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Abstract: The rupture of an intracranial aneurysm (IA) causes devastating hemorrhagic strokes. Yet,
most IAs remain asymptomatic and undetected until they rupture. In the search for circulating
biomarkers of unruptured IAs, we previously performed transcriptome profiling on whole blood and
identified an IA-associated panel of 18 genes. In this study, we seek to determine if these genes are
also differentially expressed within the IA lumen, which could provide a mechanistic link between
the disease and the observed circulating gene expression patterns. To this end, we collected blood
from the lumen of 37 IAs and their proximal parent vessels in 31 patients. The expression levels of
18 genes in the lumen and proximal vessel were then measured by quantitative polymerase chain
reaction. This analysis revealed that the expression of 6/18 genes (CBWD6, MT2A, MZT2B, PIM3,
SLC37A3, and TNFRSF4) was significantly higher in intraluminal blood, while the expression of 3/18
genes (ST6GALNAC1, TCN2, and UFSP1) was significantly lower. There was a significant, positive
correlation between intraluminal and proximal expression of CXCL10, MT2A, and MZT2B, suggesting
local increases of these genes is reflected in the periphery. Expression of ST6GALNAC1 and TIFAB
was significantly positively correlated with IA size, while expression of CCDC85B was significantly
positively correlated with IA enhancement on post-contrast MRI, a metric of IA instability and risk.
In conclusion, intraluminal expression differences in half of the IA-associated genes observed in this
study provide evidence for IA tissue-mediated transcriptional changes in whole blood. Additionally,
some genes may be informative in assessing IA risk, as their intraluminal expression was correlated
to IA size and aneurysmal wall enhancement.
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1. Introduction

Intracranial aneurysms (IAs) are present in 3–5% of the general population. They
are a persistent societal and healthcare concern because, when they rupture, they cause
devastating hemorrhagic strokes [1,2]. Aneurysmal subarachnoid hemorrhage carries high
mortality (up to 50%) and morbidity (up to 50% among survivors) rates and high healthcare
costs [3–7]. Early IA detection can enable periodic monitoring and preventive treatment
aimed at reducing future ruptures [8]. However, as screening by medical imaging is
prohibitively expensive and unduly risky, most unruptured IAs are often only incidentally
detected on imaging for other medical reasons [9]. An inexpensive, blood-based diagnostic
to identify individuals with unruptured IAs would facilitate a paradigm shift to proactive
IA management via routine monitoring and preventive care.
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In search of biomarkers in the blood, we hypothesized that molecular changes in
circulating cells are associated with the presence of IA in the cerebral vasculature. In a series
of studies [10–13], we performed transcriptome profiling on circulating blood constituents
and found distinct transcriptional signatures of the disease, which have broadly been
shown to reflect inflammatory cell activation, chemotaxis, and dysregulated inflammatory
responses. Most recently, we performed transcriptome profiling of whole blood RNA
from n = 34 patients with IA and n = 33 IA-free controls (confirmed on angiography) and
identified a panel of 18 genes that distinguished IA patients with an accuracy of 85% and
area under the receiver operating characteristic curve of 0.91 in an independent validation
cohort [14]. These findings led us to ask the question, “what is the source of dysregulated
gene expression in the blood of patients with IA?”.

To answer this question, we sought to determine if an interaction between blood cells
and the diseased aneurysmal tissue, via contact or through factors released into the blood,
could propagate gene expression changes in circulating cells [15]. To this end, we analyzed
expression of the 18 genes in blood collected intraluminally, from inside the IA sac, and
from circulating blood in the parent artery, proximal to the aneurysm. We also explored if
luminal or peripheral expression of the 18 genes was related to IA size (the preeminent
metric to assess aneurysm rupture risk [16]) and instability, as assessed by vessel wall
enhancement (VWE) on post-contrast magnetic resonance imaging (MRI). We hope these
findings can begin to shed light on the basis of dysregulated gene expression that has been
observed in the blood of patients with IA.

