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Abstract: Children with fragile X syndrome (FXS) exhibit deficits in a variety of cognitive processes
within the executive function domain. As working memory (WM) is known to support a wide range
of cognitive, learning and adaptive functions, WM computer-based training programs have the
potential to benefit people with FXS and other forms of intellectual and developmental disability
(IDD). However, research on the effectiveness of WM training has been mixed. The current study
is a follow-up “deep dive” into the data collected during a randomized controlled trial of Cogmed
(Stockholm, Sweden) WM training in children with FXS. Analyses characterized the training data,
identified training quality metrics, and identified subgroups of participants with similar training
patterns. Child, parent, home environment and training quality metrics were explored in relation
to the clinical outcomes during the WM training intervention. Baseline cognitive level and training
behavior metrics were linked to gains in WM performance-based assessments and also to reductions in
inattention and other behaviors related to executive functioning during the intervention. The results
also support a recommendation that future cognitive intervention trials with individuals with IDD
such as FXS include additional screening of participants to determine not only baseline feasibility, but
also capacity for training progress over a short period prior to inclusion and randomization. This
practice may also better identify individuals with IDD who are more likely to benefit from cognitive
training in clinical and educational settings.

Keywords: FMRP; FMR1 gene; intellectual disability; treatment; working memory; fragile X syndrome;
cognitive training

1. Introduction

Fragile X syndrome (FXS) is a genetic condition associated with the full mutation of the fragile X
mental retardation 1 (FMR1) gene. FXS occurs in an estimated 1 of every 4000 to 11,000 live births
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and is the most common inherited cause of intellectual disability [1]. Males tend to be more severely
affected, with over 90% of males but only 30–50% of females with the full mutation having IQ scores
in the intellectually disabled range (IQ < 70; [2]). Extensive research using both neuropsychological
testing and functional magnetic resonance imaging (fMRI) studies has demonstrated the significant
deficits in executive function (EF) associated with the condition. These deficits include problems
with working memory (WM), inhibitory control, cognitive flexibility/perseveration and selective and
divided attention [3–6]. While there has been extensive preclinical research and human clinical trials
focused on potential disease-modifying pharmacological treatment, primarily focused on improving
behavior, mood and anxiety, there has been limited research targeting cognitive function in FXS.

Cogmed is a computer-based WM training program that has been the subject of over 80
peer-reviewed publications. Randomized, double-blind, placebo-controlled studies have documented
that Cogmed and other WM training procedures may improve WM and academic achievement, reduce
symptoms in children with ADHD, increase auditory attention and WM in preschool children, and
improve inattention in daily life [7–10]. While some research has supported these claims, the benefit
of WM training programs remains controversial with other researchers arguing that improvements
in training are not generalizable beyond the trained tasks [8]. However, as children with FXS have
specifically demonstrated WM deficits, this cognitive intervention was seen to have the potential to
ameliorate some of the EF problems in this population.

After a small noncontrolled trial demonstrated feasibility of Cogmed for children with FXS [11],
we conducted a randomized controlled trial (RCT) of Cogmed training in 100 children and adolescents
with FXS, and targeted WM, EF and behaviors associated with EF (attention, hyperactivity/impulsivity)
as outcomes of interest [12]. Participants were randomized 1:1 to either the standard Cogmed program
that adapts difficulty (memory span) according to performance (adaptive condition) or a control
condition utilizing an identical version of Cogmed that does not adapt to performance, with each trial
fixed at 2-span items (nonadaptive condition). Within adaptive and nonadaptive versions, participants
received either Cogmed JM (generally for younger and/or lower functioning participants) or Cogmed
RM (for older and/or higher functioning participants). Participants completed 5–6 weeks of training,
totaling 20–25 (mean = 24.2) days at home supported by a parent training aide and supportive coaching
by phone. At the group level, children with FXS in the adaptive condition were able to progress by
gradually, though modestly, expanding their memory span while using the Cogmed games. However,
considerable variability was observed across participants. Nonadaptive training was selected as the
comparison condition, rather than a wait-list or treatment-as-usual condition, in order to control for
potentially beneficial factors such as parent and coach input and attention to the child, expectation of
treatment benefits and placebo response, and any general effects that may be associated with engaging
in a computer task or game. The primary result of the trial showed that both the adaptive and the
nonadaptive groups improved WM after the Cogmed training, but there was no difference in degree
of improvement between groups. The intervention was feasible, and the full sample demonstrated
significant improvements in WM and EF objective measures, as well as parent- and teacher-reported
attention and EF. For full results, see [12]. One explanation for the gains in both groups and the lack of
separation between adaptive and nonadaptive control conditions may be that a substantial number of
children with FXS experience the nonadaptive condition as quite challenging and potentially beneficial.
However, factors other than the training itself may have contributed to gains in both groups such as
placebo or practice effects. Given the results of this study, with both groups experiencing improvement,
we determined to conduct further analyses in an exploratory “deep dive” of this rich data set to better
understand what factors were associated with improvements.

