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ABSTRACT

Identifying functional elements in promoter se-
quences is a major goal in computational and ex-
perimental genome biology. Here, we describe an al-
gorithm, Local Distribution of Short Sequences for
Prokaryotes (LDSS-P), to identify conserved short
motifs located at specific positions in the promoters
of co-expressed prokaryotic genes. As a test case,
we applied this algorithm to a symbiotic nitrogen-
fixing bacterium, Sinorhizobium meliloti. The LDSS-
P profiles that overlap with the 5′ section of the
extracytoplasmic function RNA polymerase sigma
factor RpoE2 consensus sequences displayed a
sharp peak between -34 and -32 from TSS positions.
The corresponding genes overlap significantly with
RpoE2 targets identified from previous experiments.
We further identified several groups of genes that
are co-regulated with characterized marker genes.
Our data indicate that in S. meliloti, and possibly
in other Rhizobiaceae species, the master cell cy-
cle regulator CtrA may recognize an expanded mo-
tif (AACCAT), which is positionally shifted from the
previously reported CtrA consensus sequence in
Caulobacter crescentus. Bacterial one-hybrid experi-
ments showed that base substitution in the expanded
motif either increase or decrease the binding by CtrA.
These results show the effectiveness of LDSS-P as a
method to delineate functional promoter elements.

INTRODUCTION

Understanding promoter structures and deducing corre-
sponding regulatory networks are major goals in genome
biology. Prokaryotic promoters are relatively short (∼50 bp)
sequences that provide a recognition site for RNA poly-
merase in association with a specific sigma factor (1), and
thus define the site for transcription initiation. Most bac-

teria have multiple sigma factors that recognize distinct
promoter sequences. A change in sigma factor results in a
global change in transcription profile, and this mechanism
is used by numerous bacteria as they adapt to changing en-
vironments. In addition, promoters are often adjacent to
other DNA sequences that serve to bind transcription ac-
tivators or repressors. These trans-acting proteins add an-
other layer of regulation and may govern further networks
of co-expressed genes.

Motif finding is an important step and major challenge
to understand and predict promoter functions and regula-
tions. Several approaches are used to predict functional mo-
tifs that are recognized by RNA polymerase sigma factors
and other DNA binding proteins. Numerous algorithms
have been developed during the last two decades. Das and
Dai (2) comprehensively reviewed some representative algo-
rithms and categorized into two major categories: (i) prob-
abilistic sequence models where the model parameters are
estimated using maximum-likelihood principle or Bayesian
inference and (ii) word-based (string-based) approaches
that often rely on counting and comparing oligonucleotide
frequencies. These algorithms often require pre-grouping or
‘enrichment’ of genes as input. To assemble the set of in-
put sequences, one may use DNA microarray- and RNA
sequencing-based transcriptome profiling to reveal genes
showing parallel expression, or use chromatin immunopre-
cipitation and systematic evolution of ligands by exponen-
tial enrichment (SELEX) to define DNA sequences with
affinity for specific proteins. Such sets of experimentally de-
rived sequences are then analyzed with a probabilistic algo-
rithm.

In some cases, however, there may be little or no pre-
existing evidence to characterize all genes, or all expression
conditions, especially for non-model systems. In such cases,
a consensus-independent method (one that does not require
prior knowledge about the targets) may be useful for pre-
dicting regulatory networks. Local distribution of short se-
quences (LDSS) (3) is a de novo motif-finding algorithm
based on the presumed presence of conserved short (6–8
mer) sequences in cis to transcription start sites. This al-
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gorithm assumes that a functional short sequence, such as
an RNA polymerase sigma factor binding site, must be lo-
cated at a certain defined position in the promoter for its
functionality. In the case of eukaryotic promoters, exam-
ples are the TATA box and binding sites for NRF-1, SP1,
CREB, ATF and E2F (3,4). The original LDSS algorithm
has proved to be a simple and powerful method for extract-
ing possible functional short motifs without any knowledge
about the genes in a promoter data set, and has been used to
analyze and characterize a large number of promoters from
plants and animals. A similar algorithm has been included
in PEAKS positional footprinting server (5). It supports the
analysis of significant motif positional biases up to 6-mer se-
quences, however, it does not support longer oligomers or
combination of 2 or more nucleotides at a position. Also,
the PEAKS program is not capable of analyzing large-scale
data sets: it is a web-based tool, and it is cumbersome to
integrate a systematic data mining process based on the
identified candidates using this web program. The original
LDSS algorithm has not been tested on prokaryotic pro-
moters. Also, it does not provide a general way to evaluate
computationally which genes among the large initial num-
ber of mathematically equivalent localized motif peaks are
likely co-regulated in a real living system. We have devel-
oped an improved algorithm, named LDSS-P, that identi-
fies conserved short motifs that are shared in the promot-
ers of unselected gene sets and in large transcriptome data
sets, and is able to evaluate whether these groups of genes
are actually co-regulated in the organism. That is, the new
algorithm captures both motif-position similarity, and co-
expression probability, in a single numerical outcome. This
allows one computational approach rather than first identi-
fying all the sets of co-regulated genes, with a subsequent
and separate search for shared motifs. A combined spa-
tial and co-expression calculation presents significant chal-
lenges for computation time. We made changes to the orig-
inal LDSS algorithm so we can test all possible 2 to 4 nu-
cleotide combinations that are represented by IUPAC am-
biguity codes (6) at each location, thus streamlining the ini-
tial comparison processes. Also, LDSS-P employs thread-
ing and discretization (modification of variable granularity)
to allow parallel computation; this allows efficient calcula-
tion using multi-core CPUs and large distributed comput-
ing resources such as PC clusters and cloud computing. The
LDSS-P program employs a Map-Reduce strategy and the
‘prefix’ parameter function to calculate each unique speci-
fied nucleotide space.