2. Methods
2.1. Study Participants

The study protocol was approved by the University of Iowa Institutional Review
Board (study number 201905780). Written informed consent was obtained from all subjects
prior to sample collection, and the study was carried out in accordance with the approved
protocol. Consecutive adult patients presenting to the Department of Neurosurgery at
the University of Iowa Hospitals and Clinics between October 2019 and January 2021
who underwent IA treatment via coiling or WEB device, and who received contrast-
enhanced MRI (as described elsewhere [17]), were prospectively enrolled in this study.
We excluded patients with previously-treated IAs and those taking corticosteroids or
immunosuppressant medications. Information about patient’s history and comorbidities
was also collected from electronic medical records.

2.2. Intra-Aneurysmal Blood Collection

The technique for intraluminal blood sampling has been previously described [15,18,19].
In brief, arterial blood samples were collected endovascularly via catheter during digital
subtraction angiography. One 10 mL blood sample was collected via guide catheter from
the ipsilateral parent artery proximal to the IA. Then, a 3 mL blood sample was collected
intraluminally, via a microcatheter positioned inside the IA sac prior to coil treatment. All
samples were collected into BD Vacutainer Glass Whole Blood Tubes (BD, Franklin Lakes,
NJ, USA) containing a 1.5 mL anticoagulant solution of trisodium citrate (22.0 g/L), citric
acid (8.0 g/L), and dextrose (24.5 g/L).

2.3. Sample Processing and RNA Extraction

After collection, blood samples were centrifuged to remove the plasma, and cellular
components were frozen at −80 ◦C until processing. Before RNA isolation, cells were
thawed, resuspended in Hank’s balanced salt solution (Thermo Fisher Scientific, Waltham,
MA, USA), and centrifuged. The interface layer containing leukocytes and erythrocytes
was isolated and erythrocytes were subsequently removed by washing with lysis buffer.
The leukocyte pellet was then disrupted in 0.2 mL of Trizol solution (Life Technologies,
Carlsbad, CA, USA) and disrupted by a pellet pestle (RPI), after which an additional 0.8 mL
was added. Total RNA was then extracted from Trizol, according to the manufacturer’s
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instructions, and trace DNA was removed via Ambion’s DNase Treatment Kit (Thermo
Fisher Scientific, Waltham, MA, USA). The purity and concentration of each sample were
assessed by measuring absorbance at 230 nm, 260 nm, and 280 nm on a NanoDrop 1000
(Thermo Fisher Scientific, Waltham, MA, USA).

2.4. Quantitative Polymerase Chain Reaction (qPCR) Analysis

The expression of the 18 previously-identified genes (ATF3, CBWD6, CCDC85B, CCR8,
CHMP4B, CLEC4F, CXCL10, FN1, MT2A, MZT2B, PCSK1N, PIM3, SLC37A3, ST6GALNAC1,
TCN2, TIFAB, TNFRSF4, and UFSP1) was assessed in all samples by qPCR. GAPDH was
used as the housekeeping gene and assayed in parallel. Gene-specific, oligonucleotide
primer sequences were based on data from OriGene Technologies (https://www.origene.
com/, accessed November 2020), with the exception of those for GAPDH, which was
designed in-house via Primer Designer v4.20 (Sci Ed Central, Cary, NC, USA). All primers
(IDT) had a melting temperature of ~60–64 ◦C, a length of 15–25 nucleotides, and produced
PCR products with lengths of 50–200 base pairs. The target specificity for each primer
pair was verified via Primer BLAST (National Center for Biotechnology Information)
and the replication efficiency of each pair was assessed as previously described. All
primers pairs were specific to their target and had sufficient efficiency (0.9–1.1) [20]. Primer
sequences, annealing temperatures, and product lengths are shown in Supplemental Table
S1. For reverse transcription, we used the AffinityScript QPCR cDNA Synthesis kit (Agilent
Technologies, Santa Clara, CA, USA) according to the manufacturer’s instructions.