Cogmed is a well-researched cognitive training program. However, most studies have attempted
to understand the significance of clinical outcomes by contrasting experimental groups [13,14]. Only
a few studies have examined individual variability or any subcomponents of the training itself,
and those have focused on the different types of games within the Cogmed program [15,16], with
interest in identifying the specific aspects of WM that are targeted (e.g., verbal vs. visual spatial
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aspects). Only one study examined predictors of WM training in individuals with IDD [17]; this study
showed that females and participants with an IDD but no additional diagnosis, on average, had more
progress during training. Additional studies have evaluated other computerized cognitive training
programs, such as Lumosity, but these have mainly evaluated patterns of performance by age [18,19].
To our knowledge, no published studies in any population have attempted to link training behavior
parameters to outcomes, and no published study has examined potential effects of variation in the
training environment on outcomes.

The current study used the detailed training behavior data from the FXS Cogmed RCT [12] and
had three primary aims: (1) to characterize the training data, identify training quality metrics, and
identify subgroups of participants with similar training patterns; (2) to identify predictors of training
efficacy; and (3) to determine which child, training behavior, or home/environmental factors were
associated with clinical outcomes during the Cogmed intervention.

2. Materials and Methods

2.1. Participants

Participants were 98 children with FXS that participated in the RCT of Cogmed; 2 of the original
100 participants were missing the detailed training data. Participants were between the ages of 8 and
18 years, with an average IQ of 64. They were 63% male, all with normal or corrected to normal
vision and hearing and residing in various locations throughout the U.S. and Canada. For all relevant
information on participants, see the original study 12].

2.2. Measures

The same primary and secondary outcomes from the original FXS Cogmed trial were used as the
clinical outcomes of interest in the present study. These consisted of the Leiter-Revised [20] Spatial
Memory subtest, the Stanford Binet 5 (SB-5; [21]) Block Span subtest; the Wechsler Intelligence Scale
for Children, Fourth Edition (WISC-IV; [22]) Digit Span subtest; and the parent versions of the Conners
Third Edition (Conners 3; [23]) and the Behavior Rating of Executive Function (BRIEF; [24]). The
WM composite, comprised of the Spatial Memory and Block Span subtests, was the trial’s primary
outcome measure. Teacher-reported behavior from the Conners and BRIEF and the Kiddie Test of
Attentional Performance (KiTAP; [25]) were collected in the trial but not included in the present study
due to insufficient sample size and limited power (only approximately 50% of the participants had
teacher ratings).

In addition to the demographic, primary outcome, and secondary outcome measures reported in
the original study, the following measures not previously reported were collected during the visits
to further explore factors related to training success and clinical outcomes. The Home Observation
for Measurement of Environment or HOME Inventory is an instrument designed to provide a
systematic measurement of the family environment. The disability adapted Middle Childhood HOME
Developmental Delay [26] was administered at the baseline assessment and consists of 59 questions
generated from examiner observation and parent interview. The HOME Inventory covers the following
domains: Responsivity, Encouragement of Maturity, Emotional Climate, Learning Materials and
Opportunities, Enrichment, Family Companionship, Family Integration, and Physical Environment.
The total score was used in the present study. The Symptom Checklist-90-Revised (SCL-90-R [27])
is a standardized self-report measure of psychological symptoms and was completed by the parent
acting as a training aide as a self-report of parental mental health. Ninety questions are clustered into
the following symptom dimensions: somatization, obsessive-compulsive, interpersonal sensitivity,
depression, anxiety, hostility, phobic anxiety, paranoid ideation, and psychoticism. We examined the
Global Severity and Depression scores for this study. The Parenting Stress Index-4 (PSI-4 [28]), also
completed by the parent training aide, measures stress in the parent–child system based on parent’s
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perceptions of child characteristics, personal characteristics, and interactions between the child and
parent. We focused on the parental distress and dysfunctional parent–child interaction scores.

To characterize training quality, the detailed Cogmed data from the 5–6 week training period for
each participant were obtained from Cogmed. These data include summaries for each game at the
level of each training day and trial-by-trial performance for each game played on each day.

2.3. Statistical Analyses

The first aim of the present study was focused on characterizing the training data and identifying
clusters of participants with similar training behavior patterns. Four metrics were explored:
(1) maximum trial difficulty achieved for each game, each day (adaptive group only, as the nonadaptive
group had a fixed level); (2) response time on each trial for each game for each day of play; (3) standard
deviation of response time for each game for each day of play (response time variability; see [29]); and
(4) percentage of correct trials for each game for each day of play (accuracy). Trials for a particular
game in which the response time was either negative (indicating a response before the end of the
trial presentation) or greater than the 99th percentile (extreme delay in response; ranging from 3
seconds (s) to over 200 s) across all days the game was played by participants were considered invalid
trials and removed from analyses, including computation of the standard deviation of response time.
A sensitivity analysis was conducted removing trials with times greater than the 90th percentile and
results were similar. Repeated-measures, random-effects models were used to assess general patterns
over time and whether differences existed in those patterns between the adaptive and nonadaptive
training groups. The standard deviation of response time was transformed using the natural logarithm
prior to analysis to meet the assumptions of the models [30,31]. Time, in days since the first day of
training, was used as the time scale for all models. Trial-level outcomes further included trial number
as a factor. Models included random intercepts and slopes to account for variability in starting place
and change over time not explained by the fixed effects.