In the present paper, we validated the effectiveness of the
LDSS (position information) and LDSS-P (position and
co-expression) algorithms in bacteria using the plant symbi-
otic nitrogen-fixing bacterium Sinorhizobium meliloti as the
model. We identified several groups of genes that share a
short motif at a particular position with respect to mapped
5′ transcription start sites, and that are co-regulated in large
scale transcriptome data sets. Our informatics analysis and
follow-up experimental data indicate that the cell cycle reg-
ulator CtrA may recognize an expanded motif shifted from
its previously reported consensus.

MATERIALS AND METHODS

Preparation of a promoter and 5′ untranslated region (UTR)
data set

Approximately 37.8 million Raw reads from empirically de-
fined 5′ transcription start sites (7) were mapped onto the
reference genomic sequences of S. meliloti 1021 (GenBank
accession numbers AL591688, AE006469 and AL591985
for chromosome, pSymA and pSymB, respectively) using
the Mosaik program (8). The 5′ TSS-enriched library was
created from RNA samples representing 16 different growth
and stress conditions (Supplementary Table S1); this set
did not include samples from nitrogen-fixing nodules. It is
anticipated that because many genes are co-transcribed in
operons, the number of TSS will be substantially lower than
the number of annotated genes (9). A matrix that contains
the count of mapped TSS reads at each position was created
for each of the 3 replicons. Locations with fewer than 25
mapped TSS sites were removed from the matrix. Using the
refined matrices, we employed Savitsky–Golay’s smoothing
differentiation with 8-point convolution (10) to identify sig-
nificant TSS peaks by removing random spikes. Although
some S. meliloti genes have long 5′ untranslated regions, a
TSS peak was assigned to a gene only when an identified
peak located within 150 bp from the 5′ end nucleotide of a
coding sequence (CDS) to be sure a TSS is not mistakenly
assigned to an unrelated CDS. In the event two or more TSS
peaks were found within the 150 bp, all TSS peaks were in-
cluded for later analyses, except for those with a read count
lower than 20% and/or those located within a 50 bp radius
of the highest peak. In the present study, we focused on the
most accurate TSSs; these were assigned to 2217 out of 6235
annotated CDS. The non-redundant promoter and 5′-UTR
data set (‘promoter data set’ hereafter) was then created by
extracting the 100 bp upstream and 50 bp downstream se-
quences from each TSS.

LDSS-P analysis

The LDSS-P approach includes two components: LDSS
(position) and co-expression analyses. All the pro-
grams described here are available through our website
(http://cmgm.stanford.edu/biology/long/files/ichida2016/
LDSS-P dist.zip).