Quantitative PCR was run with 10 ng of cDNA and 0.5 µM of each primer pair in
25 µL reactions on the Bio-Rad CFX machine (Bio-Rad, Hercules, CA, USA) using the
Brilliant II SYBR Green qPCR Master Mix (Agilent Technologies, Santa Clara, CA, USA),
according to the manufacturer’s instructions. The temperature profile consisted of an
initial step of 95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 30 s and 60 ◦C for 1 min.
This was followed by one cycle step for a dissociation curve, with 95 ◦C for 15 s, plus a
dissociation cycle with 95 ◦C for 15 s, 60 ◦C for 1 min, and 95 ◦C for 15 s. Gene-specific
amplification was confirmed by a single peak using the Bio-Rad dissociation melt curve.
Undetectable expression at cycle > 40 was given a Ct value of 41 for subsequent analysis.
GAPDH expression was used for normalization, and the relative expression levels were
calculated for each gene using the 2−∆∆Ct method.

2.5. Correlation with IA Size and Instability

We explored the relationship between expression and IA size, and expression and
aneurysmal VWE. Pearson correlation analysis was performed between intraluminal and
parent vessel gene expression; maximum IA size was quantified on 2D digital subtrac-
tion angiography. We also performed Pearson correlation analysis between transcripts
per million (TPM) normalized whole blood sequencing data of the 18 genes (from our
previous study, GSE159610, with n = 34 patients with unruptured IAs) [14]. For correlation
with VWE, enhancement was quantified by calculating CRstalk, a previously-described
parameter that is the maximal post-contrast MRI intensity in the IA wall, normalized to the
intensity of the pituitary stalk [17,21]. CRstalk has been previously demonstrated to be an
objective and validated metric of IA instability [17]. To quantify the degree of association
between gene expression and CRstalk, we again performed Pearson correlation analysis.

2.6. Statistical Analysis

To assess expression differences between two conditions (i.e., between blood in the IA
sac and in the proximal parent artery), we first evaluated distribution normality using the
Shapiro–Wilk test. Normally distributed expression levels were compared using a Student’s
t-test. Non-normally distributed data were compared using a Mann–Whitney U-test. Any
difference was considered statistically significant if p < 0.05. For correlation analyses,
Pearson correlation was assessed as previously described [22]. To measure the degree of
correlation, we assessed the Pearson correlation coefficient (PCC) and p-value from the
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Wald test. An absolute 1 ≥ PCC ≥ 0.80 represented “very strong” correlation, 0.79 ≥ |PCC|
≥ 0.60 represented “strong” correlation, 0.59 ≥ |PCC| ≥ 0.40 represented “moderate”
correlation, 0.39 ≥ |PCC| ≥ 0.20 represented “weak” correlation, and |PCC| < 0.19
represented “very weak” or no correlation [23].

3. Results
3.1. Study Participants

We analyzed blood samples from 31 patients who had 37 IAs (4 had multiple IAs). As
shown in Table 1, the average age of the study participants was 63.0 years. In all, 80.6% were
female, 61.3% were current smokers, 77.4% had hypertension, 45.2% had hyperlipidemia,
and 6.5% were diabetic. A total of 37 intraluminal blood RNA samples were compared
against 33 unique proximal parent vessel blood RNA samples, as three cases had multiple,
ipsilateral IAs that shared a parent artery. Table 2 shows additional information about
each IA. Isolated RNA was of high quality, with an average 260/280 = 1.9, an average
260/230 = 1.62, and an average concentration = 384.7 mg/µL. See Supplemental Table S2
for RNA quality and quantity data.

Table 1. Patient characteristics *.

