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Abstract

Objective—To study the day-night variation of omentin-1 levels and assess whether leptin, 

and/or short-and long-term energy deprivation alter circulating omentin-1 levels via cytokines.

Design and Methods—Omentin-1 levels were measured hourly in serum samples from six 

healthy men to evaluate for day-night variation. To study effects of acute energy deprivation and 

of leptin administration, eight healthy subjects were studied in the fasting state for 72 hours with 

administration of either placebo or metreleptin in physiological replacement doses. We evaluated 

the effect of leptin in pharmacological doses on serum omentin-1 and cytokine levels, as well as 

on omentin-1 levels in ex vivo omental adipose tissue, in fifteen healthy volunteers. To study the 

effect of chronic energy deprivation and weight loss on omentin-1 levels we followed eighteen 

obese subjects for 12 months who underwent bariatric surgery.
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Results—There is no day-night variation in omentin-1 levels. Short-term and chronic energy 

deprivation as well as ex vivo leptin administration and physiological replacement doses of leptin 

do not alter omentin-1 levels, whereas pharmacologic doses of metreleptin reduce omentin-1 

levels whereas levels of TNF-α receptor II and IL-6 tend to increase.

Conclusions—Omentin-1 levels are reduced by pharmacological doses of metreleptin 

independent of effects on cytokine levels.
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Introduction

Visceral adiposity is associated with a higher risk of metabolic complications of obesity, 

such as type 2 diabetes mellitus, dyslipidemia and cardiovascular disease, compared to 

subcutaneous adiposity.1-3 In an attempt to identify humoral mediators of this risk, studies 

were performed to identify genes specifically expressed in human omental adipose tissue.4, 5 

By sequencing complementary DNA (cDNA) from a human fat library, Yang et al. 

discovered a gene on chromosome 1q21.3 that was selectively expressed in human omental 

adipose tissue,5 coding for a 313-amino-acid glycosylated protein,4 which was named 

omentin to reflect its preferential expression in the omental adipose tissue.5-9 This 

adipocytokine was later renamed omentin-1 after the discovery of omentin-2, which shares 

83% amino acid homology with omentin-1 but is much less abundant in plasma.10

The exact role of omentin-1 in human physiology remains unclear. Cross-sectional human 

studies have found lower levels of omentin-1 in obese, as compared to lean, individuals, and 

an inverse correlation with BMI, waist-to-hip ratio,8, 10-15 and insulin resistance.12, 16-19 

Physiologic studies have suggested that omentin-1 may play a role in the pathogenesis of 

complications of obesity. For example, the reduced levels of omentin-1 in obesity may be 

contributing to the higher risk of hypertension through a reduction in vasodilatory effect of 

omentin-1 on the vasculature.20, 21 Studies in rodent models have yielded controversial 

results on whether the changes in omentin-1 levels are secondary or causative to obesity and 

increased insulin levels. Although a chronic intraperitoneal infusion of omentin-1 led to a 

significant increase in food intake, weight and altered the related hypothalamic peptides and 

neurotransmitters in a rat model,22 injection of omentin-1 into the arcuate nucleus of the 

hypothalamus in rats did not alter food intake or expression of orexigenic or anorexigenic 

neuropeptides.23 Tan et al. demonstrated that glucose and insulin were able to suppress 

omentin-1 secretion, both in human omental fat explants and in in vivo human experiments.6 

Interestingly, several studies have found a negative correlation between omentin-1 and 

leptin levels,10, 13 which persisted even after adjusting for age, sex and BMI,10 suggesting a 

regulatory relationship between these two adipokines outside of the effects of adiposity.10 

However, no interventional study has investigated whether this relationship may be causal, 

nor is there evidence for whether levels vary with feeding or fasting.

