The context 
for interpretation: baseline and upper bound” section.

Natural language processing and machine-learning 
algorithms. The experimental design and subsequent analysis 
were driven by the following general principles:

1.	 Since interpreting system performance depends on the 
task, it is necessary to choose a baseline algorithm that 
defines the lower bound for performance. The most valid 
baseline is a baseline internal to this work. That is, we aim 
for an apples-to-apples comparison of the final system to 
a baseline that we built, keeping as much of the system 
constant as possible, other than the aspects of the system 
whose impact is being evaluated by any given experiment.

2.	 The most reasonable upper bound against which to evalu-
ate system outputs is the inter-annotator agreement.

3.	 Evaluation of Hypothesis 1 – that the system can identify 
surgical candidates at the same level of performance as 
the physicians – is best done with a single value for the 
figure of merit.

4.	 Evaluation of Hypothesis 2 – that the system can identify 
surgical candidates earlier than the physicians – is done 
by examining the time course of the figure of merit.

The analysis examines the effects of the following on 
system performance:

1.	 Size of training data,
2.	 Feature set,
3.	 Classification algorithm,
4.	 Balance of positive and negative classes, and

‡ � 61510, 61531, 61533–61540, 61542–61543, 61566–61567
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5.	 Manually labeled (annotated) versus weakly labeled 
(EHR) data.

Assuming three differently sized data sets, five feature 
sets, and two classification algorithms (holding all the param-
eters of the algorithm constant at the default values) would 
give 30  sets of results for a reasonable test of either of the 
hypotheses. This does not begin to exhaust the parameter 
space, as we have shown elsewhere,13 even with a number of 
simplifying assumptions, just exploring the support vector 
machine (SVM)-light (http://svmlight.joachims.org) func-
tionality alone would require 92,980,917,360 different sets of 
parameter settings. If we could execute one run per second, 
it would take a bit under 3,000 years to run the experiment 
(we are aware that there are algorithmic approaches to mak-
ing the process more efficient but do not know of any such 
approaches that have been attempted on the problem of this 
scale), and it is unlikely that the results would be illuminating 
in any scientific sense. (It is not impossible that they would 
be: in Ref 14 we showed that exhaustive exploration of a large 
parameter space reveals an interesting pattern in the relation-
ship between precision and recall on the gene mention task, 
on one hand, and performance on the gene normalization on 
the other.) We present here a rational subset of factors that 
seemed likely to have a computationally, statistically, or lin-
guistically motivated effect on performance, while striving to 
maintain the apples-to-apples comparisons that we identi-
fied above as desiderata of the work. Specifically, we compare 
the following.

Size of training data. In one experiment, we varied the 
amount of training data, from 40 patients to 200 patients. 
We held all other factors constant: balanced data, feature set 
(unigrams + bigrams + drugs), classifier type (SVM), and data 
source (distant supervision).

Feature set. In another experiment, we varied the feature 
set. Specifically, we compared the following:

•	 Unigrams;
•	 Unigrams + drug name normalization;
•	 Bigrams;
•	 Bigrams + drug name normalization;
•	 Unigrams + bigrams; and
•	 Unigrams + bigrams + drug name normalization.

These were chosen on the basis of the following ratio-
nale. Despite common assumptions to the contrary, it is not 
an a priori given that bigrams will yield an improvement over 
unigrams.15,16 For example, when adding bigrams to uni-
grams alone, either no improvement or worsening of perfor-
mance was observed.17–19 Bekhuis and Demner-Fushman19 
also point out that although bigrams often do improve per-
formance, unigrams can decrease the computational load. 
In these experiments, unigrams were used because they 
are a nontrivial baseline for document classification.19–26 

Bigrams were added because the combination of unigrams 
and bigrams is a common feature set in document classifica-
tion. Drug name normalization was added because medica-
tion names are readily extractable and have clear clinical 
relevance. We mapped all known generic or trade names of 
42 different antiepileptic drugs to codes, representing the 
medications. For example, lacosamide and Vimpat were both 
replaced with _DRUG_ LCM. All other factors such as bal-
anced data, the size of the training set (200 patients), classi-
fier type (SVM), and data source (distant supervision) were 
held constant.