LDSS calculation. LDSS analysis was carried out with
a combination of C++ programs incorporating the algo-
rithm described in the previous paper (3). All programs were
compiled using Intel C++ compiler version 11.1.059 (Intel,
Santa Clara, CA, USA) and were run on a Linux PC clus-
ter (Fujitsu Primergy RX200 S5, Intel Xeon X5570 2.93
GHz processors, 12 GB memory, CentOS 5.4, 48 nodes,
384 cores in total). All possible hexamer sequences were
searched for possible placement in each sequence position
in the promoter data set (described above). In addition to
the standard four nucleotides, combinations of all 2 and
3 nucleotide possibilities were included for positions 2–5
within the hexamer. The possible number of ambiguous nu-
cleotides for any one site is not limited in the present analy-
sis, thus exact matches and corresponding ambiguous hex-
amers are all counted. For example, we established a set of
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all occurrences of the hexamer ATGCAT. We also formed a
set of all sequences AWGCAT and AHGCAT, where W can
be either T or A, and H can be T, A, or C (or ‘not-G’), and
so on (6) for all 2 and 3 nucleotide combinations in positions
2–5. In order to assure the effective motif length and speci-
ficity at the border, ambiguity codes were not permitted at
position 1 and 6. This allowed incorporation of ambiguity
in the first pass of the search. The occurrence of the hexamer
sequences was counted for each nucleotide position relative
to the TSS. A running moving average was computed with
a bin of 5 bp, and used to identify localized motif peaks,
which would indicate a sequence position where a motif is
significantly localized. The average count (height) divided
by standard deviation of counts at all possible genome po-
sitions within the start-site database was designated as ‘fold
standard deviation’ (FSD). The left and right borders of a
peak were adjusted to maximize FSD within the range of 5
bp upstream and downstream from that sequence position.
All localized motif peaks were loaded into a data set that in-
cluded for each entry: the sequence; left- and right-border
positions; peak height; and average height within and out-
side of the peak. For motifs found by incorporating ambigu-
ity, the best corresponding ATGC-only peak (that with the
highest FSD) was annotated as the representative ATGC-
only motif.

Co-expression analysis. A gene expression vector was cre-
ated from 261 SymbiosisChip transcriptome results from
24 projects (described in Results and Supplementary Table
S1). Hybridization signals were normalized for each project
using the RMA method (11). The normalized values were
combined for each gene to create global expression vectors.
Distance between two genes X and Y was defined as (1 -
Pearson’s linear correlation coefficient), and is expressed by
following equation:

D(x, y) = 1 − 1
n − 1

n∑
i=1

(
Xi − X̄

SX

) (
Yi − Ȳ

SY

)

Where sX and sY denotes standard deviation of all hy-
bridization signals from gene X and Y, respectively. Dis-
tances between pairwise combinations of all 6091 annotated
S. meliloti genes on the SymbiosisChip were calculated.

To identify localized motif peaks corresponding to genes
with analogous (the direction and level of increase/decrease
is similar) transcription patterns, we calculated the dis-
tances from all possible pairwise combinations of genes in
that peak (a peak reflects a group of genes having the mo-
tif at one particular position from TSS). As a control, the
same number of genes was randomly chosen from the en-
tire database set, and from these a distance population was
constructed. A Mann–Whitney U test was used to deter-
mine whether the pairwise distance between the genes in a
peak was significantly different from pairwise distances for
a randomly chosen population. The test was repeated 1000
times with different random populations. For these data, the
P-value represents the percentage of trials that were not sig-
nificant.

Pathway representation and matrix-based motif discovery us-
ing MEME to identify additional conserved motifs. The

annotations of S. meliloti 1021 genes were obtained from
the EnsemblBacteria database Release 21 (12). Genes
were mapped to the reference pathways using a public
KEGG automatic annotation server version 1.6a (http://
www.genome.jp/tools/kaas/). Each LDSS-P positive peak
was subjected to statistical representation analysis against
each one of the pathways using the ‘representation’ pro-
gram. Briefly, the representation factor was defined as the
number of overlapping genes divided by the expected num-
ber of overlapping genes drawn from an LDSS-P positive
peak and all 2650 genes in the promoter data set. The rep-
resentation factor and the hypergeometric probability was
calculated according to a previous report (13). LDSS-P pos-
itive peaks with the highest representation factor were sub-
jected to a search with MEME analysis to find extended
conserved motifs in the promoter. The ‘nr prom’ is a pro-
gram to create the input promoter sequences from a LDSS-
P positive peak. MEME Suite software Version 4.9.1 patch1
(compiled from source code; (14)) was used to identify con-
served motifs within a set of promoters with options (set-
tings: -dna -maxsize 60 000 -mod zoops -nmotifs 3 -minw 6
-maxw 50 -revcomp).

