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Abstract: This study examined postural variabilities based on the self-perceived most comfortable
postures of 12 participants (six men and six women) when sitting on three commonly used types of
chairs (a stool, computer chair, and gaming chair). Participants’ global joint angles were recorded and
analyzed. Of the chairs studied, the stool was not adjustable, but the computer and gaming chairs
were moderately and highly adjustable, respectively. During the test, participants were encouraged
to adjust the chairs until they perceived that the most comfortable posture had been reached. The
results demonstrated that in a sitting position perceived to be comfortable, the participants’ postural
variabilities with respect to global joint angle, calculated from five repetitions, were unexpectedly
high for all three chair types, at approximately 9.4, 10.2, and 11.1◦ for head inclination, trunk angle,
and knee angle, respectively. The average differences in range for each joint angle among the three
chair types were relatively low, with all values within 3◦. The result also showed that gender
(p < 0.01) and chair type (p < 0.001) significantly affected trunk angle, whereas these variables did not
affect head inclination or knee angle (p > 0.05). The preliminary results observed unexpectedly high
variabilities in sitting posture when the participants sat at a posture that they perceived to be the
most comfortable. The findings also indicated an inherent difference in comfortable sitting posture
between genders; women tend to extend their trunk backward more than men. For permanent use
with only an initial adjustment and memory-aided seat design, designers should minimize the loads
that are borne by body parts over a prolonged period due to an unchanging sitting posture.

Keywords: sitting comfort; perception; chair type; postural variability; global joint angle

1. Introduction

In response to changes in work and lifestyle, sitting posture has become increas-
ingly important for people, including for office work, computer gaming, and driving.
People spend most of their time sitting, whether at work or at play [1], bringing with it
body discomfort, pain, and even injury, particularly to the neck and shoulders and lower
back [2,3].

The correct, or optimal sitting posture remains widely debated. An erect sitting posture
is generally adopted in daily life and is attached to the socially constructed notion of an
optimal posture [4]. The optimal posture is rarely determined by body strain and comfort,
and many researchers have assessed sitting posture from an ergonomic perspective. For
example, a good sitting posture should have a lordotic lumbar spinal curve similar to
standing [5,6], and spinal pain can be caused by a flexed sitting posture [7]. However, a
flexed posture is commonly adopted in daily sitting [8,9], and this habitual sitting posture
has been considered as a mid-range position involving more flexion than other sitting
postures [10,11]. Experts in ergonomics who favor an erect sitting posture [12,13] note
that it may lead to increased levels of fatigue resulting from increased muscle activation
compared with the habitual sitting posture; but scientific evidence that any specific posture
causes spinal pain is lacking [14].
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In the literature, what constitutes an optimal sitting posture remains questionable,
with no consensus on a single correct posture [15]. Any posture, (e.g., erect or slumped,
lordotic or kyphotic) if maintained for a prolonged period, could lead to discomfort and
even injury [16]. Furthermore, individuals may respond differently to various chair types,
and the factors that influence sitting posture are still unknown [17]. Clinically, the corrective
postural interventions and support commonly used to manage spinal pain are based on
an assumption that postural variations from the optimal position may cause lower back
pain (LBP) [18]. A popular theory is that good sitting habits involve frequent postural
adjustments [6]. This implies that when people are sitting in a position that they perceive
to be comfortable, the posture is frequently changed. Studies have also indicated that
low-force activities, such as sitting, reduce trunk motor variability, which is associated with
increased muscle fatigue and decreased endurance and may thus cause LBP [19,20].

Although methods for changing sitting posture include adjustable seats and active
postural changes by sitters, not all chairs are equipped with adjustment devices. Studies
have also demonstrated that even if an adjustment mechanism is present, it is rarely used,
and users tend to adjust the seat the first time they use it [21]. This may be because sitters
feel less need to readjust the seat once they perceive that it is comfortable. In this regard,
the consistency of the seat user’s subjectively perceived most comfortable posture may
become crucial to examining if a comfortable sitting posture exists.