Semiparametric mixture models were fit to the repeated measures at either the daily game level or
the trial-by-trial level to identify clusters of training patterns for each outcome, separately for each
game and for each training group [32]. Separate models were fit for the first three weeks of training
(early training period) and the last three weeks of training (late training period), especially for trial-level
data, due to software limitations. Bayesian information criterion (BIC) was used to select models and
identify the number of subgroups present in the data; models with two, three, or four subgroups were
considered. From the best models for each game, the likely subgroup for each participant for that game
was also determined. Graphical illustrations for the subgroups suggested similar training patterns
across games. Therefore, a single subgroup classification was assigned per participant as the most
common identified subgroup across games.

For each of the four training metrics, trial difficulty level (adaptive group only), response
time, standard deviation of response time, and accuracy training behavior/patterns were identified.
Individuals that fell into one behavior group based on a training metric did not necessarily fall into
the same group for another training metric, so individual participants were not classified into the
same training behavior group across all training metrics. Instead, each training metric was evaluated
separately to assess differences on child, parent/training aid and home characteristics using two sample
t tests.

The last aim of this study was to determine which child, training, or home environment factors
related to clinical outcomes (improvements in scores) reported in the trial. For demographic, parent,
and home environment predictors, Time 2 (post-training) assessment was used as the outcome, with
the Time 1 (pre-training) assessment as a covariate in an analysis of covariance (ANCOVA) model.
Models further included total training time and treatment condition (nonadaptive vs. adaptive) as
covariates. Separate models were run using each demographic, parent, and home environment factor
as a predictor; interactions between the predictor and treatment condition were also considered. Similar
models were fit to assess whether there were differences in clinical outcomes by training behavior
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groups. Secondary analyses considered training groups as predictors of clinical outcomes in each
treatment condition separately.

3. Results

3.1. Training Metrics: Cogmed Adaptive and Nonadaptive Groups

Accuracy was lower in the adaptive group than the nonadaptive group in RM games but not
significantly different in JM games at the first day of play, with the nonadaptive group increasing over
time and the adaptive group remaining stable across training days (Table 1). Over most games, as
expected, trial difficulty (adaptive group only) increased over time (Table 2). There were no differences
between groups or changes with time in the standard deviation in response time (data not shown). For
the trial-level data, the average response time decreased across the training days for most games (data
not shown). Rate of decrease in response time did not differ by group (adaptive vs. nonadaptive).

Table 1. Change over time in maximum number of trial sequences recalled correctly by game.

Game Version Adaptive Time Adaptive X Time

9 rotating dots RM −4.85 (1.05); −4.6 (34) 0.24 (0.03); 8.21 (34) −0.22 (0.04); −5.5 (34)

14 asteroids RM −9.86 (1.26); −7.8 (34) 0.05 (0.05); 1.06 (34) −0.13 (0.07); −1.93 (34)

17 space whack RM −2.78 (1.56); −1.78 (34) 0.05 (0.03); 1.48 (33) −0.11 (0.05); −2.41 (33)

29 visual data link RM −4.94 (0.95); −5.2 (34) 0.21 (0.03); 7.94 (34) −0.22 (0.04); −5.94 (34)

30 data room RM −5.50 (0.82); −6.7 (34) 0.23 (0.03); 8.59 (34) −0.22 (0.04); −5.9 (34)

31 input module RM −5.69 (0.90); −6.33 (34) 0.22 (0.02); 8.73 (34) −0.22 (0.04); −6.0 (34)

32 input module w/lid RM −5.2 (1.0); −5.38 (34) 0.21 (0.02); 8.67 (34) −0.19 (0.03); −5.69 (34)

33 rotating data link RM −3.41 (1.38); −2.47 (34) 0.26 (0.03); 9.55 (34) −0.25 (0.04); −6.43 (34)

47 decoder RM −4.08 (0.38); −10.84 (34) 0.68 (0.10); 7.04 (34) −0.80 (0.14); −5.85 (34)

53 sorter RM −8.25 (1.09); −7.6 (34) 0.19 (0.04); 5.14 (34) −0.23 (0.05); −4.55 (34)

54 stabilizer RM −3.11 (0.99); −3.14 (20) 0.24 (0.06); 4.23 (19) −0.23 (0.08); −2.86 (19)

58 3D cube RM −8.91 (1.28); −6.97 (34) 0.09 (0.05); 1.73 (34) −0.15 (0.07); −2.19 (34)

85 animals JM 0.27 (0.83); 0.33 (58) 0.10 (0.03); 3.67(58) −0.17 (0.04); −4.26 (58)

86 bumper cars JM 1.26 (0.81); 1.55 (58) 0.12 (0.03); 4.57 (58) −0.16 (0.04); −4.27 (58)

87 ferris wheel JM 1.03 (0.81); 1.27 (58) 0.15 (0.03); 5.75 (58) −0.17 (0.04); −4.63 (58)

88 twister JM 0.30 (0.84); 0.36 (58) 0.11 (0.03); 3.91 (58) −0.14 (0.04); −3.37 (58)

89 rollercoaster JM 0.61 (0.88); 0.69 (58) 0.10 (0.03); 3.35 (58) −0.15 (0.04); −3.51 (58)

90 hotel JM 0.29 (0.91); 0.32 (58) 0.08 (0.03); 2.58 (58) −0.17 (0.04); −4.11 (58)

91 pool JM 0.83 (0.98); 0.84 (58) 0.09 (0.03); 3.41 (58) −0.20 (0.04); −5.07 (58)

β (SE); t(df) presented for each term in the model. The Adaptive column contains the average difference in the
maximum number of trial sequences recalled correctly between the adaptive group and the nonadaptive group
on the 1st day of training. The Time column contains the average change per day in the nonadaptive group. The
Adaptive X Time column contains the average difference in change per day between the adaptive group and the
nonadaptive group. Bolded values have p < 0.05.

