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INTRODUCTION

The structure and the role of microvasculature has

been progressively clarified in this last decade (1, 2). We

now have adequate information on the time course and

percentage occurrence of microvascular obstruction

(MO). We know that the venules are the site of leukocyte

adhesion during inflammation and that their endothelial

surfaces express a number of adhesion molecules,

whose production is significantly up-regulated after the

onset of tissue injury (3). Similarly we know that about

one fifth to one third of patients with TIMI grade 3 flow

after mechanical or pharmacological reperfusion show

evidence of MO (4, 5) which, in turn, seems the basis of
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intracardiac hemorrhage (6, 7) and of the development

of myocardial wall rupture (8).

In patients with acute coronary syndromes undergo-

ing PCI, aspiration of the coronary artery has revealed

thrombus with or without plaque components in 15-

50% of the patients (9-11). 

This means that in a large percentage of cases, 50-

85%, MO is a dynamic phenomenon which begins grad-

ually and progressively develops after the occluded

vessel has been reopened (12,13). It then persists for at

least 1 month after reopening of the epicardial coronary

artery, predicting worse scar thinning, infarct expan-

sion, poor survival, and ultimately annulling the effect of

PCI (14-16).

This explains all efforts made to prevent MO with me-

chanical devices (17,18) or with pharmacological strate-

gies (19-33). 

The rational of focusing downstream the open artery

hypothesis may be further emphasized by considering

that all cardiac ruptures, likely the main cause of death

in the in-hospital course of myocardial infarction, seem

to lag behind MO which represents a significant, and in

all probability the principal independent predictor of

cardiac rupture (34, 35). 

Magnetic Resonance Imaging (MRI) has proved to be

of great value in detecting and monitoring MO after oc-

clusion and reopening of the coronary artery, both in ex-

perimental and in vivo studies (36-46). It also provides

evidence of its value in recognizing myocardial hemor-

rhage and impending wall rupture, thus allowing a win-

dow of interventional opportunity in this often cata-

strophic event (8, 38, 47-55). 

The aim of this study was to evaluate, by means of

MRI, in subacute myocardial infarction, if the different

pharmacological strategies of GUSTO V reperfusion

protocol i.e. full dose reteplase vs half dose reteplase

plus full dose abciximab (R+Abcx) , display different ef-

fects on volumes and function of the left ventricle (LV),

as well as on miocardial infarct size (MIsz) and MO (29). 

SUBJECTS AND METHODS

From the list of consecutive patients randomized in

the GUSTO V study at our Institution, 20 male patients,

mean age 58 years range 37-75, were addressed, after

written consent, to MRI study in the 4th day of myocar-

dial infarction. 

Although selected from a progressive list, in agree-

ment with the criteria of GUSTO V (29) , the grid of MRI

studies was created to fulfil the following criteria: age

matched patients affected by anterior and posterior my-

ocardial infarctions , age matched patients treated with

reteplase or R+Abcx. The grid was thus composed of: 5

anterior treated with reteplase, 5 anterior treated with

R+Abcx, 5 inferior treated with reteplase, 5 inferior

treated with R+Abcx. All groups had an identical pain to

fibrinolytic therapy time. All patients had clinically un-

complicated and apparently reperfused myocardial in-

farction.

Statistical evaluation was made with SPSS 13.0 soft-

ware. 

Magnetic resonance protocol

Examinations were performed on a Somatom Vision

1.5T scanner (Siemens Erlangen Germany) and ana-

lyzed with the built-in Numaris cardiac software.

After initial ECG triggered turbo-flash scouts in axial

and in double oblique direction, STIR T2 breath hold

10mm thickness images, were obtained in four cham-

bers and in consecutive contiguous short axis views

(SAX), encompassing the whole LV from the base to the

apex. A complete three dimensional (3D) STIR T2 study

was then created by assembling all base to apex slices

in a 3D package, from which LV end diastolic volume

(EDV) and LV end diastolic mass could be calculated.