Characteristic Value

Age (average years ± SD) 63.0 ± 11.7
Female gender (n/ntotal) 25/31 (80.6%)

Smoking (n/ntotal) 19/31 (61.3%)
Hypertension (n/ntotal) 24/31 (77.4%)

Hyperlipidemia (n/ntotal) 14/31 (45.2%)
Diabetes mellitus (n/ntotal) 2/31 (6.5%)

Patients with multiple IAs (n/ntotal) 4/31 (12.9%)
Total number of IAs (n/ntotal) 37/31

IA location (n/ntotal_IA)
ACA 1/37 (2.7%)

ACom 7/37 (18.9%)
BT 5/37 (13.5%)

ICA 14/37 (37.8%)
MCA 6/37 (16.2%)
PCom 2/37 (5.4%)
PICA 1/37 (2.7%)

VA 1/37 (2.7%)
* Abbreviations: ACA = anterior cerebral artery, ACom = anterior communicating artery, BT = basilar termi-
nus, IA = intracranial aneurysm, ICA = internal carotid artery, MCA = middle cerebral artery, n = number,
PCom = posterior communicating artery, PICA = posterior inferior cerebellar artery, SD = standard deviation,
VA = vertebral artery.

Table 2. Aneurysm characteristics *.

Pt. ID IA ID PV ID Location Max. D CRstalk

1 IA1 PV1 R MCA 7.8 0.58
2 IA2 PV2 R ICA (term.) 8.7 1.07
3 IA3 PV3 R ACA 4.0 0.52
4 IA4 PV4 BT 7.1 0.72
5 IA5 PV5/6 R ICA (paraop.) 6.5 0.58
5 IA6 PV5/6 R ICA (paraop.) 6.3 0.46
5 IA7 PV7 L ICA (Op.) 2.8 0.69
6 IA8 PV8 R ICA (term.) 3.1 0.52
7 IA9 PV9 ACom 5.8 0.39
8 IA10 PV10 L PCom 8.4 0.83
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Table 2. Cont.

Pt. ID IA ID PV ID Location Max. D CRstalk

9 IA11 PV11 L ICA (term.) 6.6 0.63
10 IA12 PV12 ACom 5.3 0.47
11 IA13 PV13 ACom 9.0 0.97
12 IA14 PV14 BT 3.3 0.32
13 IA15 PV15 ACom 3.2 0.61
14 IA16 PV16 R ICA 5.4 0.78
15 IA17 PV17 L ICA (op.) 3.7 0.59
16 IA18 PV18 L ICA (op.) 4.7 0.37
17 IA19 PV19/20 L ICA 9.1 0.66
17 IA20 PV19/20 L MCA 4.4 0.48
18 IA21 PV21 PICA 4.3 0.42
19 IA22 PV22 R MCA 5.5 0.33
20 IA23 PV23 R PCom 7.7 0.49
21 IA24 PV24 R ICA (paraop.) 3.0 0.62
22 IA25 PV25 ACom 2.8 0.43
23 IA26 PV26 ACom 8.7 0.60
24 IA27 PV27/28/29 R MCA 2.6 0.64
24 IA28 PV27/28/29 R MCA 3.0 0.44
24 IA29 PV27/28/29 R ICA 3.0 0.75
25 IA30 PV30 BT 12.1 1.10
26 IA31 PV31 BT 5.3 0.41
27 IA32 PV32 R MCA 6.6 0.72
28 IA33 PV33 ACom 4.5 0.29
29 IA34 PV34 BT 10.0 0.67
30 IA35 PV35 R ICA (paraop.) 4.2 0.83
31 IA36 PV36 R ICA (paraop.) 6.8 0.60
31 IA37 PV37 L. VA 6.3 1.04

* Abbreviations: ACA = anterior cerebral artery, ACom = anterior communicating artery, BT = basilar terminus,
D = diameter, IA = intracranial aneurysm, ICA = internal carotid artery, ID = identification number, L = left,
Max. = maximum, MCA = middle cerebral artery, n = number, op. = ophthalmic, paraop. = paraopthalmic,
PCom = posterior communicating artery, PICA = posterior inferior cerebellar artery, Pt. = patient, PV = parent
vessel, R = right, SD = standard deviation, term. = terminus, VA = vertebral artery.