Classification algorithm. To examine the effect of the 
choice of the classification algorithm, we compared a Naive 
Bayes classifier with an SVM. In the machine-learning litera-
ture, in general, this is not an uncommon comparison.19,27–29 
We used a Naive Bayes classifier because it is a nontrivial 
baseline for document classification tasks.11,23,30–32 We com-
pared it with a SVM because of the long history of strong 
performance of SVMs in document classification, the public 
availability of excellent implementations of SVM classifiers 
(which we hoped would enable reproducibility), and our long 
experience with this type of classifier. We used the MAL-
LET implementation33 of Naive Bayes and the scikit-learn34 
implementation of a SVM. All other factors such as balanced 
data, the size of the training set (200 patients), feature set 
(unigrams + bigrams + drugs), and data source (distant super-
vision) were held constant.

Balance of positive and negative classes. We examined the 
effect of balance in the training and testing data by vary-
ing the ratio of positive to negative instances (that is, sur-
gery candidates versus noncandidates) from 1:1 to 1:4. The 
overall size of the data set increased from 200 to 500. The 
feature set (unigrams + bigrams + drugs), the classification 
algorithm (SVM), and data source (distant supervision) were 
held constant.

Manually labeled versus weakly labeled data. Finally, we 
evaluated the effect of manually labeled (annotated) versus 
weakly labeled data. A set of four board-certified pediat-
ric neurologists manually annotated data from 62 patients. 
Patients and notes were classified as being (in the case of 
the patients) or indicating (in the case of their notes) intrac-
table/intractability, epilepsy type, and surgical candidates/
candidacy. It is a classic example of what has been called light 
annotation – that is, annotation requiring domain expertise 
and yielding domain labels, as opposed to linguistic labels 
(such as part of speech or syntactic structure).35,36 We refer 
these data as manually labeled or manually annotated data.

We compared classifier performance with these data to 
classifier performance with data pulled from the hospital’s 
EHR system using the criteria described elsewhere in this 
article. These kinds of data are typically called weakly labeled 
data.20,37 It has inspired the approach to data use known as 
distant supervision that has recently achieved wide currency in 
the broader language processing world.38
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Results
The context for interpretation: baseline and upper 

bound. We report classification results primarily in the form 
of F-measure, defined as the harmonic mean of precision 
and recall.

In considering the results of various experiments, it 
is important to have a clear picture of the upper and lower 
bounds of likely performance.

The baseline is derived from a system using unigrams 
(unordered single words) as features, a Naive Bayes classifier, 
and training and testing on 100 positive (surgical) and 100 
negative (nonsurgical) patients with 10-fold cross-validation. 
This is a nontrivial baseline, and often, it is not an easy one to 
beat. The resulting baseline is F = 0.74 ± 0.04; any system that 
does not perform better than this is failing in some way.

The upper bound for the system is the level of agreement 
of human annotators with each other. For the purpose of mea-
suring agreement, the annotations were collapsed to a binary 
scheme: surgery candidates versus noncandidates or unde-
termined candidacy. Of the 62 manually annotated patients, 
19 were annotated as candidates and 43 as noncandidates or 
undetermined. For the two annotators with the highest agree-
ment, Cohen’s kappa was 0.632 and the F-measure (consider-
ing either annotator as the gold standard) was 0.71 ± 0.10. The 
relatively poor agreement can be attributed to varying inter-
pretations of incomplete EHR data in many of the patient 
records. Any system approaching, and certainly any system 
exceeding, the agreement F-measure of 0.71 can be consid-
ered to be performing as well as is possible.

Patient-level classification. Table 1 lists the results for 
the baseline system at the most basic analytical level – that 
is, the classification of patients (n =  200). The baseline sys-
tem performs comparably to the aggregate of neurologists. 
The aggregate has an inter-annotator agreement (which, as 
described above, is a likely ceiling on possible performance) 
F-measure of 0.71 ± 0.10, while the baseline system performs 
at 0.74 ± 0.04, supporting Hypothesis 1.

Temporal variation in classification. Figure  1  shows 
classification results through 11 successive clinic visits, as the 
system takes more and more data for each patient into account. 
Figure 2 shows similar data, but with results reported over nine 
time periods rather than numbered office visits. These results 
test the hypothesis that the system can identify surgical can-
didates earlier than physicians. In both cases, the system per-
forms comparably to the aggregate of physicians from the first 
time period and improves over time, supporting Hypothesis 2.