3.2. Training Patterns

The optimal number of subgroups was identified using BIC based on data from the training
period. Most games and outcomes suggested two subgroups, suggesting a two-cluster solution was
appropriate. For examples of identified subgroups for a Game 9 in the adaptive group, see Figure 1;
patterns were similar for other games as well as for the nonadaptive group. The first two plots,
with trial difficulty on the y axis (within the adaptive group only), showed one group that had an
essentially flat profile during both the early and late training periods (blue curve, no improvement) and
another group that increased trial-level difficulty during the early training period and then stabilized
or showed minimal decreases during the later training period (Figure 1). For response time (y axis),
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both groups had a slight decline in the early period and became more stable in the late training periods,
but one subgroup (in blue) tended to have faster responses than the other subgroup (red). For response
time variability, one group had smaller standard deviations (blue) than the other (red) in the early
training period, where smaller standard deviation indicated more consistent response times across
trials. In the later training period, the group with less variability initially (blue) increased over time,
while the second group (red) showed a decline in response variability. One group (red) had much
higher accuracy than the other group (blue) across the entire training period. Because patterns in the
early and late periods generally reflected positive training behaviors (e.g., faster response time, lower
variability in response time, better accuracy, and higher difficulty) and less positive training behaviors,
we categorized individuals according to whether they remained in the “positive training behavior”
group during both training periods or not for future analyses.

Table 2. Change over time in maximum level achieved by game (adaptive group only).

Game Version Time: β (SE); t(df) * p-Value

9 rotating dots RM 0.02 (0.005); 3.51 (17) 0.003

14 asteroids RM 0.009 (0.009); 1.02 (17) 0.32

17 space whack RM 0.05 (0.02); 2.45 (15) 0.03

29 visual data link RM 0.02 (0.005); 2.97 (17) 0.009

30 data room RM 0.02 (0.004); 4.99 (17) <0.001

31 input module RM 0.02 (0.004); 6.09 (17) <0.001

32 input module w/lid RM 0.01 (0.007); 2.23 (17) 0.04

33 rotating data link RM 0.02 (0.008); 3.11 (17) 0.006

47 decoder RM 0.003 (0.03); 0.11 (17) 0.91

53 sorter RM 0.02 (0.006); 2.59 (17) 0.02

54 stabilizer RM 0.03 (0.02); 1.76 (9) 0.11

58 3D cube RM 0.02 (0.007); 2.38 (17) 0.03

85 animals JM 0.01 (0.003); 3.81(29) <0.001

86 bumper cars JM 0.02 (0.004); 5.17 (29) <0.001

87 ferris wheel JM 0.02 (0.004); 4.74 (29) <0.001

88 twister JM 0.02 (0.003); 6.09 (29) <0.001

89 rollercoaster JM 0.02 (0.003); 4.96 (29) <0.001

90 hotel JM 0.01 (0.004); 3.23 (29) 0.003

91 pool JM 0.01 (0.004); 3.56 (29) 0.001

* β (SE); t(df) presented for each term in the model. The Time column contains the average change per day. Bolded
values have p < 0.05.

3.3. Demographics and Family Characteristics

For the trial difficulty metric, defined only for the adaptive group, those in the greater difficulty
group (n = 14) had significantly higher IQ [mean of 74.3 (standard deviation (SD) = 20.9) vs. mean of
61.1 (SD = 15.2); p = 0.02] and higher mental age [mean of 9.6 (SD = 5.5) vs. mean of 6.5 (SD = 2.7);
p = 0.01] than the rest of the adaptive group (n = 34). For the groups defined by the response time,
including both those in the adaptive and nonadaptive groups, the faster response times group (n = 43)
had parents with lower total stress raw scores from the PSI [mean of 80.6 (SD = 17.0) vs. mean of 91.1
(SD = 23.9); p = 0.02] and lower dysfunctional parent–child interaction scores from the PSI [mean of
25.9 (SD = 5.0) vs. mean of 29.8 (SD = 8.1); p = 0.006] than the remaining participants (n = 49). Finally,
the low standard deviation response time group (n = 36) had higher mental age (mean = 8.1(SD =

3.8) vs. mean = 6.7 (SD = 0.34); p = 0.03) than remaining participants (n = 55). Those in the higher
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accuracy group (n = 70) had higher IQ [mean of 68.5 (SD = 17.9) vs. mean of 56.1 (SD = 8.0); p = 0.001]
and mental age [mean of 7.7 (SD = 3.4) vs. mean of 6.0 (SD = 1.3); p = 0.02], but lower total stress raw
scores from the PSI [mean of 83.4 (SD = 20.7) vs. mean of 96.2 (SD = 22.7); p = 0.01] than remaining
participants (n = 24). No other parent or child variables were significantly related to outcome variables.
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Figure 1. A panel of plots illustrating the underlying latent training groups identified for the different
training metrics for Game 9 as exemplar in the adaptive group. Each plot contains the average at each
time point (symbols) as well as the smoothed trajectory for the identified group (dashed line). Trial
difficulty (solid squares), response time (solid triangles), and response time variability (solid circles) in
the early (first 3 weeks) and late (after day 21) training periods are shown.