Bacterial one-hybrid assay

The omega-based bacterial one-hybrid (B1H) assay was
carried out as described (15). The plasmids pB1H2w2-
zif268 (Plasmid #18045) and pH3U3-zif268 (Plasmid
#18046) were obtained from Addgene (Cambridge, MA,
USA). An attR1-ChroramphenicolR-ccdB-attR2 cassette
(Gateway vector conversion system, Invitrogen, Carls-
bad, CA, USA) was introduced in frame between KpnI
and XbaI sites of pB1H2w2-zif268 to create a Gateway-
compatible derivative, pHiS577. The coding sequence
of ctrA (SMc00654) and the flanking two attP sites
were amplified from the Gateway ORFeome library
(16) with primers HI571 (TCGCGTTAACGCTAGCATG-
GATCTC) and HI572, and subjected to a Gateway LR re-
action. A D51E mutation was introduced to ctrA by site-
directed mutagenesis with primers HI939 (GGTTCAGT
TCGAGGAGAATGATGTCG) and HI940 (TCCTCG
AACTGAACCTGCCGGACAT) using a CloneEZ PCR
cloning kit (GenScript, Piscataway, NJ, USA). The result-
ing plasmid was designated pHiS636. To construct reporter
fusions, a 45 bp sequence containing the CtrA binding motif
in the upstream region of ctrA-P2 promoter (17) was used
as the scaffold. Two oligonucleotides (TACACCCGGGCG
GCC TCGATACACCTTGCCAGAGTGAATCAGAAT
TTGTTAACCATTTGGCGAATTCTTTACACTTT and
its complementary sequence; the underline denotes the
TTAACCMT motif identified by LDSS-P and the first and
last 15 bp are homologous to pH3U3-zif268 for CloneEZ
reaction) were synthesized, dissolved at 100 �M in TE
buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) containing
50 mM sodium chloride, and heat denatured at 95◦C for
5 min, then gradually cooled down to room temperature.
The resulting double-stranded fragment was cloned be-
tween NotI and EcoRI sites of pH3U3-zif268 by CloneEZ.
Plasmids with a base substitution on and adjacent to the
TTAACCMT motif were created in similar way.

http://www.genome.jp/tools/kaas/
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Figure 1. Distribution of localized motif peak positions. Values along the
vertical axis represent cumulative occurrence of LDSS (×) and LDSS-P (•)
positive pentamer and hexamer peaks at each position along the horizontal
axis. The criteria to identify localized motif (by LDSS) and co-expressed
(LDSS-P) peaks are described in the text. Localized motifs identified by
LDSS and LDSS-P positive peaks lay in specific regions: for LDSS, peaks
tended to occur at around −95, −40, −15, and +4 from TSS; for LDSS-P,
peaks typically occurred at around −40 and −15.

To test the interaction between RpoZ-CtrA(D51E) fu-
sion and the CtrA binding motifs, Escherichia coli US0
(hisB− pyrF− rpoZ−; Addgene #18049) was transformed
with pHiS577 and pHiS636 or its mutated derivatives. The
overnight culture was washed twice with 10 mM magnesium
sulfate and spotted on M9 plates supplemented with 0.2%
D-glucose, 2.5 �g/ml thiamine hydrochloride, 50 �g/ml
ampicillin and 25 �g/ml kanamycin, and incubated at 30◦C
for 2 days. LB plates containing the same antibiotics were
used as control. Digital images of the plates were taken us-
ing a ChemiDoc MP (Bio-rad) under epi-white illumina-
tion.

RESULTS AND DISCUSSION

Improved LDSS analysis identifies sequence motifs in bacte-
ria

Previously, hexamer and octamer sequences were shown to
work well for LDSS analysis in eukaryotes (4). We used hex-
amer searches as a starting point for LDSS-P analysis in
prokaryotes. For each hexamer sequence, a distribution pro-
file in relation to distance from the TSS was analyzed at a
global scale in S. meliloti. This analysis produced 614 656
(42 [combinations of A, C, G, and T at position 1 and 6] ×
144 [the 4 nucleotides and the ambiguity codes represent-
ing the mixture of 2 (6 codes) and 3 (4 codes) nucleotides
at positions 2–5]) distribution profiles with 2 797 994 pos-
sible localized motif peaks. Of all possible hexamer motifs,
there were 17 970 (0.64%) localized motif peaks contain-
ing motifs with no ambiguity codes. The distribution of lo-
calized motif peaks is shown in Figure 1. Localized motif
peaks were observed most often at 4 major regions: around
−95, −40, −15 and +4 from TSS. The regions near −40
and −15 likely correspond to the conserved −35 and −10
regions recognized by prokaryotic sigma factors. The num-
ber of genes within the peak (integration) ranged from 2
to 1735 (126.50 ± 115.12; average ± standard deviation).
The FSD (see Materials and Methods) ranged from 0.30 to
23.25 (2.49 ± 0.88; average ± standard deviation). Sequence
distribution peaks that showed a higher FSD were more

Figure 2. Distribution profiles of GGAACN, RpoE2 target consensus mo-
tifs. Examples of hexamer analysis for GGAACN, which partly overlaps
with the RpoE2 consensus motif. The vertical axis indicates the total num-
ber of promoters with the motif. The horizontal axis indicates relative posi-
tion from the transcription start site (position at 0 corresponds to the TSS).
Crosses (×) and filled circles (•) indicate raw count and running average,
respectively, within a 5 bp window.

symmetrical and well separated from background (data not
shown). Localized motif peaks with ambiguity nucleotide
codes were assigned to sub-groups based on the peak loca-
tions and FSD in their corresponding ATGC-only motif se-
quences. For example, a grouping process for the AGRACA
(R indicates A or G) peak compares the FSD values of cor-
responding peaks in AGAACA and AGGACA, and desig-
nates a unique group identifier consisting of the ATGC-only
motif sequence and the left and right border positions of
the peak (e.g. AGGACA −59 −50). This grouping is par-
ticularly useful since introducing ambiguity to a motif in-
creases the combination of nucleotides by an order of mag-
nitude and thus would make it more difficult to find the
most representative groups from the large number of peaks
with similar nucleotide sequences. This grouping informa-
tion makes it easier to identify the most significant localized
motifs from a large variety of similar motifs with ambiguity.