3.2. Differential Expression in the IA Sac versus the Proximal Parent Vessel

To determine if aberrant gene expression was due, at least in part, to an interaction
between blood cells and the IA tissue, we tested expression of the 18 panel genes in in-
traluminal IA blood and in blood from the proximal parent vessel. Figure 1A shows
differential gene expression results from qPCR analysis. The mean expression levels of
CBWD6, MT2A, MZT2B, PIM3, SLC37A3, and TNFRSF4 were statistically significantly
higher in intraluminal blood, and the mean expression levels of ST6GALNAC1, TCN2, and
UFSP1 were statistically significantly lower in the intraluminal blood. All other genes,
most of which had lower expression in the IA sac, were not significantly differentially
expressed between blood in the IA sac and in the parent vessel (see Supplemental Table
S3 for fold-change and p-values of differential expression). Figure 1B–D demonstrates
significant Pearson correlations between intraluminal expression and expression in the
parent vessel. There was a significant, positive correlation between intraluminal and parent
vessel expression of CXCL10 (Pearson correlation coefficient (PCC) = 0.65, a strong correla-
tion), MT2A (PCC = 0.38, a weak correlation), and MZT2B (PCC = 0.35, a weak correlation),
suggesting local increase of these genes was reflected by an increase in the peripheral blood.
See Supplemental Table S4 for PCCs and p-values for this correlation analysis.
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Figure 1. Expression of 18 IA-associated genes in IA sac and proximal parent vessel. (A) A bar graph showing 2−∆∆Ct

expression levels of whole blood RNAs in the proximal parent vessel and the IA sac. All data are normalized to parent
vessel expression levels and error bars represent standard error. In all, six genes had significantly higher expression in
IA sac, while three genes had significantly lower expression in IA sac. (B–D) Pearson correlation analysis showed that
intraluminal expression was significantly positively correlated with expression in the parent vessel for CXCL10 (B), MT2A
(C), and MZT2B (D), as all had PCC > 0.3 (abbreviations: IA = intracranial aneurysm, PCC = Pearson correlation coefficient).

3.3. Correlation between IA Size and Intraluminal Gene Expression

Previously, we showed expression differences in circulating inflammatory cells, namely
neutrophils, were exaggerated in patients with larger IAs [10,11]. Pearson correlation anal-
ysis demonstrated that intraluminal expression of ST6GALNAC1 (PCC = 0.47, a moderate
correlation) and TIFAB (PCC = 0.35, a weak correlation) had a significant positive correla-
tion with IA size (Figure 2A,B). However, there were no significant correlations between
expression levels in the proximal parent artery and IA size. We found no overlap in
significant correlates in the gene expression data from our previous study. In our RNA
sequencing data, there were significant positive correlations between IA size and CHMP4B
(PCC = 0.45, a moderate correlation), MZT2B (PCC = 0.38, a weak correlation), PCSK1N
(PCC = 0.35, a weak correlation), and PIM3 (PCC = 0.35, a weak correlation). Interestingly,
the correlation trends (positive or negative) in our sequencing data were more similar to
that of the proximal parent vessel. This may be because both data were from peripheral
arterial blood. See Supplemental Table S5 for PCCs and p-values for all correlation analyses
with IA size.
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Figure 2. Pearson correlation analysis of whole blood gene expression and IA risk metrics. (A,B) In-
traluminal expression of ST6GALNAC1 (A) and TIFAB (B) was significantly positively correlated
with IA size. There was no correlation between proximal parent vessel blood gene expression and
IA size. (C,D) Intraluminal expression of CCDC85B (C) was significantly positively correlated with
aneurysmal VWE, as quantified by CRstalk (PCC > 0.3). There was also a positive correlation between
TIFAB (D) and CRstalk (PCC > 0.3), albeit the correlation was not significant. There was no correlation
between proximal parent vessel blood gene expression and aneurysmal wall enhancement (abbre-
viations: IA = intracranial aneurysm, NS = not significant, PCC = Pearson correlation coefficient,
VWE = vessel wall enhancement).