Whereas seat users agree on the definition of discomfort and the pain involved in
sitting in a bad chair, the comfort or the positive aspects have been difficult to define.
Helander [22], thus, offered an operational definition of sitting comfort including a sense
of relaxation and relief. This may imply that comfort makes the sitters perceive the
least stress on the body when sitting. In the evaluation of seats, different methods have
been used to measure sitting comfort, such as anthropometry, subjective assessment, and
objective measurements. In general, questionnaires are often developed to assess the
comfort/discomfort levels for comparison purposes [23–25], whereas the anthropometric
and biomechanical evaluations are used for chair designs [26–28] and load estimated on
body regions [29,30], respectively. Body joint angle recoding is one of the methods for
connecting the sitting posture and the comfort. Kee and Karwowski [24] proposed an
index of the joint angles of isocomfort in sitting and standing based on perceived comfort
ratings for static joint postures and indicated that postures maintained for 60 s cause
greater discomfort for the hip joint than for the other joints studied, and less discomfort
for the elbow than for the other joints. Korakakis et al. [12] discovered that a relatively
large range of movement occurred in head-tilt angles from one day to the next when a
neutral sitting posture was adopted, with a difference of 6.0◦. The difference was averaged
across 26 participants, with larger differences in postures also being observed. However,
subjective and objective parameters are usually not independent, thus sitting postures or
other physiological indicators that cause the sitters more comfortable could be determined
by exploring their relationship [23,29].

Studies have examined what parameters of chair design affect (and how they affect)
the sitters’ discomfort levels, and researchers have thus attempted to design a chair that is
more comfortable for sitters [2,3,27,30]. In this regard, the optimal, habitual, and correct
sitting postures have been investigated. However, no research has focused on the variability
in comfortable sitting postures as determined by sitters. Currently, some seats, such as
those in cars, are equipped with personal memory-aid adjustment devices. The premise
of these devices is that individuals tend to perceive comfort in an identical posture, but
this remains undetermined. This work, therefore, evaluated the postural variabilities with
respect to joint angles between three commonly used chairs and between genders based on
the self-perceived most comfortable postures.
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2. Materials and Methods
2.1. Participants

The experiment recruited 12 healthy young participants (six men and six women) for
the tests, the relatively small sample size was because of its preliminary nature. Individuals
with medical histories of musculoskeletal disorders were excluded. Each participant was
informed of details of the study in general and the experimental procedures in particular.
Participants’ age, height, and body mass were collected prior to the experiment. The experi-
ment was performed in accordance with the 2013 World Medical Association Declaration of
Helsinki. The Ethics Committee of National Taiwan University approved the experimental
procedures. All participants provided written consent prior to the experiment and were
remunerated for their time. The participants were representative of the general Taiwanese
population with respect to their anthropometric characteristics [31].

2.2. Chair Types

The three chair types examined in the test included a stool (X + Y Fashion Boutique
Furniture, Tainan, Taiwan), a computer chair (SA03G, COSMOS, Taipei, Taiwan), and
a gaming chair (ISKUR, RZ38-02770100-R3U1, Razer, Singapore), as shown in Figure 1.
Although the stool could not be adjusted, the seat height of the computer and gaming chairs
was adjustable, and these chairs were also equipped with a resilient (computer chair) and
adjustable back support (gaming chair, range: 90◦–140◦). In addition, the gaming chair’s
armrests were adjustable in terms of height and horizontal rotation. The chairs adopted in
the test are commonly used by Taiwanese people in the workplace or in everyday life.
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2.3. Global Joint Angle Measurements

