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Abstract: The establishment of maritime safety and security is an important concern. Ship position
prediction for maritime situational awareness (MSA), as a critical aspect of maritime safety and
security, requires a longer time interval than collision avoidance and maritime traffic monitoring.
However, previous studies focused mainly on shorter time-interval predictions ranging from 30 min
to 10 h. A longer time-interval ship position prediction is required not only for MSA, but also for
efficient allocation of ships by shipping companies in accordance with global freight demand. This
study used an end-to-end tracking method that inputs the previous position of a vessel to a trained
deep learning model to predict its next position with an average 24-h interval. An AIS dataset with a
long-time-interval distribution in a nine-year timespan for capesize bulk carriers worldwide was
used. In the first experiment, a deep learning model of the Indian Ocean was examined. Subsequently,
the model performance was compared for six different oceans and six primary maritime chokepoints
to investigate the influence of each area. In the third experiment, a sample location within the Malacca
Strait area was selected, and the number of ships was counted daily. The results indicate that the
ship position can be predicted accurately with an average time interval of 24 h using deep learning
systems with AIS data.

Keywords: deep learning; AIS; ship position prediction; long-term; end-to-end

1. Introduction

Maritime transportation is recognized for its central role in the global supply chain
considering it accounts for 90% of international trade by volume and 70% by value [1].
The United Nations predicted that the total volume of seaborne trade worldwide would
increase by 3.2% from 2019 to 2022 [2]. Therefore, establishing safety and security in
maritime transportation is essential. Maritime situational awareness (MSA) is a critical
aspect of maritime safety and security that can be achieved through tracking, surveillance,
and position prediction of ships [3]. Once a prediction of the ship position is obtained,
decision-making and action planning can be supported at different information levels.
However, ship position prediction for MSA requires a longer time interval than other tasks,
such as collision avoidance and maritime traffic monitoring, which mainly use a short-
term prediction from a high-precision real-time forecast spanning less than one hour [4].
Accordingly, we considered a prediction with a time interval ∆t longer than 12 h as a
long-term prediction, and a prediction with a time interval between short- and long-term
threshold as a medium-term prediction [5]. Studies on the long-term prediction of vessel
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position remain scarce despite its considerable potential for maritime applications, while
almost all previous studies have focused on either near real-time predictions (short-term
prediction) or predictions with a time interval lesser than 12 h (medium-term predictions).
Long-term ship position prediction is required not only for MSA, but also for efficient
allocation of ships by shipping companies in accordance with global freight demand. It can
be utilized to monitor and assist the fleet, specifically, when communication with a ship
operator breaks down owing to poor weather conditions or when a ship is in distress. It can
also be implemented by shipping insurance and maritime investigators for investigation
purposes. The ability to predict the long-term position of a fleet could prove not merely
necessary, but vital for strategy formulation in the fast-changing dynamics of maritime
industries.

Maximizing the potential of maritime big data is essential for predicting vessel po-
sitions. The automatic identification system (AIS) is a self-reporting message system on
board a vessel that records its position and condition [6]. Each record of the AIS message
contains the static and voyage-related information of the vessel and its dynamic informa-
tion such as longitude, latitude, speed over ground, course over ground, and heading.
As of July 2008, large vessels serving international routes were regulated to be outfitted
with an AIS Class A device by the International Maritime Organization (IMO) [7]. Prior
to the widespread use of maritime big data (i.e., AIS data), studies on vessel position
prediction were conducted using data from radar or laser sensors, such as in the work of
Perera et al. (2012) [8]. Since 2015, studies in the field have started using AIS as a historical
data source for ship position information. Czapiewska and Sadowski (2015) conducted
position prediction experiments using linear and nonlinear motion functions for location
data compression of AIS records [9]. The high volume of AIS data accumulated over the
years is a potential asset that needs to be explored, especially in the current age of artificial
intelligence. With this big data of vessel position records, it is possible to predict vessel
position by applying advanced machine learning (ML) techniques.