Effect of feature set. Analyzing the effect of different 
feature sets gives us some idea of how much potential there 
might be for a feature engineering-based approach to improv-
ing the system without overfitting.

We evaluated various combinations of surface linguistic 
features and conceptual features. The surface linguistic fea-
tures were unigrams and bigrams. As a conceptual feature, we 
looked at the recognition of drug names.

The results for various combinations of these features are 
listed in Table 2. In these experiments, we kept all other aspects 
of the processing constant as follows: balanced data (100 posi-
tive and 100 negatives), classification algorithm (SVM), and 
data source (distant supervision). Overall, unigrams only are a 
strong baseline, performing better than both the inter-annotator 
agreement and the Naive Bayes baseline system. Any additional 
features improve on the unigram-only performance. In particu-
lar, drug recognition improves on all combinations of surface 
linguistic features, suggesting the addition of additional concep-
tual classes as an avenue for improving performance further.

Classification algorithm. We evaluated two different 
classification algorithms to get some insight into the likelihood 
of future benefit from trying a wider range of classification 
algorithms. We compared Naive Bayes and a SVM. We kept 
all other aspects of the processing constant as follows: balanced 
data (100 positive and 100 negatives), feature set (unigrams, 
bigrams, and drugs), and data source (distant supervision). 
Table  3  shows the results. The SVM produced considerably 
higher performance than the Naive Bayes classifier.
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Figure 1. Classification of surgery candidacy at 11 clinic visits by the 
baseline system. Error bars are 95% confidence intervals. The mean 
performance of the baseline system is comparable to the aggregate of 
neurologists at the first visit and improves over time.

Table 1. Patient level classification of surgery candidacy, baseline 
system. ± values are standard deviations. The baseline system 
performs comparably to the aggregate of neurologists.

NLP
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Total

G
o

ld
 

St
a

n
d

a
r

d

Surgery  
candidate

71 29 100

Non- 
candidate

21 79 100

Total 92 108 200

Notes: Precision: 0.77 ± 0.03. Recall: 0.71 ± 0.03. F-measure: 0.74 ± 0.04.
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Effect of size of training data. To assess how much 
performance gain we might see from acquiring additional data 
as compared with the cost of getting that data, we examined 
the learning curve, as increasing amounts of data are used to 
train the classifier. We held all other factors constant: bal-
anced data, feature set (unigrams + bigrams + drugs), classifier 
type (SVM), and data source (distant supervision).

Examining the results in Figure 3, we see that the per-
formance at a training set size of 200 (the maximum that we 
were able to do with our data set) has already been reached at 
a training set size of 120. Thus, it seems likely that additional 
data might improve the results, but that quite a bit of data 
would be needed to see an improvement.

Effect of balance. The system was quite sensitive to 
the balance of the data. With a 1:1 ratio of positive:negative 
instances (that is, candidates to noncandidates) and the con-
figuration described in the “Material and methods” section, 
the system achieved an F-measure of 0.82 ± 0.03. With a 1:4 
ratio, the F-measure dropped to 0.70 ± 0.04. Table 4 shows a 
rapid drop-off in performance, as the balance changes from 
1:1 to 1:4. This is especially notable since as the balance 

changes from 1:1 to 1:4, the size of the training set more 
than doubles.

Effect of data source. We evaluated the effect of varying 
the data source. We compared the models trained on data from 
the two sources, holding every other factor constant: unbal-
anced data (19 positive, 43 negative), feature set (unigrams + 
drugs), and classifier (SVM). Table 5 shows the results. With 
these parameters, the distant supervision approach yielded 
better results than did the manually annotated data.

Discussion
These experiments evaluate two hypotheses: that an auto-
mated system can identify surgical candidates as well as 
board-certified neurologists and that the automated system 
can identify surgical candidates earlier than neurologists. The 
data shown in Table 1 suggest that the first hypothesis is sup-
ported. The data shown in Figures 1 and 2 suggest that the 
second hypothesis is also supported.

We sought to better understand what factors affect the 
performance of the system, and in what way. Our experiments 
varied specific things that could be expected to affect perfor-
mance, holding all other aspects of the system constant. The 
results of these experiments were consistent with the follow-
ing analyses:

•	 Feature engineering pays off for these data. The simplest 
set of features yielded an F-measure of 0.77, and the 
broadest set of features yielded an F-measure of 0.82. 
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Figure 2. Classification of surgery candidacy at nine time periods by the 
baseline system. Error bars are 95% confidence intervals. The mean 
performance of the baseline system is comparable to the aggregate of 
neurologists at the first time period and improves over time.