Prior to the test, the experimenters attached five reflective markers with a 2-cm diame-
ter to the participants’ left tragus, shoulder (the acromial shelf), hip (the greater trochanter),
knee (the lateral epicondyle), and ankle (the lateral malleolus) joints. Once the participants
had adjusted the chair to support a posture that they were most comfortable with, the
global joint angles (head inclination, HI; trunk angle, TA; knee angle, KA) in the sagittal
plane were recorded (Figure 1). A MacReflex motion analysis system (Qualisys, Göteborg,
Sweden) was positioned approximately 5 m to the left-lateral side of the participant and
perpendicular to the participant’s sagittal plane to record the 2D marker positions. The mo-
tion analysis system was also used to determine the sagittal joint angles for each recording
by researchers YCC and LPZ.
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2.4. Experimental Design and Procedure

In the test, participants were asked to wear light clothing to clearly identify each joint
position. All the experiments, including the three chair types and the five repeated trials for
each chair, were completed within 3 h randomly for each participant. Consequently, a total
of 180 test combinations (12 participants × 3 chair types × 5 repetitions) were implemented
for the HI, TA, and KA measurements. During the test, participants were encouraged to
adjust the chair using the attached knobs and levers until it supported a posture that they
perceived to be the most comfortable. All participants were given instruction as follows:

In this experiment we would like to collect the most comfortable sitting posture. Please
adjust your sitting posture as much as possible. We encourage you to use the seat
adjustment devices and move your body joint angles until the most comfortable posture
you perceive. Be sure that this posture for the seat makes you feel the most relaxed and
the stresses on the body parts are minimum. If the most comfortable posture is achieved,
please say YES.

Once the posture was determined by the participants, it was recorded through the
motion analysis system for further analysis (researchers YLC and YCC). Before each trial
was performed, the seat parameters were adjusted randomly by an experimenter except for
the stool. The resting time was set at a minimum of 10 min between trials. The design was
considered to minimize any interference caused by extreme daily activities (e.g., exercise or
prolonged sitting) if the tests were performed on alternate days. When resting, participants
were allowed to undertake light activities, such as standing, walking, or sitting (the chair
differed from the three chair types examined in the test).

2.5. Statistical Analysis

The data collected in the experiment were analyzed using SPSS 23.0 statistical software
(IBM Corp., Armonk, NY, USA), at a significance level of α = 0.05 for all tests. The
descriptive statistics of the mean, range (i.e., differences between maximum and minimum
values), and standard deviation of each joint angle, calculated from the five repeated trials
for each chair type, were calculated. The effects of independent variables (gender and chair
type) were examined using a two-way repeated-measures analysis of variance (ANOVA),
and the Duncan multiple range test (MRT) was used for multiple comparisons. Moreover,
a one-way ANOVA and the Duncan MRT were conducted on mean and ranged joint angles
for each gender. A power value was used to examine if the effect size of any significant
independent variable was satisfactory (i.e., power ≥ 0.8) as suggested by Cohen [32].
Beforehand, the Shapiro-Wilk test was used to verify the compliance of numerical variables
with the normal distribution, while the Levene’s test was used to verify the homogeneity
of variances.

3. Results

The mean (standard deviation) age, height, and body mass for the male participants
were 23.1 (2.4) years, 171.8 (3.5) cm, and 67.6 (6.8) kg, respectively, and those for the female
participants were 22.7 (2.1) years, 160.4 (3.8) cm, and 53.1 (6.0) kg, respectively. Through
Shapiro–Wilk test, the joint angle data collected in the study were normally distributed (all
p > 0.05, Range: 0.092–0.863) meanwhile Levene’s test showed the data were homogenous
(all p > 0.05, Range: 0.105–0.798). The results for the two-way ANOVA of means and
ranges calculated from the five test repetitions for the three joint angles are shown in
Tables 1 and 2, respectively. Gender (p < 0.01, power = 0.851) and chair type (p < 0.001,
power = 0.954) had significant effects on mean TA, whereas these two variables did not
affect the range of any joint angle. Table 3 presents the one-way ANOVA results of chair
type on joint angle for each gender. As shown in the table, the mean TA was influenced by
both males (p < 0.05, power = 0.741) and females (p < 0.01, power = 0.820), but the mean HI
was only influenced by females (p < 0.05, power = 0.738).
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Table 1. Two-way ANOVA results for mean joint angles calculated from 5 repeated trials.