In addition to its proposed metabolic role, data from epidemiologic studies demonstrate a 

negative correlation between omentin-1 serum levels and levels of pro-inflammatory 
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cytokines, suggesting that omentin-1 could have a role in the immune system.12, 16 In 

particular, investigations have focused on a potential role of omentin-1 in moderating the 

effects of tumor necrosis factor-α (TNF-α). Omentin-1 was found to reduce TNF-α-induced 

inflammation in vascular smooth muscle cells24 and human vascular endothelial cells,25 

possibly via prevention of TNF-α-induced cyclooxygenase (COX)-2 expression.26, 27

The purpose of this study is thus to evaluate whether omentin-1 levels exhibit any day/night 

variation given many adipokines including leptin demonstrate day/night variability. Also to 

assess whether chronic or acute energy deprivation affects omentin-1 levels and whether 

metreleptin administration, in replacement or pharmacological doses, directly affect 

circulating omentin-1 levels. In addition, we performed ex vivo experiments evaluating 

whether direct treatment of omental adipose tissue with leptin could change omentin-1 

expression.

Materials and methods

Institutional approval was obtained from the Institutional Review Board of Beth Israel 

Deaconess Medical Center, and written informed consent was obtained, for all studies. An 

investigator-initiated Investigational New Drug approval was obtained by Christos Socrates 

Mantzoros from the U.S. Food and Drug Administration for the use of metreleptin.

Studies 1, 3 and 4 are from the same original study but only 6 subjects in the isocaloric fed 

study and only 8 subjects in the fasting state with placebo/physiologic metreleptin study had 

samples available for evaluation.

Subjects

Study 1: Study in the Isocaloric Fed state—To evaluate for potential day/night 

variation pattern in omentin-1 levels, six healthy lean male volunteers, were recruited from 

the community and admitted to the Clinical Research Center (CRC) for four days.28 The 

participants had no medical problems and did not take any medications. Meals, sleep, and 

other potential confounders were standardized as previously described.28 From 0800 hours 

(h) on day 3 to 0800 h on day 4, blood samples were collected every 15 minutes. The 

samples were pooled hourly to satisfy assay sample volume requirements. The samples were 

stored at −80°C until assayed.

Study 2: Study in the weight reduced state after Bariatric surgery—To evaluate 

for any effect of prolonged energy deprivation on omentin-1 levels, 18 patients who 

underwent bariatric surgery (Roux-en-Y or gastric banding) were recruited. Fasting blood 

samples were obtained between 0800 h and 1000 h pre-operatively (n=18), and at 3, 6 and 

12 months after the surgery (n=16, 16, 10 respectively).

Study 3: Study in the Fasting state with placebo /physiological metreleptin in 
physiological doses—To evaluate for any effect of acute energy deprivation on 

omentin-1 levels, eight lean male volunteers (including the six from Study 1) were admitted 

to the CRC for two separate four-day admissions, separated by at least seven weeks.28 

During these admissions, the participants were kept fasting but were allowed free access to 
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non-caloric non-caffeinated drinks. In addition, they were given a multivitamin, 500 mg of 

NaCl, and 40 mEq of KCl daily. During the two admissions, participants were administered 

in a randomized, double-blinded fashion either placebo or recombinant human leptin 

(metreleptin). Clinical quality metreleptin was supplied by Amylin Pharmaceuticals, LLC (a 

wholly-owned subsidiary of Bristol-Myers Squibb). The daily dose of metreleptin was 0.04 

mg/kg per day on day 1, 0.1 mg/kg per day on days 2 and 3, and one dose of 0.025 mg/kg at 

0800 h on the fourth day, with the total daily dose divided into four equal doses given every 

6 hours starting at 0800 h on day 1. Blood samples were collected through an indwelling 

peripheral IV line from 0800 h on day 3 to 0800 h on day 4, and processed and stored as 

described for Study 1. Omentin-1 levels were assayed in six samples per 24-hour period per 

participant per admission.

Study 4: Study in the Fasting state with pharmacologic doses of metreleptin—
To evaluate for any effect of high-dose metreleptin on levels of omentin-1, we administered 

0.1 mg/kg of metreleptin to healthy individuals (n=15) subcutaneously. Blood samples were 

obtained at 30 minutes, 1, 6, 12 and 18 hours after the metreleptin administration.

Study 5: Ex vivo treatment of omental fat with leptin—To evaluate whether leptin 

has an acute effect on omentin-1 secretion ex vivo, we collected omental fat samples from 

five patients undergoing abdominal surgery, and abdominal wall subcutaneous fat in three of 

these patients. The samples were split in half by weight, and then cut up in small pieces. 