3.4. Predictors of Clinical Outcomes

For the WM composite (Leiter Spatial Span and Block Span) and Digit Span, there were no
interactions between child, parent, or home environment variables and treatment condition, so results
are presented for models containing no interaction. Higher baseline IQ was associated with greater
gains in each of these outcome measures during the training period (p < 0.02). Higher mental age was
also associated with greater gains on the outcomes (p < 0.01), except for Block Span which approached
significance (p = 0.06). There were no significant predictors of change on the Parent BRIEF WM or
Global Executive Composite (GEC) or the Connors scores. No other child, parent or home environment
variables were significantly related to gains in outcome measures. See Table 3 for full results.
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Table 3. Child, parent, or home environment as predictors of clinical outcomes.

WM Composite Digit Span BRIEF GEC BRIEF WM Conners Hyperactivity Conners Inattention

Parent 1 *: Less than College 0.34 (0.97); 0.35 (92) −0.15 (0.43); −0.34 (91) 2.20 (3.21); 0.69 (81) 0.33 (0.61); 0.54 (89) −0.50 (1.31); −0.39 (87) 0.52 (0.99); 0.53 (87)

Parent 2 *: Less than College 0.24 (1.00); 0.24 (87) 0.13 (0.45); 0.28 (86) 5.00 (3.17); 1.58 (78) 1.33 (0.59); 2.25 (86) 1.62 (1.29); 1.26 (85) 0.87 (0.97); 0.90 (85)

Household Income *:
<$50K 2.11 (1.44); 1.46 (89) 0.65 (0.65); 1.01 (88) 3.88 (4.29); 0.90 (78) 0.86 (0.86); 1.01 (86) −0.97 (1.98); −0.49 (84) 0.24 (1.44); 0.17 (84)

Household Income *: $50–100K 0.08 (1.08); 0.08 (89) 0.20 (0.49); 0.42 (88) 7.40 (3.41); 2.17 (78) 1.19 (0.66); 1.82 (86) −0.78 (1.44); −0.54 (84) 0.44 (1.07); 0.41 (84)

Household Income *: Prefer Not to Say 1.88 (1.67); 1.13 (89) 0.69 (0.74); 0.92 (88) 6.26 (5.83); 1.07 (78) 0.89 (0.99); 0.90 (86) 0.48 (2.15); 0.22 (84) 2.34 (1.61); 1.46 (84)

Child Age 0.17 (0.15); 1.12 (93) 0.11 (0.07); 1.69 (92) −0.46 (0.57); −0.81 (82) −0.07 (0.10); −0.68 (90) 0.30 (0.22); 1.36 (88) −0.01 (0.16); −0.08 (88)

Child IQ 0.10 (0.03); 2.74 (91) 0.05 (0.02); 2.78 (91) −0.13 (0.11); −1.19 (80) −0.01 (0.02); −0.65 (88) −0.06 (0.04); −1.38 (87) −0.06 (0.03); −1.92 (87)

Mental Age 0.57 (0.19); 3.06 (90) 0.45 (0.08); 5.42 (90) −0.61 (0.63); −0.98 (79) −0.01 (0.11); −0.11 (87) −0.09 (0.25); −0.38 (86) −0.22 (0.18); −1.28 (86)

Parent Total Stress −0.007 (0.02); −0.33 (90) −0.01 (0.009); −1.58 (89) 0.09 (0.09); 1.05 (81) 0.01 (0.01); 0.81 (88) −0.02 (0.03); −0.64 (86) 0.01 (0.02); 0.52 (86)

Parent Distress −0.008 (0.05); −0.15 (90) −0.02 (0.02); −0.72 (89) 0.25 (0.18); 1.35 (81) 0.04 (0.03); 1.27 (88) 0.02 (0.07); 0.24 (86) 0.02 (0.05); 0.44 (86)

Dysfunctional Parent–Child
Interaction −0.002 (0.07); −0.03 (90) −0.04 (0.03); −1.44 (89) 0.14 (0.26); 0.54 (81) 0.02 (0.04); 0.42 (88) −0.10 (0.09); −1.09 (86) 0.02 (0.07); 0.24 (86)

SCL-90-R Global Severity −0.18 (1.19); −0.15 (85) 0.56 (0.52); 1.08 (84) 2.55 (3.83); 0.67 (75) 0.10 (0.75); 0.14 (83) −0.75 (1.57); −0.48 (81) −0.87 (1.15); −0.76 (81)

SCL-90-R Depression −0.19 (0.74); −0.26 (85) 0.22 (0.32); 0.69 (84) 1.43 (2.34); 0.61 (75) 0.24 (0.46); 0.51 (83) −0.63 (0.97); −0.65 (81) −0.67 (0.71); −0.95 (81)

HOME Total Score −0.06 (0.06); −1.01 (77) 0.06 (0.03); 1.65 (76) −0.13 (0.24); −0.53 (68) −0.03 (0.05); −0.72 (76) −0.08 (0.09); −0.89 (74) −0.04 (0.07); −0.55 (74)