We tested whether the improved LDSS algorithm can
identify known −35 and −10 motifs with reasonable sen-
sitivity. RpoE2 is an RNA polymerase ECF sigma factor
that is responsible for activating the transcription of gen-
eral stress response genes in S. meliloti. The target genes
of RpoE2 have a consensus sequence of GGAAC-N15/16-
gcgTTt (lowercase characters indicate less conservation)
in their promoters (18). The LDSS profiles of GGAACA,
GGAACC, GGAACG and GGAACT, which partly over-
laps the −35 motif of the RpoE2 promoter consensus, is
shown in Figure 2. The LDSS-P algorithm detected ma-
jor peaks between −36 and −32 (consisted from 37 genes,
FSD 7.621), −36 and −28 (27 genes, FSD 3.376) and −35
and −32 (20 genes, FSD 5.323) from GGAAA, GGAACC
and GGAACT, respectively. No significant localized peak
was detected from GGAACG. The total number of unique
genes in these 3 peaks was 84. We compared these 84
genes with the significantly induced genes by RpoE2 over-
expression identified by transcriptome analysis using mi-
croarrays (7). Of the 87 genes that were increased more
than 2-fold by RpoE2 overexpression and with at least 1
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TSS assigned in our promoter data set, 54 were found in
the GGAAC(A/C/T) peaks; this represented 62.1% of the
gene sets. The transcriptome results should include both di-
rect and indirect targets of RpoE2-polymerase. Our results
showed strong matching with the RpoE2-overexpression
data, and indicate that almost 2/3 of the implied tar-
get genes are directly controlled by RpoE2. This analysis
showed that LDSS can identify conserved functional mo-
tifs from a set of unclassified bacterial promoters without
an instruction set or prior knowledge of targets.

Global LDSS-P analysis of S. meliloti

We used a large set of global transcription data for S.
meliloti to identify localized motif peaks associated with
coordinated transcription. These transcriptomic data were
generated using the SymbiosisChip, a custom Affymetrix
microarray platform (19), and are all based on comparison
between appropriate wild-type and/or empty vector con-
trols and the test construct or condition. These data sets
include tests for function of numerous regulatory proteins
(Supplementary Table S1).

We created a gene distance matrix by calculating the dis-
tance (1 - Pearson’s linear correlation coefficient) of normal-
ized signal intensity between all possible pairwise combi-
nations of S. meliloti genes from every test condition. We
calculated the distances of all possible pairwise combina-
tions of genes within a peak; treated it as a population; and
statistically asked (using a non-parametric Mann–Whitney
U test) if a set of genes grouped by LDSS has a signifi-
cantly closer distance population than that of a randomly
chosen group of the same number of sequences (P < 0.05).
For each peak, we repeated this test 1000 times with dif-
ferent sets of randomly selected genes to evaluate the ro-
bustness of the grouping and calculated a functional P-
value, which is the percentage of trials in which the two
distance populations showed no significant statistical dif-
ference between the LDSS-grouped peak and randomly se-
lected genes. We focused on LDSS peaks with 5 or more
genes to obtain a reasonable number of groups. We se-
lected 241 918 peaks (8.65% of all peaks in the previous
step) which had an uncorrected functional P-value less than
0.05: these peaks were categorized as LDSS-P positive. The
genes corresponding to these LDSS-P positive peaks not
only share a hexamer motif at a specific position in pro-
moters but also show similar expression patterns (increase
and decrease). Figure 1 shows the distribution of LDSS-P
positive motifs that are shared within a group of genes ex-
pressed in parallel (note filled circles). We observed two ma-
jor peaks centered at −39 and −15. Almost all of the peaks
upstream of −50 and downstream of −10, including the two
peaks near −95 and +4 in the previous step, were rejected
after expression pattern-based screening. We implemented
a program (‘extract best peak by distance’) to pick the best
LDSS-P positive peaks, namely those with the shortest av-
erage distance among each ATGC-only motif group (de-
scribed above). The process efficiently removed multiple
similar ambiguous motifs which might be derived from
the same ATGC-only functional element (data not shown).
This process selected 4905 most representative peaks from

the 103 558 LDSS-P positive peaks, and these peaks are sub-
jected to the pathway representation analysis.