STIR T2 hyperintense signal was then manually outlined

in each SAX slice and subsequently 3D reconstructed to

obtain myocardial infarct size (MIsz), representative of

ischemic/infarcted myocardium. MIsz was expressed

as a percent of the entire LV mass (Fig. 1). In order to

quantify the degree of hypersignal level, a circular re-

gion of interest (ROI) of 0.5 cm diameter was positioned

in the center of STIR T2 hyperintense area and the value

was compared with a similar ROI positioned in a region

remote from the site of infarction. A dimensionless 

value, STIR Intensity ratio, was obtained to represent

the signal intensity on myocardial infarction.

A bolus of 0.2 mmol Gd-DTPA per kg body weight

(Magnevist, Schering-AG, Berlin, Germany) was then in-

jected. The same SAX positions of the STIR study were

repeated with 2D-flash cine sequences (2d-fl). By as-

sembling base to apex contiguous SAX 2d-fl cineloops,
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a new 3D study was created from which EDV and ejec-

tion fraction (EF) were calculated as habitually done in

cardiac MRI procedure. 

As all T1 sequences, also 2d-fl is fit to visualize my-

ocardial signal void in the presence of MO with the limi-

tation of less contrasted images compared to more

dedicated T1 sequences, but with the advantage of be-

ing able to follow the MO dynamically during systole (8).

In order to visualize only persistent MO, 2d-fl acquisi-

tion started five minutes after Gd injection. Since delin-

eation and quantification of small MO was practically

unfeasible, MO was visually estimated and classified

as: not present (group 1), small subendocardial (group

2), and large or transmural (group 3).

Due to the limited time allowed for each patient, po-

tentially unstable in day four after myocardial infarction,

to the limited contrast gain in late enhancement imaging

of our present scanner, to the main goal of this study i.e.

to discover differences in volumes and EF, and also to

the still incomplete standardization of this technique for

quantification of infarct size, (56) late enhancement

quantification of infarct size was not performed. Thus

each study could be contained in 30 minutes, the time

allowed by the Ethical Committee of our Hospital for the

study of this type of patients.

The list of patients, treatment and measurement per-

formed is reported in Table I.

RESULTS

Table I sets out the list of patients with individual

measurements; in Table II the descriptive statistics in

both types of treatment; and in Table III the descriptive

statistics divided by drug regimen and site of myocar-

dial infarction.

Tables from IV to VII show the results of paired t-test

(2 tailed significance) for the two different regimens of

therapy.

As evident, mean values of MIsz, EF, Intensity Ratio

and EDV, were not statistically different in patients treat-

ed with reteplase and in those treated with R+Abcx.

Neither a further grouping for site of myocardial infarc-

tion provided additional differences. In spite of this,

mean value of EF in Abciximab was only slightly de-

pressed but clearly higher than that of the reteplase

group. So when a correlation was attempted with EF

and the other measures evaluated, it became clear that

Fig. 1 - From base (A)

to apex (F) STIR T2

contiguous slices. En-

docardial and epicar-

dial contours define

the myocardial slice

area from which a 3D

quantification of LV

mass can be obtained.

Similarly contour of

hypersignal area (A)

applied to all slices,

creates the MIsz, ex-

pressed in % of LV

mass.
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TABLE I - LIST OF PATIENTS WITH INDIVIDUAL MEASUREMENTS