Head Inclination Trunk Angle Knee Angle

Variables F p F p F p

Gender 1.70 0.202 8.05 <0.01 0.02 0.892
Chair type 2.32 0.116 10.10 <0.001 0.08 0.925
Gender × chair type 0.58 0.566 0.09 0.914 0.10 0.906

Table 2. Two-way ANOVA results for the ranges of joint angles calculated from 5 repeated trials.

Head Inclination Trunk Angle Knee Angle

Variables F p F p F p

Gender 0.67 0.418 1.95 0.172 0.04 0.838
Chair type 1.29 0.290 0.23 0.795 0.60 0.553
Gender × chair type 1.52 0.235 0.65 0.528 0.557 0.579

Table 3. One-way ANOVA results for chair type in relation to joint angle for each gender.

Head Inclination Trunk Angle Knee Angle

Mean Joint Angle F p F p F p

Males 0.24 0.793 3.62 <0.05 0.02 0.979
Females 3.61 <0.05 7.31 <0.01 0.63 0.405

Joint Angle Range F p F p F p

Males 1.50 0.254 0.52 0.605 0.61 0.557
Feamles 1.12 0.350 0.25 0.785 0.57 0.578

Figure 2 presents the joint angles for each gender when sitting on the three types of
chairs. The Duncan MRT results demonstrated that, regardless of gender, TA was higher
when sitting in a gaming chair than when sitting on a stool. By contrast, when the female
participants sat in a gaming chair, their HI was lower than when on a stool. Figure 3
shows the variabilities of the joint angles in all test combinations. Although no difference
was found for any comparison pair, the variabilities of each joint angle for the three chair
types were all greater than 8◦, at approximately 9.4, 10.2, and 11.1◦ for HI, TA, and KA,
respectively. However, the average difference in range of each joint angle between the three
chairs was relatively low, at less than 3◦.
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4. Discussion

Although previous studies have explored the optimal, correct, and habitual sitting
postures, they have not examined the postural variabilities associated with the posture
that an individual perceives to be the most comfortable. This preliminary study found
that variabilities in the global joint angle for the most comfortable sitting posture were
unexpectedly high. More caution should thus be exercised in the seats with only an initial
adjustment and memory-aided seat design aimed at achieving a comfortable sitting posture
for permanent use. However, why the variabilities of joint angles were unexpectedly high
observed in the result remains unknown and needs clarification in the future.

Studies have suggested that muscle tone and the corresponding body posture are con-
trolled by the multiplicity of nervous system pathways [33], which cause postural variance
through both increased and decreased muscle tone. In the results of this investigation, the
variabilities in global joint angles, calculated from the five repeated trials on HI, TA, and
KA using three chair types and based on participants’ perception of comfort, exceeded
8◦ for all test combinations, with averages of 9.4, 10.2, and 11.1◦, respectively (Figure 4).
Korakakis et al. [12] discovered that a relatively large range of movement occurred at
head-tilt angles from one day to the next when a neutral sitting posture was adopted, with
a difference of 6.0◦. The results were more varied than those of Korakakis et al., suggesting
that the consistency of people’s perceptions of their most comfortable sitting posture may
be unreliable and may be affected posture-by-posture. In addition, no significant difference
in variations between sitting postures was present between gender, chair type, or joint
(Table 2), and the average differences in the range of each joint angle between the three
chair types were relatively low, with all values within 3◦. Claeys et al. [34] observed large
variability in sagittal spinal posture between individuals, without the existence of any opti-
mal sagittal posture; the same might be also true for the most comfortable sitting posture
determined by an individual. This study, therefore, suggests that for permanent seat use
after only an initial adjustment and memory-aided seat design, cumulative body part loads
caused by unchanged posture may be inappropriate, particularly in the case of prolonged
sitting. However, whether the finding of this work could be completely generalized to the
memory-aided car seats requires further examination.
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Researchers have speculated that people only occasionally consider their own pos-
ture [7]. Scholarly evidence suggests that habitual sitting posture usually favors a more
flexed posture than other upright postures [10,35]. Studies have also indicated that the
self-perceived optimal posture is more upright than one’s habitual posture or that during
spontaneous sitting tasks [10,35]. In summary, the habitual sitting posture usually features
greater flex than upright and optimal postures. By contrast, Korakakis et al. [9] recently
found that self-perceived optimal posture was significantly more extended than habitual
sitting posture in the majority of spinal regions. However, differences exist between studies.
Sitting postures that match the natural shape of the spine, which are similar to stereotypes
of what optimal posture is and appear to be comfortable or relaxed without excessive mus-
cle tone, have often been deemed by scholars to be advantageous [12,13], suggesting that
the most comfortable sitting posture is similar to a habitual sitting posture, with the trunk
being relatively flexed forward. However, the results of the present study are inconsistent
with those of previous publications, with every participant determining their own sitting
posture to assume the most comfortable posture. A possible explanation is that different
seat characteristics (e.g., having a backrest) affected the habitual posture that was adopted.
According to the results, the higher the degree of adjustment or seat comfort, the more
the trunk extended backward. Although many studies believe that sitting posture affects
the posture of the spine, Korakakis et al. [9] found that the lack of significant differences
in the different spinal regions between postures may be attributed to the sitting posture
being primarily driven by the position of the pelvis and not the lumbar spine [36,37]. In
the present study, the trunk angle was based on the position of the shoulders, greater
trochanter, and knees (Figure 1), and the spinal movement during sitting was thus not
discussed.