It is a challenging and labor intensive task to narrow
down and identify motifs that are shared within a partic-
ular group of genes from a large number of LDSS-P posi-
tive peaks, even after the grouping process described above.
As a test case for the identification of functional hexamer
motifs corresponding to a particular groups of genes, we
statistically analyzed the correlation between LDSS-P posi-
tive peaks and metabolic and signaling pathways. We chose
KEGG pathway as the reference because it is one of the
most comprehensive, well structured, and generally applica-
ble pathway information data sets (20). We applied a statis-
tical analysis which uses the representation factor (defined
as the number of detected overlapping genes divided by the
expected number of overlapping genes drawn from two in-
dependent peaks, and its hypergeometric probability; (13))
to identify LDSS-P positive motifs which are significantly
over-represented in the pathway of interest. The strongest
LDSS-P positive peaks (see above) were searched for repre-
sentation against each of the 148 KEGG pathways, and mo-
tifs with hypergeometric probability of less than 0.05 were
considered to be significant. Table 1 shows examples of the
most significant LDSS-P positive peaks corresponding to
KEGG pathways. For each of these, there were four or fewer
potential motif sequences (as determined in the previous
calculation) so as to avoid too much ambiguity.

AACCAT may represent an extended CtrA binding motif

As shown in Table 1, a TTWAMC (W and M indicate
A/T and A/C, respectively) motif was significantly over-
represented at between −36 and −27 from TSS among the
cell-cycle regulation pathway genes (ccr04112). We chose
this pathway as a model because it is well characterized, and
the mechanism and genes for cell cycle regulation are highly
conserved in �-proteobacteria. The pathway was drawn
based on the findings in Caulobacter crescentus. The KAAS
program identified 30 orthologous genes in S. meliloti, and
these genes include the essential master cell cycle transcrip-
tional regulators dnaA, gcrA and ctrA and an essential cell-
cycle regulated DNA methyltransferase ccrM (21). There
were 48 genes in this LDSS-P positive peak in our pro-
moter data set (Supplementary Table S2). We used the pro-
moter sequence of these 48 genes and MEME program to
identify the conserved nucleotide motifs that spanned out-
side the identified TTWAMC motif. The sequence logo (22),
which visualizes nucleotide conservation at each position by
MEME analysis, is shown in Figure 3.

The analysis revealed that there were additional highly
conserved nucleotides in two places upstream and down-
stream of the identified TTWAMC motif: an adenine and
thymine (AT) were immediately adjacent to the 3′ end of
TTWAMC, plus 5 nt upstream we observed a second mo-
tif, GTTAACC. The TTAACC part of the GTTAACC mo-
tif was marked positive by the proposed LDSS-P criterion
(22 genes; an uncorrected functional P-value of 0.004 for
TTAACC between −80 and −77). In contrast, the GT-
TAAC was not captured due to dissimilar expression pat-
terns (0.129 for GTTAAC between −84 and −78). It is most
likely that because LDSS-P relies on the localization of rela-
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Table 1. The most significant LDSS-P positive peaks corresponding to KEGG pathways