* Reference levels: Parent 1 education and Parent 2 education: college or higher; household income: >$100K. ANCOVA models included Time 1 outcome score, training type group, and
total training time as independent variables predicting the Time 2 outcome score. Presented results are β(SE); t (df). Bolded values have p < 0.05. GEC—Global Executive Composite;
WM—Working Memory; SCL-90-R—Symptom Checklist-90-Revised; HOME—Home Observation for Measurement of Environment; BRIEF—Behavior Rating of Executive Function.
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In the total sample (see Table 4), those with consistently faster response times had larger increases in
Digit Span scores during the intervention (1 point greater), on average, than the remaining participants
(β = 1.0; SE = 0.4; p = 0.02); this difference was significant after adjusting for IQ (β = 0.9; SE = 0.4; p =

0.03) but not after adjusting for mental age (β = 0.6; SE = 0.4; p = 0.1). Conners Inattention (β = −2.1;
SE = 0.9; p = 0.03) scores decreased more in the faster responding group compared to other participants
and remained significant after adjusting for IQ (raw: β = −2.1; SE = 0.9; p = 0.03; T: β = −3.9; SE = 1.9;
p = 0.04) or mental age (raw: β = −2.1; SE = 1.0; p = 0.03; T: β = −3.8; SE = 1.9; p = 0.048). In the total
sample, those in the low standard deviation in response time (those with consistently lower standard
deviations) had WM gains that were 2.0 points higher, on average, than remaining participants (β = 2.0;
SE = 1.0; p = 0.04), but not after accounting for IQ (β = 1.6; SE = 1.0; p = 0.1) or mental age (β = 1.4; SE
= 1.0; p = 0.2). However, BRIEF GEC scores declined more in this lower standard deviation group (β =

−6.7; SE = 3.0; p = 0.03) compared to the others, and remained significant after accounting for IQ (β =

−6.8; SE = 3.2; p = 0.04) or mental age (β = −6.9; SE = 3.2; p = 0.04). There were no differences in gains
in any of the clinical outcomes between the higher accuracy group and the remaining participants.
Table 4 contains full results.

Table 4. Training pattern groups as predictors of clinical outcomes (full sample).

WM Composite Digit Span BRIEF GEC BRIEF WM Conners
Hyperactivity

Conners
Inattention

Response time 1.81 (0.97); 1.87
(88)

§ 0.99 (0.42);
2.34 (87)

−4.14 (3.11);
−1.33 (79)

−0.01 (0.60);
−0.02 (87)

−0.14 (1.33);
−0.10 (84)

§ −2.12 (0.94);
−2.26 (84)

Std dev
response time

2.04 (0.96); 2.12
(88)

0.86 (0.46);
1.88 (87)

−6.66 (3.01);
−2.21 (79)

−0.61 (0.60);
−1.01 (87)

−1.42 (1.32);
−1.07 (84)

−0.04 (0.98);
−0.05 (84)

Accuracy 1.14 (1.16); 0.98
(89)

0.13 (0.53);
0.24 (88)

−3.56 (3.59);
−0.99 (79)

−0.44 (0.70);
−0.62 (87)

−1.90 (1.49);
−1.28 (85)

−1.64 (1.10);
−1.49 (85)

ANCOVA models included Time 1 outcome score, training type group (except for trial difficulty), and total training
time as independent variables predicting the Time 2 outcome score. Presented results are β(SE); t (df), corresponding
to the “positive training behavior” group compared to the “not positive training behavior group”. Bolded values
have p < 0.05. § significant after adjustment for FSIQ.

Follow-up identical analyses were conducted for adaptive and nonadaptive groups separately.
These results revealed that the links between training behavior and outcomes were predominantly
driven by significant associations in the adaptive, but not the nonadaptive group (see Tables 5 and 6).
For example, in the adaptive group only, the group defined by higher trial difficulty (those who showed
progress in difficulty level over time with increasing span lengths) had WM composite score gains
that were 3.9 points higher, on average, than the rest of the adaptive group (β = 3.9; SE = 1.6; p = 0.02;
Table 6); this difference remained significant after accounting for IQ (3.5 points higher; SE = 1.6, p =

0.03) and mental age (3.1 points higher, SE = 1.6, p = 0.05).

Table 5. Training pattern groups as predictors of clinical outcomes in the nonadaptive group only.

WM Composite Digit Span BRIEF GEC BRIEF WM Conners
Hyperactivity

Conners
Inattention

Response time 1.38 (1.26); 1.10
(42)

0.75 (0.64);
1.17 (41)

−0.93 (5.51);
−0.17 (38)

0.79 (0.94);
0.84 (40)

1.33 (2.59); 0.51
(37)

−1.13 (1.71);
−0.66 (37)

Std dev
response time

1.22 (1.26); 0.97
(42)

0.04 (0.68);
0.05 (41)

−9.42 (4.91);
−1.92 (38)

−1.16 (0.91);
−1.26 (40)

−2.01 (2.21);
−0.91 (37)

0.23 (1.58); 0.14
(37)

Accuracy 1.99 (1.27); 1.56
(43)

0.26 (0.70);
0.37 (42)

−6.51 (4.97);
−1.31 (38)

−0.95 (0.91);
−1.05 (40)

−3.05 (2.14);
−1.43 (38)

§ −3.21 (1.39);
−2.31 (38)

ANCOVA models included Time 1 outcome score, training type group (except for trial difficulty), and total training
time as independent variables predicting the Time 2 outcome score. Presented results are β(SE); t (df), corresponding
to the “positive training behavior” group compared to the “not positive training behavior group”. Bolded values
have p < 0.05. § significant after adjustment for FSIQ.
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Table 6. Training pattern groups as predictors of clinical outcomes in the adaptive group only.