The objective of this study is to achieve a 24 h interval ship position prediction for
MSA. Previous studies focused mainly on short- and medium-term prediction, ranging
from 30 min to 10 h intervals as the AIS data were dense (closely packed between short time
intervals) but in a limited period or timespan. Naturally, a vessel position prediction with
long time intervals (e.g., 24 h) requires data with a long timespan, given that state-of-the-art
ML algorithms such as deep learning require large amounts of data to make accurate
predictions for longer intervals [10]. Accordingly, nine-year AIS data for capesize bulk
carriers worldwide and deep learning (DL) were used to accomplish long-term prediction.
End-to-end learning refers to training a learning system represented by a single deep
network model that supersedes the preprocessing stages typically present in traditional
pipeline designs; with extensive fleet data and computing power, the model can learn
robustness to noise and generalization to data variation. First, the model performance
was demonstrated for the Indian Ocean, followed by a comparison of the performance for
six different oceans and six primary maritime chokepoints to investigate the influence of
each area. Finally, the model performance for a sample area within the Malacca Strait was
analyzed to simulate a practical application. The utilization of nine years of AIS data for
capesize bulk carriers worldwide and the development of a generalized DL model from a
dataset with a long-time-interval distribution for the long-term prediction of ship positions
constitute the novelty of this study.

2. Related Work
2.1. Vessel Position Prediction Studies

The methods for forecasting vessel positions can be classified into three categories:
trajectory-based, point-based, and motion-based methods. Overall, studies concerning
ship position prediction are summarized in Table 1; only studies focused on predicting
vessel position are listed. The results of one method are not equivalent to those of another
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method, because each method is specifically developed for the desired objective and the
data used.

In the trajectory-based prediction method, clusters of vessel trajectories must be
initially created and classified based on shipping routes from historical voyage patterns
in the examined area, at times focusing solely on particular ships [11]. A ship position
prediction can then be derived based on a formulation or extrapolation of these clustered
trajectories. Because entire trajectories (or possibly port-to-port trajectories) of vessels
in an observed area are required, this method has been implemented mainly for large
areas (e.g., open waters, oceans, and straits). Several studies have developed unique route
extraction algorithms to be used before the vessel position is predicted by deriving from its
routes, such as in the work of Pallotta et al. (2014), Tu et al. (2020), and Mazzarella et al.
(2015) [12–14]. We considered ∆t of Mazarella et al. (2016) to be effective for only 10 h
because they merely demonstrated their trajectory-based algorithm on a particular target
and route, where the 10 h threshold exhibited the most significant performance compared
to those of the other algorithms. Dalsnes et al. (2018) conducted predictions using a
Gaussian mixture model combined with the neighbor course distribution method [15].
Using k-nearest neighbor (kNN), Virjonen et al. (2018) compared the trajectories of a new
ship and historical ships within the Gulf of Finland [16].

Table 1. Vessel position prediction studies.

Prediction
Method 1 Authors ∆t

Threshold
∆t

Prediction Objective 2 AIS Data
(Range)

ML
Algorithm 3

Target
Vessel 4 Target Area 5 Unrestricted

Trajectory

T-b [12] Medium 8 h MSA 5 months - Cg, Tg, Tk OW Yes
T-b [14] Medium 10 h MSA 1 month - Cg OW No
T-b [15] Short 15 min CA 1 year - nr RW Yes
T-b [16] Short 5 min MTM 2 months kNN nr RW No
T-b [13] Medium 1 h MSA nr ELM nr nr Yes
P-b [17] Medium 1 h MTM 1 month kNN Fs, Cg, Tk RW Yes
P-b [18] Short 50 min MTM 2 years CNN Cg, Tk RW Yes
P-b [19] Short 5 min MTM 1 month CNN, LSTM nr RW Yes
M-b [8] Short <1 min MTM - - nr RW No
M-b [9] Short 5 min DC nr - Cg RW No
M-b [20] Short 40 min AD, MSA 1 month ELM nr OW No
M-b [21] Short 8 min MTM 3 months - nr RW Yes
M-b [22] Short 3 min MTM - MLP Tk RW No
M-b [23] Short 15 min CA nr MLP Fe nr No
M-b [24] Medium 4 h MSA nr MLP Ps RW No
M-b [25] Short 20 min CA, MSA nr MLP nr RW Yes
M-b [26] Short 10 min CA 1 year bLSTM nr RW Yes
M-b [27] Short <1 min CA nr LSTM Fe RW No
M-b Current