Motif position

KEGG ID Pathway Motif from to Number of genes Rep. factora

00010 Glycolysis / Gluconeogenesis ARATCG −89 −78 33 6.67
00030 Pentose phosphate pathway GSCRCC −88 −80 70 13.16
00040 Pentose and glucuronate interconversions AASYGC −55 −46 55 11.11
00051 Fructose and mannose metabolism GCHATC −9 2 48 10.71
00052 Galactose metabolism GKCWAG −24 −13 55 15.00
00061 Fatty acid biosynthesis AWRCCA −94 −83 29 14.29
00190 Oxidative phosphorylation CDTGTT −44 −36 34 4.94
00240 Pyrimidine metabolism AAACBT −101 −93 17 6.12
00250 Alanine, aspartate and glutamate metabolism GCDTGC −46 −34 64 9.30
00270 Cysteine and methionine metabolism GACYSG −39 −30 42 13.79
00290 Valine, leucine and isoleucine biosynthesis TYCCKC −83 −75 50 13.04
00330 Arginine and proline metabolism TTGCSC −77 −67 38 5.80
00480 Glutathione metabolism CWTGYC −47 −36 96 13.79
00500 Starch and sucrose metabolism TRCGCG −74 −65 33 10.00
00520 Amino sugar and nucleotide sugar metabolism AAMARG 2 12 72 10.26
00620 Pyruvate metabolism ARATCG −89 −78 33 6.38
00680 Methane metabolism TCAHCC −101 −93 19 6.12
00710 Carbon fixation in photosynthetic organisms CCKCCG −72 −63 47 11.11
00770 Pantothenate and CoA biosynthesis AVCGGA 1 12 55 12.00
00860 Porphyrin and chlorophyll metabolism CWTRCA −39 −33 44 7.89
00970 Aminoacyl-tRNA biosynthesis CCKSAA −99 −91 52 10.71
01200 Carbon metabolism TCAHCC −101 −93 19 2.78
01210 2-Oxocarboxylic acid metabolism TYCCKC −83 −75 50 9.09
01212 Fatty acid metabolism AWRCCA −94 −83 29 9.09
02010 ABC transporters CKMTTG −46 −38 117 2.06
02020 Two-component system TTWAYC −40 −27 66 6.96
02040 Flagellar assembly TAACSA −34 −26 22 9.68
03010 Ribosome AWAMGC −15 −7 46 9.09
03018 RNA degradation GSKTGC −81 −69 73 22.22
03030 DNA replication CARSGG −97 −86 53 25.00
03060 Protein export TCRMTT −51 −37 65 18.75
03070 Bacterial secretion system TGGDAT −59 −52 14 10.34
03430 Mismatch repair CARSGG −97 −86 53 13.64
04112 Cell cycle - Caulobacter TTWAMC −36 −27 45 10.00
05134 Legionellosis TAACSA −34 −26 22 20.00
M00001 Glycolysis (Embden-Meyerhof pathway) THCCGC −83 −75 39 18.75
M00003 Gluconeogenesis THCCGC −83 −75 39 27.27
M00004 Pentose phosphate cycle CATHTT −50 −41 33 17.65
M00048 Inosine monophosphate biosynthesis GCHATC −9 2 48 33.33
M00144 NADH: quinone oxidoreductase, prokaryotes TCMKCT −98 −91 24 10.71
M00178 Ribosome, bacteria AWAMGC −15 −7 46 9.09
M00237 Branched-chain amino acid transport system TCMTKT −43 −34 48 12.00
M00359 Aminoacyl-tRNA biosynthesis, eukaryotes CCSTYG −47 −38 85 16.67

aRepresentation factor.

Figure 3. Conserved nucleotides in TTWAMC group. The sequence conservation for the TTWAMC motif found at between −37 and −25 from TSS in the
S. meliloti database. The nucleotide representation logo was generated using MEME as described in Materials and Methods. The height of each nucleotide
in the logo represents the conservation of the nucleotide at each position.
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tively short k-mers, some of such sequences are too common
among the promoters or genomic sequences due to the or-
ganisms GC bias and other nucleotide preferences. In such
a case, it would not be possible to distinguish significant lo-
calizations from such background noise.

We found the overall conserved motif (GTTAACC-N5-
TTWAMCAT) shows overlap with the reported consensus
sequence of CtrA binding motif (TTAA-N7-TTAA; (23)).
CtrA is an essential transcriptional regulator that coordi-
nates DNA replication, cell division and polar morpho-
genesis, and is considered the master cell cycle regulator in
�-proteobacteria (24). In S. meliloti, phosphorylated CtrA
binds to a consensus sequence TAA-N7-TTAAC based on
the analysis in the promoter region of ctrA (17). We hy-
pothesized that the AACCAT is a part of an extended CtrA
binding motif.

We tested this hypothesis by asking whether a point muta-
tion in the AACCAT motif changes interaction with CtrA,
using a bacterial one-hybrid assay as a reporter for protein–
DNA binding. A translational fusion with an RNA poly-
merase � subunit, RpoZ, and a constitutively active D51E
mutant of S. meliloti CtrA was created and used to deter-
mine the interaction between CtrA (D51E) and its binding
motifs (with the extended AACCAT sequence). We created
a set of pH3U3-derivative plasmids, containing wild-type
or mutagenized CtrA binding motifs upstream of ura and
pyrF genes driven by a weak minimal promoter elements.
In this system, histidine and uracil auxotrophy in the host
E. coli strain US0 is (25–29) complemented only when the
CtrA (D51E) protein fused with RpoZ binds to the motif.
This allows binding of an RNA polymerase holoenzyme to
the −35/−10 region of the weak promoter, so transcription
can initiate. The degree of complementation (ura and pyrF
expression) reflects the stability of interaction between the
protein and DNA. We confirmed that the D51E mutation
results in enhanced binding to the CtrA binding motif (data
not shown). The interactions of CtrA (D51E) with wild-
type versus 12 different mutagenized CtrA binding motifs,
and with zif268 (the binding sequence of a well character-
ized zinc-finger transcriptional factor, Zif268, as a negative
control; (30)) are shown in Figure 4. The T2C (the second
thymine in the TTAACCAT motif was substituted to cy-
tosine), A4G, C5T, C6G, A7G and T8C mutations caused
significant loss of CtrA binding, whereas T1C, A3G and
C6A did not alter the binding. The C6T mutation caused
better binding of CtrA, suggesting that the C6 position is
an important determinant for CtrA binding affinity. Unex-
pectedly, one of the mutations at the flanks of the motif,
a thymine to cytosine transversion at 3 bp upstream of the
motif (Mut1), resulted in better binding, comparable to that
of the C6T (Mut7) mutation. These results reveal that the
expanded CAT and the upstream regions in addition to the
previously identified TTAAC motif influence the binding
of CtrA. Here, LDSS-P analysis was effective in identify-
ing novel functional motifs in promoters in S. meliloti, and
we propose it can be used similarly for other bacteria.