WM Composite Digit Span BRIEF GEC BRIEF WM Conners
Hyperactivity

Conners
Inattention

Trial difficulty § 3.92 (1.59);
2.47 (43)

0.44 (0.66);
0.66 (43)

−3.01 (3.99);
−0.76 (38)

0.58 (0.89);
0.65 (44)

0.57 (1.67); 0.34
(44)

0.29 (1.35); 0.22
(44)

Response time 2.45 (1.51); 1.62
(43)

1.45 (0.56);
2.59 (43)

§ −8.29
(3.37); −2.46

(38)

−0.78 (0.79);
−0.99 (44)

−1.80 (1.46);
−1.24 (44)

§ −2.99 (1.13);
−2.6 (44)

Std dev
response time

3.21 (1.51); 2.13
(43)

§ 1.70 (0.60)
2.81 (43)

−4.26 (3.82);
−1.11 (38)

0.07 (0.85);
0.08 (44)

−0.46 (1.66);
−0.28 (44)

0.16 (1.30); 0.13
(44)

Accuracy −0.32 (2.27);
−0.14 (43)

0.37 (0.87);
0.43 (43)

3.61 (5.46);
0.66 (38)

0.77 (1.17);
0.66 (44)

−0.38 (2.16);
−0.18 (44)

1.51 (1.79); 0.84
(44)

ANCOVA models included Time 1 outcome score, training type group (except for trial difficulty), and total training
time as independent variables predicting the Time 2 outcome score. Presented results are β(SE); t (df), corresponding
to the “positive training behavior group” compared to the “not positive training behavior group”. Bolded values
have p < 0.05. § significant after adjustment for FSIQ.

4. Discussion

Whether computer-based cognitive training contributes to meaningful improvements in child
functioning and quality of life remains a topic of considerable debate. Children with FXS are especially
impacted by their cognitive deficits but have access to very few validated treatments, making the search
for effective interventions to alleviate disability especially critical. Furthermore, a growing number of
putative targeted pharmacological treatments for the disorder that might normalize brain function
could be paired with structured cognitive therapy paradigms to examine whether these medications
accelerate learning and cognitive growth. Our previously published study of the efficacy of WM
training for children and adolescents with FXS, the first controlled trial of a cognitive intervention for
the disorder, found that participants in both the adaptive and nonadaptive conditions demonstrated
WM improvements on clinical assessment. Specifically, children in the nonadaptive condition, those
who completed an identical intervention that did not adapt in difficulty according to performance,
demonstrated gains and clinical improvement during the course of the trial that was similar to the
adaptive group. This raised questions as to whether both interventions benefitted participants, or
whether other factors may have explained improvements in the children. In the present study, we
revealed numerous details regarding variability in the training behavior of participants, characteristics
of their training environment and parent training aides, and the association of these variables with
trial outcomes in order to provide greater insight into child individual differences in performance
and outcomes, to clarify the factors contributing to gains in each intervention group, and to inform
future studies.

The results of the present study demonstrate that baseline child characteristics as well as cognitive
training behavior are associated with clinical changes during the intervention period. Training behavior
metrics were linked not only to gains in WM performance-based assessments, but also to reductions in
inattentive and other behaviors related to EF reported by caregivers. These patterns of association
were stronger in the adaptive (experimental) training group. It should be emphasized that these
analyses cannot confirm causal links between training behavior and clinical gains during training.
However, the results do suggest that subgroups of children with FXS who can progress and expand
memory capacity over time have better outcomes, perhaps better response to the intervention, than
those who are unable to progress. Level of intelligence does not explain these effects fully, as several
associations between training behavior and outcomes survived adjustment for baseline IQ. Therefore,
future cognitive intervention trials with individuals with IDD should include additional screening
of participants to determine not only baseline feasibility, but also capacity for training progress over
a short period prior to inclusion and randomization. This practice would reduce the proportion of
eligible participants but likely contribute to greater sensitivity to the efficacy of interventions and
generalizability of results.
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In terms of baseline child characteristics, only IQ and mental age were related to clinical outcomes
with higher mental age and IQ being linked to greater gains in WM. This is similar to results reported
by Söderqvist et al., who found that higher baseline ability was associated with greater working
memory training gains in children with IDD [17]. As pointed out in that paper, the results run counter
to literature in typically developing children which often reports that the individuals with lower
baseline ability show the most improvement when provided with targeted training. It may be that
children with greater cognitive impairment (those within the IDD range) need additional exposure to
training (i.e., longer or more frequent) or they may need training in more than one cognitive domain
to experience clinically meaningful benefits. Aside from IQ and mental age, no other child, parent
training aide, or home environment variables were related to gains in the clinical outcomes of the
study. To our knowledge, this is the first examination of potentially moderating home and parent
factors on treatment outcomes in FXS. Although child outcomes were independent of these factors, it
is worth noting that the majority of families had fairly high scores on the HOME inventory, suggesting
that most home environments were positive and conducive for learning. Similarly, the majority of
parent training aides had SCL-90-R and PSI scores in the average range. Therefore, children with FXS
in more adverse home environments and with parents struggling with serious mental health issues or
high levels of parenting stress were not adequately represented in this sample. Nevertheless, it may
be useful for investigators and clinicians to be aware that these important parent and environmental
metrics do not appear to have substantial impacts on child training outcomes within this study.