3.4. Correlation between Aneurysmal VWE and Intraluminal Gene Expression

Increased VWE of the IA has recently emerged as a metric for aneurysm instability
and risk [17] and has been found to be related to degeneration of the vascular tissue and
inflammation [24–26]. Therefore, we suspected that there may greater interaction of circu-
lating blood cells with the damaged aneurysm tissue or released cytokines/chemokines in
the lumen of enhancing IAs. As shown in Figure 2C, Pearson correlation analysis demon-
strated that intraluminal expression of only CCDC85B (PCC = 0.41, a moderate correlation)
had a significant positive correlation with IA VWE, as quantified by CRstalk (a metric of
maximal, normalized post-contrast MRI intensity), although TIFAB did have a PCC > 0.3
(Figure 2D). There was no correlation between proximal parent vessel blood expression
and aneurysmal VWE. See Supplemental Table S6 for PCCs and p-values for all correlation
analyses with CRstalk.

4. Discussion

In previous work, we identified a panel of 18 genes in circulating whole blood that
were significantly differentially expressed in patients with IAs compared with IA-free con-
trols [14]. Bioinformatics analyses indicated that critical inflammatory behaviors, namely
regulation by NF-κB (a key transcription factor in IA natural history [27,28]), were repre-
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sented by this combination of genes. However, the source of these aberrant gene expression
changes was unclear. Differential gene expression could be induced by contact with the
diseased IA tissue. The aneurysmal tissue (that can be lined with intraluminal thrombi or
atherosclerotic plaques) is characterized by escalating inflammatory responses and progres-
sive vascular degeneration [29–32], which is aided by elevated levels of proteinases and
reactive oxygen species [33–35]. Furthermore, the IA wall may locally release chemokines
and chemoattractant cytokines (such as IL-1, IL-8, and IL-17), which can peripherally
activate circulating immune cells in the blood [15]. Alternatively, aberrant gene expression
may be inherent, resulting from heritable genetic factors (something we have explored in
separate studies [36,37]), or could even be promulgated by combinations of risk factors
that are commonly associated with IA.

In this study, we sought to test if the expression of these 18 genes was related to
cellular contact with the IA wall, or with other factors released from the diseased aneurys-
mal tissue. This would provide a mechanistic link between the aneurysm disease and
observed circulating gene expression patterns. Therefore, we independently assessed if our
previously-identified gene panel was more highly or lowly expressed within the aneurysm
lumen. Our data demonstrated that half (9/18) of the IA-associated genes were signifi-
cantly differentially expressed in the blood from the IA lumen. We observed statistically
significant increases in CBWD6, MT2A, MZT2B, PIM3, SLC37A3, and TNFRSF4 expression
and statistically significant decreases in ST6GALNAC1, TCN2, and UFSP1 expression in the
IA lumen. These findings provide the first evidence of localized gene expression changes
in circulating blood cells within the sac of the aneurysm lesion.

In our previous study, these genes (with the exception of MT2A and TCN2) were
found to be upregulated in systemic whole blood in patients with IA compared with
IA-free controls. The current findings may thus indicate that local increases in CBWD6,
MZT2B, PIM3, SLC37A3, and TNFRSF4 could also be detectable in the peripheral blood.
Studies show that, after aneurysm genesis, the enlargement of the IA sac exposes the wall
to increasingly static flow and lower wall shear stress. We suspect that sluggish aneurysm
flow provides sufficient time for leukocyte interaction with the diseased IA wall and with
chemokines and chemoattractant cytokines secreted by mural cells. Chalouhi et al. [15]
found that plasma levels of MCP-1 [38], RANTES [39], MIG [40], Eotaxin [41], IL-8 [42],
and IL-17 [43] were increased in unruptured intracranial aneurysms. These proteins are
all activated by, or stimulate, the NF-kB pathway, which has been shown to regulate
inflammatory signaling in aneurysm pathogenesis [28,44].