Table 2. F-measure with various feature sets.

Feature set F-measure

Unigrams 0.77 ± 0.03

Unigrams + drugs 0.81 ± 0.03

Bigrams 0.80 ± 0.03

Bigrams + drugs 0.80 ± 0.03

Unigrams + bigrams 0.80 ± 0.03

Unigrams + bigrams + drugs 0.82 ± 0.03

Note: All other factors such as balanced data, data set size, classification by 
SVM, and distant supervision for the data source are held constant.
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Figure 3. Effect of size of training data. All other factors such as balance, 
feature set, classifier type, and data source are held constant. Error bars 
are 95% confidence intervals.

Table 3. Effect of classifier, holding all other factors constant.

Classifier F-measure

Naive Bayes 0.77 ± 0.03

Support vector machine 0.82 ± 0.03
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These figures reflect the results of only a very modest 
amount of feature engineering, and it is likely that more 
such effort would yield increased performance.

•	 Classification algorithm does matter. The baseline Naive 
Bayes system yielded an F-measure of 0.77, while the 
SVM produced an F-measure of 0.82.

•	 Training data size matters. A fivefold increase in the 
number of patients in the data set (from 40 to 200) 
yielded an increase of 10 points of F-measure (from 0.718 
to 0.818). This is a large increase, but perhaps not propor-
tional to the increase in the size of the data set, although 
certainly consistent with other findings in the literature, 
as discussed below. This suggests that large amounts of 
additional data could improve performance further.

•	 Balance does matter. The performance was considerably 
higher with balanced data than with unbalanced data – 
0.70 F-measure to 0.82 F-measure.

•	 Performance is affected by the source of the training data. 
The manual annotation may not be worth the expense 
with such a small data set, as is the case here. It is not 
unreasonable to consider the impact of larger corpora.

One way in which this work differs from the broader 
body of literature in natural language processing is that we 
have reported the statistical dispersion of the figures of merit. 
These figures of dispersion demonstrate the importance of 
reporting statistical variability in natural language processing 
and machine learning, and in fact, they suggest some caution 
in interpreting the results. For example, looking at the error 
bars in Figures 1–3, it is apparent that for some measurement 
points, there is a substantial difference between the mean 
performance of the system and its extreme points and that 
changes (and particularly improvements) in performance that 
seem clear from the trends in mean performance do not seem 
so evident when considering the variability in performance. 
This point is not typically considered in the related literature; 
the results described here suggest that it should be.

Comparison to the literature. Machine learning has 
had some applications in neurology. For example, Memarian 
et  al.39 used machine learning for epilepsy surgery outcome 
prediction, Dian et al.40 used machine learning to find brain 
regions of interest for surgery, and Yang et al.41 used machine 
learning to characterize lateralization. Jette et al.42 and Roberts 
et al.43 report an online tool for evaluating appropriateness for 
epilepsy surgery evaluation. The system reported here differs 
in that it can identify patients proactively and a tool can be 
developed to automatically notify the provider. This can be 
integrated into the normal workflow of patient care.

Matykiewicz et al provided a proof of concept for the idea 
that early prediction of pediatric epilepsy surgery candidates 
might be possible.44 The work reported here is a thorough 
exploration of the methods that could potentially be applied 
to that task. While Matykiewicz et  al.44 reported on a sin-
gle classifier, this work explores the factors that affect such 
models and provides insights into how such models can be 
improved – and made practical. Although we have not made 
scaling issues a focus of this article, we note a relevant com-
parison in Ref. 44 with respect to this topic. The system 
described in that study achieved similar results, but with four 
days of training and testing time. In contrast, one run of the 
system described here takes less than an hour. Used in the 
clinic on a patient-by-patient basis, this system could return 
results before the bloodwork is back from the laboratory.