Half of each sample was incubated in control Krebs-Ringer-HEPES buffer (20 mmol/L, pH 

7.4) containing 2.5% BSA and 200 nmol/L adenosine, and the other sample was incubated 

with leptin 100 ng/mL (ProSpec Bio, East Brunswick, NJ). After 20 hours of incubation at 

37°C with gentle rocking the supernatant was collected from all the samples for omentin-1 

measurement by ELISA.

Hormone assays

Serum omentin-1 was measured using an enzyme-linked immunosorbent assay (ELISA) 

(Biovendor, Candler, NC). The assay had an intra-assay coefficient of variation (CV) of 

3.7%, and an inter-assay CV of 4.6%. The lower limit of detection was 2 ng/mL. Leptin was 

measured with a radioimmunoassay (Leptin RIA, Linco Research, St. Louis, MO; now 

Millipore, Billerica, MA) with an inter-assay CV of 6.2% and an intra-assay CV of 8.3%. 

Serum soluble TNF-α receptor II (sTNFRII) was measured with an ELISA (R & D Systems, 

Minneapolis, MN) with an intra-assay CV of 4.4%, inter-assay CV of 6.1% and a lower 

limit of detection of 7.8 pg/mL. Serum IL-6 was measured with an ELISA (R & D Systems, 

Minneapolis, MN) with an intra-assay CV of 7.4%, inter-assay CV of 7.8% and a lower 

limit of detection of 0.156 pg/mL. All samples were run in duplicates using standardized 

laboratory techniques. Stability of leptin and omentin-1 was confirmed with multiple freeze 

thaw cycles.

Statistical methods

Statistical analysis was performed using Stata version 11.1 (Stata Corp., College Station, 

TX), SAS version 9.3 (SAS Institute, Inc., Cary, NC) and Sigmaplot version 12.0 (Systat 

Software, Inc, San José, CA). The descriptive characteristics of the study groups are 
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expressed as mean and standard error of the mean for continuous variables, or percentage 

and number for categorical variables. Variables were assessed for normality using P-P plots 

and the Shapiro-Wilkes test, and transformed if needed.

Analysis for day-night variation was performed using Pulse XP (University of Virginia, 

Charlottesville, VA). To evaluate for day-night variability at the level of each subject we 

utilized the cosine routine that fits a four-parameter cosine function to the time series of each 

subject's hormonal levels, against the standard deviation between duplicate measurements 

allowing the evaluation of the amplitude, period, and phase of the oscillations on a subject-

to-subject basis. To evaluate for potential day-night variability of omentin-1 levels across all 

study participants we fit 4-parametric nonlinear ordinal least-squares trigonometric 

regression models, with constrained period at 24 hours, evaluating potential amplitude, 

periodicity, and phase agreement. The adjusted nonlinear coefficient of determination (R2) 

was calculated using these models.

For study 3, we analyzed our data using hierarchical, mixed-effects linear regression models. 

Hormone levels were modeled as a linear function of time. Condition (fed, fasting with 

placebo, or fasting with metreleptin) was introduced at the level-2 specification using 

dummy encoding. Model selection was performed using the Akaike and the Bayesian 

information criteria (AIC and BIC). The optimal model fit in our data was a two-level model 

with random intercept but fixed slope with heterogeneous first-order autoregressive residual 

covariance structure. For studies 2 and 4, we used repeated measures ANOVA with least 

significant difference post-hoc testing.

A two-sided p-value of <0.05 was considered significant.

Results

Table 1 shows the baseline characteristics of the participants in each study.

Study 1: Study in the isocaloric fed state:Omentin-1 shows no circadian variation

Figure 1 shows the mean omentin-1 level over 24 hours. No significant day-night variation 

was noted (p=0.92, adjusted R2<0.0001).

Study 2: Study in the weight reduced state after bariatric surgery: Omentin-1 levels do not 
change after bariatric surgery

After bariatric surgery there was significant weight loss (mean BMI dropped from 47.4 ± 8.2 

to 39.4 ± 7.4 kg/m2). However, serum levels of omentin-1 did not change [301 ± 22, 342 ± 

29, 271 ± 25 and 300 ± 29 ng/mL at 0, 3, 6 and 12 months respectively, p=0.17]. Subgroup 

analyses by type of surgery (Roux-en-Y vs. gastric banding) or diabetes status did also not 

show a significant difference.