Name Age MI Drug STIR 2d-fl STIR 2d-fl 2d-fl

3D MIsz % 3D EF % Intensity ratio 3D EDV mL MO 1-2-3

G.P. 48 Ant. R+Abcx 31 36 1.57 173 1

A.G.C. 71 Ant. R+Abcx 73 56 1.27 131 1

O.E. 67 Ant. R+Abcx 13 50 1.6 120 2

B.G. 62 Ant. R+Abcx 11 67 1.87 115 1

L.C.A. 60 Ant. R+Abcx 14 54 1.7 136 1

S.M. 53 Ant. Reteplase 19 44 1.65 145 2

N.M. 75 Ant. Reteplase 41 26 2.2 104 2

F.G. 45 Ant. Reteplase 26 35 1.82 237 1

F.L. 59 Ant. Reteplase 24 44 1.8 76 2

M.E. 72 Ant. Reteplase 24 43 1.5 187 1

M.C. 57 Inf. R+Abcx 36 34 1.98 225 1

P.D. 53 Inf. R+Abcx 39 60 1.67 149 1

A.U. 73 Inf. R+Abcx 17 42 1.96 132 3

G.G. 51 Inf. R+Abcx 35 56 1.39 221 2

S.G. 66 Inf. R+Abcx 20 53 1.94 93 2

G.F. 48 Inf. Reteplase 22 43 1.64 212 3

C.A. 63 Inf. Reteplase 22 45 1.75 160 3

P.S. 37 Inf. Reteplase 19 52 1.62 140 3

S.M. 37 Inf. Reteplase 17 49 1.93 142 1

S.S. 65 Inf. Reteplase 36 31 1.5 128 3

TABLE II - DESCRIPTIVE STATISTICS IN BOTH TYPES OF TREATMENTS

Drug Minimum Maximum Mean STD

R+Abcx age 48 73 60.8 8.5

STIR 3D MIsz % 11 73 28.9 18.7

2d-fl 3D EF 34 67 50.8 10.5

STIR Intensity ratio 1.27 2 1.7 0.2

2d-fl 3D EDVmL 93 225 149.5 44

Reteplase age 37 75 55.4 13.6

STIR 3D MIsz % 17 41 25 7.7

2d-fl 3D EF 26 52 41.2 8.1

STIR Intensity ratio 1.50 2.20 1.75 0.2

2d-fl 3D EDVmL 76 237 153.1 48.3

TABLE III - DESCRIPTIVE STATISTICS DIVIDED BY DRUG REGIMEN

Drug MI Age STIR  3D MIsz % 2d-fl 3D EF STIR 2d-fl

Intensity ratio 3D EDV mL

R+Abcx ant mean 61.6 28.4 52.6 1.6 135

STD 8.7 26.2 11.2 0.2 22.8

inf mean 60 29.4 49 1.8 164

STD 9.3 10.1 10.7 0.3 57.6

Total mean 60.8 28.9 50.8 1.7 149.5

STD 8.5 18.7 10.5 0.2 44.

Reteplase ant mean 60.8 26.8 38.4 1.8 149.8

STD 12.6 8.3 7.9 0.3 64.3

inf mean 50 23.2 44 1.7 156.4

STD 13.6 7.5 8.1 0.2 33.1

Total mean 55.4 25 41.2 1.8 153.1

STD 13.6 7.7 8.1 0.2 48.3
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the linear regression between EF and MIsz was strongly

significant in the reteplase group. In this last, the larger

the MIsz, the lower the EF. This clear and expected 

correlation was no longer present in R+Abcx group with

EF completely unrelated to MIsz (Fig. 2).

Similarly, MO also showed a powerful relation to EF,

with the strongest correlation in group 3 of patients,

those with the greatest MO areas (Fig. 3). 

Large MO (group 3) was present in 25% of patients: i.e

5 out of 20. Four of these patients were in the reteplase

group whereas small subendocardial (group 2) MO, were

uniformly distributed in R+Abcx groups: see Table I.