study Long 24 h MSA, SA 9 years MLP BC OW Yes

1 Prediction methods: T-b, trajectory-based; P-b, point-based; M-b, motion-based; 2 Prediction objectives: CA, collision avoidance; MSA,
maritime situational awareness; SA., ship allocation; DC, data compression; MTM, maritime traffic monitoring; AD, anomaly detection;
3 ML algorithm or DL architecture used for vessel position prediction: SVM, support vector machine; ELM, extreme learning machine; kNN,
k-nearest neighbors; MLP, multilayer perceptron; RNN, recurrent neural network; LSTM, long short-term memory; CNN, convolutional
neural network; bLSTM, bidirectional long short-term memory; 4 Target vessel type: Cg, cargo, Tk, tanker, Tg, tugboat, BC, bulk carrier, Fs,
fishing vessel, Fe, ferry, Ps, passenger ship; 5 Target area: OW, open water; RW, restricted water; nr, not reported.

In the point-based method, the examined area is first transformed into non-overlapping
cells or grids. The position of a ship inside the area is converted into a grid reference and
defined by the occupied cells. The movement of these occupied cells indicates the move-
ment of ships after a given time. A trained ML model then calculates the prediction of
the next position of the ship. Duca et al. (2017) employed a kNN classifier for ship route
prediction [17]. Kim et al. (2018) employed a combined hierarchical architecture of a convo-
lutional neural network (CNN) for feature extraction with five separate fully connected
neural networks (NNs), to predict the number of ships around the Korean port Yeosu up to
50 min ahead with initial AIS points reconstructed by interpolation [18]. Zhou et al. (2020)
used three different architectures, including CNN, long short-term memory (LSTM), and
bi-directional LSTM (bLSTM) integrated with CNN, to predict the inflow and outflow of
gridded Singapore waters [19].

In the motion-based method, the subsequent vessel position is estimated using either
motion functions or a trained ML model where historical information is used as input. Most
researchers have used this method for short- and medium-term predictions within a small
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area (e.g., near ports, waterways, and restricted water areas) and particular trajectories.
Juraszek et al. (2020) used an extended Kalman filter for fast short-term prediction in
the distributed processing system Apache Flink [21]. Mao et al. (2017) generated ship
position predictions 20 and 40 min ahead for the west coast of the US using an extreme
learning machine (ELM) [20]. Duca et al. (2017) employed a kNN classifier to forecast ship
movements around Malta [17]. Using an NN, Simsir and Ertugrul (2009) and Zhou et al.
(2019) conducted predictions with intervals of 3 and 20 min, respectively, targeting vessels
in narrow waterways [22,25]. Meanwhile, Zissis et al. (2016) attempted predictions in
Greek waters up to 4 h ahead, focusing on the regular sea trips of passenger ships around
the Aegean Islands [24]. Borkowski (2017) combined AIS location data and sensor data
onboard a vessel to predict its subsequent position, aiming at collision avoidance [23]. Gao
et al. (2018) used a bidirectional recurrent neural network (bRNN) with an LSTM unit
seeking short-term predictions [26], and another study by Gao et al. (2021) combined the
TPNet framework and LSTM for multi-step ship trajectory prediction based on four types
of navigation stages [27].