Perhaps the biggest surprise of the results reported here 
was the amount of data required to improve the performance 
above the baseline. It has been known since the publica-
tion of Ref. 45 that the amount of data available to a train-
ing algorithm has a strong effect on classifier performance 
in natural language processing. Banko and Brill45  set out to 
evaluate the effect of varying training data set size on a classi-
fier. The goal was to determine at what point classifier perfor-
mance asymptotes, as the amount of training data is increased. 
Using the training set data of gradually increasing sizes, up to 
1,000 times the size of the previously largest training set, they 
found that performance might never asymptote. All of the five 
classifiers that they tried showed improvements, sometimes in 
surprising ways – for example, the worst system with a train-
ing set of 1 million words is the second best with 1  billion 
words. The authors concluded that “it may make sense for the 
field to concentrate considerably more effort into enlarging our 
training corpora and addressing scalability issues, rather than 
continuing to explore different learning methods”.45 Today, 
it is a commonplace for machine-learning papers to include 
a discussion of the “learning curve,” or the way that perfor-
mance changes as the training set size is increased, eg, for 
recent work in the biomedical domain.46–48 Getting enough 
data to increase performance beyond what we have seen is 
likely to require multicenter studies.

Abundant research indicates that the set of features used 
for a particular classification task is crucial to the results.49–54 
Evaluation of feature sets in natural language processing can 

Table 4. Effect of data balance, holding all other factors constant.

Positive instances Negative instances F-measure

100 100 0.82 ± 0.03

100 200 0.80 ± 0.03

100 300 0.74 ± 0.04

100 400 0.70 ± 0.04
 

Table 5. Effect of data source, holding all other factors constant.

Data source F-measure

Distant supervision 0.74 ± 0.08

Manually annotated 0.70 ± 0.08
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be a challenge, to do in a coherent and comprehensible way. 
The number of possible feature sets that could be evaluated is 
equal to 2 raised to the number of types of features. The stan-
dard approach for any number of types of features larger than 
3 or so is to pick a rational subset of the possible feature sets, 
with new features being added to some baseline set. We took 
that approach here and found that the feature set did make a 
large difference in performance, with F-measure varying from 
0.77 to 0.82 depending on which features were used.

In a study of classification of systematic reviews,19 it was 
found that no classifier achieved sufficient recall without the 
optimization of classification parameters. That work involved 
extensive tuning. In particular, for the SVM, the effects of 
kernel type, presence or absence of Gaussian mutation, gamma 
value, epsilon value, population size, and C were optimized. 
For the Naïve Bayes classifier, smoothing values and nor-
malized class weights were optimized. In contrast, the work 
reported in this article involved optimizing only kernel type, 
C, and gamma. Based on Bekhuis and Demner-Fushman’s19 
experience, optimization seems likely to improve the perfor-
mance of the baseline system reported here.

Feature sets that take advantage of biomedical docu-
ment structure can yield large performance increases.19,55–57 
Although these features can be very genre specific and thus dif-
ficult to generalize, there is some reason to think that systems 
for automatically determining document structure are within 
reach,58 making this a plausible avenue for future research.

In addition to surface linguistic features (such as unigrams 
and bigrams), conceptual features have often been found use-
ful in classification tasks in natural language processing. By 
conceptual features, we mean features that reflect the presence 
of some abstract class in a document, such as weights,59 drugs 
(the present work), smoking status,60 and genes.61 The effect 
of inclusion of drugs in the feature set experiments suggests 
that additional conceptual features will produce more gains 
in performance.

Conclusion
The results of the structured experiments examining the 
effects of training data size, balance, feature sets, and clas-
sification algorithm suggest a path toward improved perfor-
mance on the classification task for these kinds of clinical 
data. In particular, the feature set is a strong contributor to 
performance, and adding additional features – particularly 
additional conceptual features – appears to be a strategy with 
a high likelihood of success.

In the context of the broader literature on classifica-
tion in natural language processing, in general, and in the 
biomedical domain, in particular, the work reported here is 
motivated (in addition to its clinical significance) by the obser-
vation that the results of classification experiments need to be 
validated on other tasks.19,29 This study has defined a strong 
baseline approach to the task of predicting candidacy for sur-
gical intervention in pediatric epilepsy patients. Additionally, 

it has established the effects of a number of factors on the 
performance of systems that carry out this task. It suggests 
some avenues for improving performance and holds promise 
for the development of tools to support physicians in the work 
of pediatric neurology. By applying this system to all patients 
with epilepsy, a clinician could improve his/her recognition of 
intractability and decrease the lag time for a referral for this 
potentially curative intervention. Additionally, this system 
could be used in a predictive fashion and help identify patients 
who are at risk of developing intractability, which may in the 
future change our current management approach.
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