We suspect that coordination of, and regulation by, canonical and non-canonical
NF-kB pathways may also be related to local increased expression of TNFRSF4, MT2A,
and PIM3 that we observed in our analysis [45]. Indeed, TNFRSF4, or OX40, encodes a
ligand receptor of the TNF superfamily that is typically expressed by T-cells 24–72 h after
activation [46–53]. This receptor has been shown to activate NF-kB via its interaction with
adaptor proteins TRAF2 and TRAF5 (non-canonical). On the other hand, MT2A helps
regulate NF-kB activity by modulating expression of IkB-a and has been shown to play a
role in transmitting inflammatory signals to the vascular endothelium [54,55]. PIM3, which
encodes a serine/threonine kinase, is one of several regulatory kinases that can be induced
by NF-kB, which functions upstream of IkB-a and can lead to further activation of NF-kB
itself (canonical) [56,57]. These findings suggest a complex cellular environment within
the lumen of unruptured IAs, in which inflammatory pathways, potentially activated by
MCP-1, RANTES, MIG, Eotaxin, IL-8, and IL-17, are regulated through NF-kB mediated
transcription and downstream signal transduction.

Our correlation analyses also implicated local inflammatory signaling through NF-kB
in leukocyte expression in larger and enhancing IAs. For example, ST6GALNAC1 ex-
pression in the IA sac was significantly positively correlated with IA size. ST6GALNAC1
encodes a sialyltransferase involved in protein glycosylation and is activated by CCL17
through the NF-kB pathway signaling [58–60]. TIFAB, which encodes a regulator of TRAF
proteins that transduce extracellular inflammatory signals that mediate the NF-kB pathway,
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was also positively correlated with aneurysm size (and with IA wall enhancement, albeit
not significantly) [61,62]. The only gene correlated with CRstalk was CCDC85B (intralu-
minal), which encodes coiled-coil domain protein that functions in several physiological
processes, such as regulation of signal transduction, gene expression, cell division, and
cell motility [63]. Based on this analysis, we suspect that expression of ST6GALNAC1,
TIFAB, and CCDC85B may also be a good candidate marker for identifying higher risk
IAs, as both size and aneurysm wall enhancement are associated with IA instability and
rupture. Interestingly, there was no correlation between IA size or VWE and proximal
parent vessel blood expression, suggesting that such a relationship may only be detectable
in close proximity to the aneurysmal lesion, at least for the genes we analyzed here.

This study has several limitations. First, it is a single-center study, which may have
introduced selection bias in our experimental design. However, it is intended to be an
external validation of the supposed source of gene expression differences identified in our
previous study, which was performed at another center. Second, it is unclear if the presence
of comorbidities and other confounding factors contributed to differential expression. We
believe that this is unlikely, as the study was internally controlled; whole blood expression
within each IA was compared to that within the IA’s respective proximal parent vessel.
Third, most of the significant correlations observed in this study were either weak or
moderate (with PCC < 0.60). Future studies in larger datasets could provide greater
statistical power in assessing correlation strength. Lastly, several of the differentially
expressed genes in this study were related to NF-kB, leading us to hypothesize a pivotal
role of this transcription factor in peripheral activating of circulating immune cells in IA.
However, experimental studies will be needed to test this hypothesis.

5. Conclusions

In this study, we demonstrated that nine genes of a previously-identified IA-associated
circulating blood gene panel are differentially expressed in the lumen of aneurysm lesions.
For the first time, this provides evidence for aneurysm tissue-mediated transcriptional
changes in peripheral blood cells. Based on our analysis, these changes appear to be
related to various facets of canonical and non-canonical NF-kB signaling. Furthermore, our
Pearson correlation analysis showed that some of genes (namely, ST6GALNAC1, TIFAB,
and CCDC85B) may be informative in assessing IA risk, as their intraluminal expression
was related to aneurysm size, IA wall enhancement, or both.

6. Patents

The 18 biomarker genes were included as part of a provisional patent filed in Septem-
ber 2020.
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