Of note, two patients of this study died: C.A. and P.S.

both for wall rupture, both in the reteplase group and

TABLE IV - INFARCT SIZE (MIsz%) AS % OF THE WHOLE,

THREE DIMENSIONALLY (3D) CALCULATED, MY-

OCARDIAL MASS

STIR Mean Standard Deviation Sig. (2-tailed)

3D MIsz %

R+Abcx 28.9 18.72 0.586

Reteplase 25.0 7.70

TABLE V - FROM CONTIGUOUS BASE TO APEX CINE 2d-flash

SLICES, THREE DIMENSIONAL (3D) EJECTION FRAC-

TION (EF) IS CALCULATED IN BOTH DRUG REGI-

MENS

2d-fl Mean Standard Deviation Sig. (2-tailed)

3D EF

R+Abcx 50.80 10.51 0.035

Reteplase 41.20 8.08

TABLE VI - RATIO BETWEEN INTENSITY VALUES OBTAINED

WITH STIR IMAGES, IN INFARCT AREA AND IN NOR-

MAL MYOCARDIUM, IN BOTH DRUG REGIMENS

STIR Mean Standard Deviation Sig. (2-tails)

Intensity ratio

R+Abcx 1.69 0.25 0.653

Reteplase 1.74 0.22

TABLE VII - END DIASTOLIC VOLUME (EDV), EXPRESSED IN

MILLILITERS(ML) OBTAINED FROM CINE 2D-FLASH

(2d-fl) SEQUENCES, IN BOTH DRUG REGIMENS

2d-fl 3D EDVmL Mean Standard Deviation Sig. (2-tailed)

R+Abcx 149.5 44.03 0.842

Reteplase 153.1 48.36

Fig. 2 - Inverse linear regression between  infarct size (MIsz%) ad

ejection fraction (2d-fl 3D EF) in both drug regimens. Details in the

text.

Fig. 3 - Relationship between microvascular obstruction (2d-fl

MO) infarct size (MIsz%) ad ejection fraction (2d-fl 3D EF). 1,2 and

3 represent: no MO, small MO and large MO respectively. Details in

the text.
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with severe (group 3) MO. The first patient who died in

day five, was the object of a previous publication (8).

The second suddenly died at home 7 days after uncom-

plicated myocardial infarction.

Finally, no significant correlations could be found

when patients were grouped according to the site of

myocardial infarction (Fig. 4).

DISCUSSION

The first consideration regards EF. As already known,

MRI 3D reconstruction of the LV carries a small variabil-

ity so that also a limited population can be sufficient to

disclose differences not revealed by echocardiography

(57-62). This is also the case of this 20 patient study, in

which mean EF in R+Abcx patients was clearly higher,

though with weak significance, compared to the

reteplase group. This occurred despite similar MIsz and

intensity ratio, indicating that different degrees of cell

Fig. 4 - Inverse linear regression between  infarct size (MIsz%)

ad ejection fraction (2d-fl 3D EF) according to the site of my-

ocardial infarction: anterior (Ant.) or inferior (Inf.). Details in the

text.

Fig. 5 - Short axis STIR

image of the left ventri-

cle (A) and the corre-

sponding macroscopic

autoptic specimen (C).

Subendocardial void of

signal in A corre-

sponds to hemorrhagic

tissue in C, while hy-

persignal in A corre-

sponds to edema in C.

(D) small red cells

dominate the center of

hemorrhagic area (dark

subendocardium in C).

(B) in the area of ede-

ma (white area in C)

proceeding from the

inner (right-bottom) to

the outer (left-top)

plane: the number of

unbroken myocites

progressively increas-

es while the interstitial

space progressively

reduces. 
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damage may be represented by similar STIR T2 signal,

which thus seems unable to distinguish irreversible

necrotic from reversible viable myocardium. This latter is

the prevalent condition in MIsz of patients treated with

R+Abcx. 

The traditional onion configuration of myocardial is-

chemia and infarction suggests that the outer layers are

less damaged than the inner myocardium. Under these

circumstances with increasing MIsz a progressive im-

pairment of the LV with lowering EF should be expected.

In the reteplase group in fact all this happened, as rep-

resented by the clear inverse relation between MIsz and

EF. This was the result of epicardial fibrinolysis, which

though successful, could not prevent the development of

MO. This was related, in our study with equivalent pain to

treatment time between groups (63) to the extent of MIsz

more than the success of epicardial trombolysis.