The analyses of training level data show that training behavior can reliably identify participant
subgroups in several dimensions. Four metrics of training quality—difficulty, accuracy, response
time and response time variability—were used to quantify training quality. Difficulty is a metric of
advancement in training for the adaptive group, with some children progressing in difficulty over the
course of trainings while others remaining relatively flat with no appreciable gains in performance.
This stark difference was not appreciable in our prior group-level comparisons of the primary trial
results, which suggested modest gains overall [12]. Children who displayed positive training behavior
defined by advancement in difficulty had better clinical outcomes than those that did not, even after
accounting for difference in baseline IQ. Therefore, it is unlikely that the clinical improvement seen
in this subgroup is explained by their higher functional status. Thus, it is likely that the Cogmed
training program is most appropriate and has greatest potential utility for individuals with FXS who
are capable of increasing their WM span capacity. As noted previously, we utilized an inclusion
criterion characterized by the ability to perform at least some 3-span items at baseline, reflecting an
increased probability that the children had the potential to make gains beyond the nonadaptive level
of 2 span. Given the results reported here, the demonstration of at least some short-term gains during
an early exposure to the program may be the best indicator of potential benefit from sustained training
during intervention. Similar results were found for the two other metrics of training quality, response
time and variability in response time. These metrics are thought to be a measure of how attentive and
engaged participants were in the games. Participants who were more attentive and engaged (faster
response times and more consistency in response) were also more likely to show clinical gains after the
completion of the training. These results are promising, as they show that quality of engagement with
the training procedure may be a driving force behind clinical gains.

One of the important questions raised by the primary trial results is why the nonadaptive Cogmed
group improved over the course of training. The findings of the present analysis do not establish
consistent links between training behavior and outcomes in the nonadaptive group. One explanation
for the lack of significant association may be decreased variability in training metrics in the nonadaptive
group, as these participants were less challenged and had fixed trial difficulty. The nonadaptive group
also had less variability in the primary outcome measures than the adaptive group (see Table 2 in [12]),
perhaps making it more difficult to detect potentially meaningful correlations.

We considered the analyses reported here to be exploratory and as such, we did not adjust for
multiple comparisons or tests. However, we note that all of the significant patterns of association
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between training behavior and outcomes (11/11 significant results) were in the expected direction (e.g.,
lower standard deviation of response time associated with gains in WM score or a reduction in BRIEF
GEC score from baseline to end of intervention), suggesting a low likelihood of chance association.
As we noted previously [12], we elected to use the nonadaptive Cogmed training as the control
condition for this trial to determine efficacy. We did not include an additional comparison group—for
example, treatment-as-usual or another contrast group—which is a limitation of the study. Cogmed is
predominantly focused on WM as its target—although this is an important area in need of remediation
for FXS patients, their deficits span a broad range of executive dysfunction. Interventions addressing
multiple domains of function and perhaps in multiple contexts may be needed to produce robust effects
that translate to improvements in quality of life. Although the original trial was powered to detect
differences between treatment conditions, it was not powered to detect differences in associations
between child/parent/home factors and clinical outcomes by treatment condition. Similarly, the training
behavior groups detected in the analyses were relatively small in size, indicating limited power to assess
differences in associations between these training behavior groups and clinical outcomes by treatment
condition. Finally, the training behavior groups are data driven and may differ in other studies.

5. Conclusions

In summary, the present analysis afforded an opportunity to examine details of the cognitive
training process and individual differences that are typically omitted from standard clinical trial reports.
While the efficacy of Cogmed or other cognitive training programs for FXS and individuals with IDD
remains an open question, the high-resolution training data we report allowed for identification of
more- vs. less-responsive participants and further highlight possibilities to integrate cognitive training
paradigms in treatment research for this population. Future cognitive training trial designs for FXS
and IDDs should carefully consider the type of control condition utilized to examine training efficacy
and perhaps more rigorous screening to ensure that participants are capable not only of performing
cognitive tasks but also demonstrate capacity for making gains. The latter criterion may be analogous
to determination that a drug of interest can engage its target in the population of interest before starting
a trial. The results presented here lay the groundwork for a subsequent Cogmed trial that may require
both a wait-list control group and a comparison condition that entails equivalent participant and
caregiver contact and computer exposure but entails no cognitive training. Another potential design
would be to capitalize on the demonstration that a subset of children with FXS expand their WM span
over time, and pair the training with a targeted pharmacological intervention vs. placebo. In this
scenario, the investigator may compare the slopes (degree of memory expansion or Cogmed indices of
improvement) in those treated with medication vs. placebo to determine whether learning is enhanced
by the drug.
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