Study 3: Study in the fasting state with placebo /physiological metreleptin in physiological 
doses: Omentin-1 levels do not change with acute fasting or with metreleptin injections

Mean omentin-1 levels were 263 ± 48 ng/mL in the fed state, and did not change with 

fasting (231 ± 38 ng/mL, p=0.58) or fasting along with metreleptin administration in 

Hamnvik et al. Page 5

Int J Obes (Lond). Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



physiological replacement doses (331 ± 63 ng/mL, p=0.25). The slopes of the omentin-1 

level trajectories across time were non-significant meaning that omentin-1 levels did not 

change during the 24 hours of the study. The latter was true for all three states (p-value for 

slope: p=0.27, p=0.95 and p=0.32 for fed, fasting and fasting with metreleptin respectively).

Study 4: Study in the fasting state with pharmacologic doses of metreleptin: Acute 
hyperleptinemia leads to a reduction in omentin-1 levels but no change in inflammatory 
cytokines

After administration of pharmacologic doses of metreleptin, serum leptin levels reached a 

peak mean concentration of 135 ± 33 ng/mL (Figure 2A). Omentin-1 levels dropped 

significantly (Figure 2B, p=0.03). There was a trend towards an increase in soluble TNF-α 

receptor II, a marker of activation of the TNF-α system (Figure 2C, p=0.12). There was also 

trend towards an increase in interleukin-6 levels (Figure 2D, p=0.13) but these were not 

statistically significant. When performing post-hoc comparisons of IL-6 levels between the 

values at 0, 0.5 and 1 hour on one hand, to the values at 6, 12 and 18 hours on the other, 

there was a statistically significant increase (p=0.001). Similarly, when comparing the 

baseline TNF-α receptor II levels to the levels at 30 minutes, there was a statistically 

significant increase (p=0.004). However larger studies are needed to fully quantify effects 

on inflammatory makers.

Study 5: Study in the Fasting state with pharmacologic doses of metreleptin: Omentin-1 is 
not secreted from subcutaneous fat, and secretion from omental fat is not altered by leptin

Omentin-1 levels from subcutaneous adipose tissue were below the level of detection of our 

assay but were present in omental fat. Omentin-1 levels did not change with ex vivo 

exposure of omental fat to leptin (163 ng/mL ± 52 ng/mL vs. 158 ± 48 ng/mL, p=0.85).

Discussion

Obesity, especially visceral adiposity, is an inflammatory state. Adipose tissue is known to 

synthesize and release adipokines, and cytokines such as TNF-α and IL-6.29 Leptin, which 

is secreted in higher levels from subcutaneous fat depots,30 is known to increase 

macrophage and monocyte proliferation rates, thereby increasing the levels of inflammatory 

cytokines (TNF-α, IL-6).31 On the other hand, omentin-1 is predominantly secreted from 

visceral adipose tissue4, 5 and plays an anti-inflammatory role by preventing the TNF-α-

induced inflammation.27, 32 Given the roles of both leptin and omentin-1 in obesity and 

chronic inflammation we investigated whether an interaction exists between leptin and 

omentin-1. We also studied the physiology of omentin-1 in humans, specifically evaluating 

for any potential day-night variation in omentin-1 circulating levels and for omentin-1's 

response to starvation and leptin administration in humans.

Our study demonstrates that in contrast to leptin, there is no day-night variation in omentin-1 

levels. This is in agreement with a prior study, which reached the same conclusion but was 

limited due to the paucity of measurements (every 30 minutes from 0800 h to 1000 h, but 

then only every two hours, and only one measurement between midnight and 0800 h).6 We 

also demonstrate, for the first time in humans, that acute energy deprivation, induced by 
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three days of fasting, does not alter omentin-1 levels. Interestingly we failed to demonstrate 

any change in omentin-1 levels with chronic energy deprivation and weight loss following 

bariatric surgery. This comes in contrast with prior studies demonstrating that weight loss 

from a very low-calorie diet,13 metformin,32, 33 or an aerobic exercise program14 led to an 

increase in omentin-1 levels but this might be explained by loss of more subcutaneous tissue 

as compared to visceral adipose tissue after bariatric surgery.34 Since omentin-1 is primarily 

secreted from the visceral adipose tissue there might be no observed difference in omentin-1 

level despite of weight loss, if the latter leads to loss of subcutaneous tissue. It is unclear if 

our results are due to the direct effects of bariatric surgery or to other unmeasured factors.