The above considerations were furthermore confirmed

by the opposite behaviour observed in R+Abcx patients

where not only epicardial but also microvascular vessels

were pharmacologically preserved. In these patients de-

spite unchanged MIsz compared to reteplase, the inverse

relationship of Figure 2 was completely lost and almost

no MO occurred. 

A second consideration arises from STIR T2- imaging

of myocardial infarction. 

Almost contemporaneously some years ago, two dif-

ferent works indicated that T2 weighted (64) and T1

weighted sequences (39) were able to define infarct ar-

eas with good correspondence with the infarct size ex-

pressed by Thallium irreversible defect. In experimental

comparison however (65), infarct areas seemed more

accurately represented by T1 compared to those,

slightly overestimated, obtained with T2 sequences.

Nonetheless the same images also indicated that T2-

weighted could detect subendocardial void of signal not

visible in T1 sequence, indicating that two different tis-

sue were at the same time present in that infarct area,

both well detected by T2 approach. This closely calls

MRI experimental data which indicate that in the same

infarct area, irreversibly damaged myocites with patent

microcirculation and irreversibly damaged myocytes

with occluded microcirculation may coexist (12).

Since then, both T2 (66-68) and T1 late enhancement

imaging have been utilized to estimate infarct size, T1-

weighted largely dominating the scene (36, 39, 69-92). 

In spite of this, some limitations suggest that beyond

the clear experimental and clinical evidence of late en-

hancement usefulness, the exact quantification of infarct

size requires further technological, procedural and metho-

dological steps to be completely defined (56, 68, 74). 

In addition, void of signal in T2 images most likely in-

dicates hemorrhagic tissue, currently a prevalent do-

main of T2 imaging (93-96).

A comprehensive illustration of the above considera-

tions is reproduced in the cases: C.A. Figure 5 whose

imaging of wall rupture as been object of a previous

publication (8) and P.S. Figure 6 suddenly dead for wall

rupture as previously reported. 

Figure 5 shows C.A. STIR T2 short axis slice with

clear evidence of transmural hyperenhancement of the

inferior wall surrounding a subendocardial void of signal

Fig. 6 - Long axis  im-

ages of the left ventri-

cle in cine 2d-flash (A)

and in STIR T2 se-

quence (B). 

Both indicate the

presence of MO, STIR

image also suggest-

ing the hemorrhagic

nature of MO. Com-

plete description in

the text.
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(A). This respectively corresponds to: oedema and

subendocardial haemorrhage in the macroscopic au-

toptic specimen (B). The histological aspect of those

layers indicate subendocardial red blood cells predom-

inance (D) and in (C) the extensive loss of myocytes in

the confining zone near the hemorrhagic endocardium,

progressively replaced in the outer layers by unbroken

myocytes and parallel reduction of “expanded“ intersti-

tium. This last happened without a clear modification of

signal intensity in hyperenhanced area of A Thus similar

or contiguous levels of T2 intensity, represents different

degrees of cell injure as already outlined in previous

MRI studies on ischemia necrosis hemorrhage and

healing tissue (97) 

In Figure 6 is represented the second case of wall

rupture: P.S. A long axis 2d-fl after Gadolinium injection

clearly demonstrate the presence of a long MO extended

from the base to the subepicardial inferior distal wall.

Both 2d-fl (A) and STIR T2 (B) images were able to identi-

fy the presence of severe MO, STIR T2 also suggesting

the haemorrhagic characteristics of MO, and 2d-fl allow-

ing to follow MO dynamically during systole, thus indicat-

ing its threatening extension towards the epicardium.

CONCLUSION 

R+Abcx prevents MO: compared to traditional fibri-

nolytic therapy, this allow a better LV function and most

likely an improved long term survival. 

Extensive MO was present and well recognized in

25% of all cases, 80% of which fall in the Reteplase

group of treatment. 

The combination of T1 dynamic 2d-flash cine and

STIR T2 sequences may allow recognition and tissue

characterisation of MO also suggesting the presence of

impending ruptures. 
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