The combination of LDSS-P plus other matrix-based
motif finding tools is very powerful because LDSS-P is tol-
erant to unrelated promoters that may be present in the in-
put promoter set, thanks to its principle that focuses on the

Figure 4. Bacterial one-hybrid assay of CtrA (D51E) and mutated CtrA
binding motifs. At left, sequences for mutants 1–12 are shown underneath
the newly proposed CtrA binding consensus. Degree of binding is summa-
rized to the right of each sequence (from − for no binding to +++ for the
strongest binding). At right, growth of cells on M9 minimal medium or
LB rich medium due to successful binding of CtrA to the motif for each
mutant.

occurrence of short k-mers, and can increase the sensitivity
to find less conserved motifs in the subsequent analysis.

Annotation of motifs in the S. meliloti genome with LDSS-P

We noted some groups of genes within LDSS-P peaks
that empirically showed similarity in their gene expression
patterns. Among the short nucleotide motifs that LDSS
found at certain defined distances from TSS, there were
two groups: (i) motifs determining transcriptional speci-
ficity, which are LDSS-P positive peaks near −39 and −15,
consistent with previous reports in rhizobia (7,31) and with
the canonical model for the �70 promoter sequence (a hex-
amer at −35 separated by 15–21 nucleotide from the −10
hexamer in E. coli; (32)); and (ii) sequences corresponding
to peaks at −95 and +4 from the TSS. We infer that these
peaks at −95 and +4 are not primarily involved in transcrip-
tional control, at least in the conditions covered by our tran-
scriptome data sets, because these groups of genes did not
show significant co-expression in the transcriptional data
sets, thus rejected by LDSS-P analysis. We asked whether
the peak at +4 is due to nucleotide bias from start codons
which are located within 6 nucleotides of the TSS, however,
we found only 12 of such genes in our promoter data set.
Therefore, it is unlikely that these peaks are the bias from
start codons located near TSS. Another possible explana-
tion for the +4 peak would be a result of nucleotide pref-
erence in transcriptional initiation by RNA polymerase. In
considering the peak at −90, we note the report that in E.
coli, a flexibly tethered alpha subunit C-terminal domain,
which recognizes the upstream sequence of the −35 ele-
ment, can bind non-specifically to more distant DNA se-
quences, making contacts up to −90 from TSS (33). It is
also possible that −95 and +4 peaks influence binding of
other regulators, and/or affect other levels of gene expres-
sion control.

Recent advances in genome sequencing technology have
enabled rapid acquisition of bacterial whole genome se-
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quences. Since orthologous DNA binding proteins and
their target nucleotide sequences are expected to be well
conserved between phylogenetically related organisms, we
propose that LDSS-P positive peaks in a model organism
are likely to be functional in other related species. Indeed,
these short motifs may be better conserved than the TSS
themselves, due to the selective pressure from motif func-
tionality in protein binding. Therefore, the transcriptional
regulatory networks identified in a model organism can be
efficiently transferred into non-model species by converting
raw TSS locations into LDSS-P positive motifs.

We annotated the S. meliloti 1021 genome with the most
significant 4606 LDSS-P positive motifs relative to the
corresponding TSS locations. This produced more than
88 000 annotations for the promoter regions of previ-
ously annotated coding sequences: each annotation indi-
cates the corresponding LDSS-positive motif; relative dis-
tance from TSS; the representing ATGC-only motif peak;
and statistical evaluations. The data were stored in stan-
dard tab-delimited GFF3 format, and are freely available
from our website (http://cmgm.stanford.edu/biology/long/
files/ichida2016/). These files can be easily imported into
any of the many platforms that support GFF3, includ-
ing GBrowse and NCBI Graphical Sequence Viewer (http:
//www.ncbi.nlm.nih.gov/tools/sviewer/), one of the most
widely used web-based genome browsers (Supplementary
Figure S1).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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