The results indicate that TA did not only significantly differ between gender (Table 1),
men and women also significantly differed individually in TA between chair types (Ta-
ble 3). Dunk and Callaghan [17] reported that regardless of the chair used or the task
performed, TAs exhibited significantly greater flex in men than in women; by contrast,
other researchers have observed women tend to adopt a more upright habitual sitting
posture than men [34,38]. In this test, the TA for a comfortable sitting posture on a stool
was the smallest (men: 93.1◦, women: 103.2◦), followed by the computer chair (men: 102.8◦,
women: 117.0◦) and the gaming chair (men: 115.9◦, women: 129.9◦); however, the larger
TA also resulted in a smaller HI for women (stool: 172.8◦, gaming chair: 138.0◦; p < 0.05),
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as indicated in Figure 2. The larger extended trunk positions for the computer and gaming
chairs may be because these chairs had a backrest. The factors affecting the gender-specific
postural differences may result from gender differences in pelvic geometry [39], motor acti-
vation patterns [40], different spinal loadings [17], and psychosocial status [41]. Compared
with previous studies focusing on habitual or optimal sitting postures, relatively little
information is available regarding the most comfortable sitting posture. The preliminary
results obtained in this test should be verified in further studies.

This study has several limitations. First, it was limited by the sample size of the
participants. The primary weakness of this preliminary study was that a relatively small
sample (six male and six female university students) was recruited in the test. In the results,
some effect sizes (power values) for the analyses were more than the criteria (i.e., 0.8),
however, some were close to but less than 0.8. This small sample definitely alters the
robustness of the results and may limit the generalization of the findings. More samples
and other populations should be included for future investigation. Second, only global
joint angles of the participants were recorded in the test and the spinal movement during
sitting was not examined. Understanding the variation of the spinal posture when sitting
(e.g., lordosis or kyphosis) may have also an impact especially on the comfort of the lower
back region. In addition, sitting comfort was determined only by participants’ subjective
perception in the experiment, assessments using other quantitative protocols may provide
more valuable information for this topic.

5. Conclusions

This study was first to preliminarily examine the variability in comfortable sitting
postures as determined by sitters, and the findings can serve as a reference for the design
of adjustable seats. In the analyses, unexpectedly high variabilities in sitting posture
were observed when the participants sat at a posture that they perceived to be the most
comfortable, regardless of gender, chair type, and joint. The seat designs based on the
concept of unchanging sitting posture should be more cautious.
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