Our study also demonstrates that high-dose metreleptin administration leads to a marked 

reduction in omentin-1 levels in vivo, but not ex vivo (leptin 100 ng/mL), suggesting that this 

is most likely mediated via intermediary factors, activated by in vivo leptin administration 

and not directly by leptin (which would have expected to alter omentin-1 levels ex vivo). In 

view of the known effects of leptin as a pro-inflammatory cytokine and proposed role of 

omentin-1 in inflammation, we also studied whether inflammatory cytokines were altered by 

high-dose metreleptin. We found that levels of both soluble TNF-α receptor II and IL-6 

show a trend towards increase after metreleptin administration, but these changes achieve 

statistical significance only when time points are consolidated together. Thus, whether the 

changes in omentin-1 could be attributable to the changes in either TNF-α receptor II or 

IL-6 remains a possibility and needs be fully confirmed by future, larger studies.

A limitation of our study is that we cannot exclude changes in the samples due to prolonged 

storage. However all the samples were stored under the same conditions and evaluation of 

the assays showed stability with multiple freeze-thaw cycles. Random error in laboratory 

measurements also remains a possibility but this would have been expected to only suppress 

effect estimates and could have not lead to the statistically significant results presented 

herein.

In conclusion, our physiologic study demonstrates that omentin-1 does not display any day-

night variation and that omentin-1 levels remain unaltered in from both acute and chronic 

energy deprivation. Thus omentin-1 levels can be measured at any time of the day 

irrespective of fasting or fed state. In addition, we show that pharmacologic doses of leptin 

decrease circulating levels of omentin-1 through an indirect mechanism that does not 

involve the TNF-α or IL-6 system. Whether changes in other hormones or cytokines 

downstream of leptin and/or leptin-induced activation of the central nervous system could be 

responsible for these changes in omentin-1 remains to be fully elucidated by future studies.
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Figure 1. Study 1: Study in the isocaloric fed state
Circadian variation of omentin-1 levels on day 3 of baseline fed state (95% confidence band 

in solid line, 95% prediction band in dashed line, bars are standard errors)
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Figure 2. Study 4:Study in the fasting state with pharmacologic doses of metreleptin
Levels of leptin (Panel A), omentin-1 (Panel B), sTNFRII (Panel C) and IL-6 (Panel D) after 

administration of pharmacologic dose metreleptin (0.1mg/kg). Bars indicate standard errors; 

stars indicate significant change when compared with baseline, p <0.05.
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Table 1

Baseline characteristics of study participants.

Study 1 (n=6) 
(Study in the 
Isocaloric Fed 
state)

Study 2 (n=18) 
(Study in the weight 
reduced state after 
Bariatric surgery)

Study 3(n=8) 
(Study in the 
Fasting state with 
placebo / 
metreleptin in 
physiological 
doses)

Study 4 (n=15) 
(Study in the 
Fasting state with 
pharmacologic 
doses of 
metreleptin)

Study 5 (n=5) (Ex vivo 
treatment of omental 
fat with leptin)

Age (years) 22.3 (19-27) 52 (33-66) 23.3 (19-29) 21.9 (19-28) 48 (30-61)

Male 6 (100%) 8 (44.4%) 8 (100%) 10 (66.7%) 2 (40%)

Body mass index 
(kg/m2)

23.4 (20.6-25.1) 47.4 (37.1-74.6) 23.7 (20.6-25.2) 25.3 (20.2-34.6) 44.6 (40.0-50.4)

Type 2 diabetes 
mellitus

0 (0) 7 (38.9%) 0 (0) N/A 2 (40%)

Type of surgery N/A Roux-en-Y: 7 
(38.9%)
Gastric banding: 11 
(61.1%)

N/A N/A Roux-en-Y: 1 (20%)
Gastric banding: 2 
(40%)
Sleeve gastrectomy: 1 
(20%
Cholecystectomy: 1 
(20%)

Values are mean (range) or n (%).
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