2.2. Characteristics of Trajectory-Based and Motion-Based Methods

As long-term vessel position predictions have not been performed yet, determining a
suitable method is vital for achieving long-term prediction. Consequently, the observed
location (and dataset) must be considerably larger than the ship distance intervals to
accommodate and capture their long-term movements; a small observation area limits
long-term movement. The point-based method inevitably involves computing the entirety
of cell information in each computation cycle, and thus the observed area cannot be too
large because the computational costs would be exorbitant. Some researchers used CNNs
by converting vessel positions from AIS data into a gridded ocean floor model as the input.
Meanwhile, utilization of the trajectory-based method is expected to result in high accuracy
for any time-interval threshold and area size; however, this method is not sufficiently
flexible for adaptation to factors other than the observed variable. It also involves arduous
work on route clustering and classification and trajectory reconstructions, in addition to
anomaly detection owing to the partially incomplete and noisy AIS data. Furthermore,
although we can create a database for millions of historical trajectories, ship trajectories
are not fixed but quickly adapt to the weather and other conditions; ship routes evolve
owing to various factors, such as climate change and the emergence of new ports and
new routes [28]. In contrast, the motion-based method is relatively more flexible, efficient,
and practical than the other methods, and, notably, can be effectively generalized for data
variation. Table 2 shows the main differences between trajectory-based and motion-based
methods for vessel position prediction.

Table 2. Primary differences between trajectory-based and motion-based methods for vessel position
prediction.

Trajectory-Based Motion-Based

Merits high accuracy for any time-interval threshold and
area size

flexible, efficient, and can be generalized for data
variation

Demerits
requires arduous work on pre-processing such as

trajectory definition, classification, and
reconstruction

requires machine learning where developing a
model involves a CPU-intensive and specialized

expertise

Therefore, from the perspective of long-term position prediction on large international
open waters without the consent of any restricted trajectory, a more general and updatable
model with generalization to data variation and robustness to noise needs to be constructed
that incorporates a fast prediction generation for predicting the long-term position of a
vessel. In this study, a motion-based method was used to develop a generalized deep
learning model for long-term vessel position prediction to overcome these challenges.
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3. Data Exploration and Characteristic of This Study
3.1. AIS Data

We processed AIS data from exactEarth [29], considering that it was established as an
AIS-data-service company that started deploying AIS receivers on satellites soon after the
IMO regulation was implemented. As exactEarth offers the untapped potential of extensive
AIS data of SOLAS-compliant ships, we took advantage of the capacity provided by deep
learning systems to learn from large datasets to improve the overall performance.

The dataset comprises nine years of archived AIS messages of global capesize bulk
carriers, from July 2010 to December 2018. This type of vessel exhibits proper records
with less irregularity compared to those of smaller vessel types and more diverse shipping
routes than containers and tankers [30]. The dataset alone is composed of over 3.5 million
archived AIS messages from 1698 different IMO numbers (vessels).

Daily archived AIS messages have random time intervals ∆t between less than 1 h and
up to 48 h, averaging 24-h intervals; the time-interval distribution is depicted in Figure 1.
The fitted probability density function (PDF) of the overall dataset showed a standard
Gaussian distribution. The data proliferated from 2010 to 2014 when satellite-based AIS
became a standard practice. Although the dataset has an uneven time-interval distribution,
it is considered adequate for long-term prediction because it contains years of extensive
fleet data worldwide.
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Figure 1. Time-interval distribution of the AIS dataset.

3.2. Ship Data

Ship specification data from IHS SeaWeb’s fleet data [31] were utilized to organize
and validate the capesize bulk carrier vessels from billions of raw exactEarth data records.
This dataset was also used to rectify the static information in each AIS message.

All datasets were collected independently from each source and stored in a single
SQL relational database for easy access and management. An IMO number identifies every
vessel, each of which is related to another piece of information in the dynamic and static
data. When a model needs to be generated, a specified chunk of the AIS dataset is retrieved
from the relational database and subsequently processed into a DL model. All scripts from
preprocessing to postprocessing were written in Python.

3.3. Characteristic of Data for Long-Term Prediction and Originality of This Paper

In previous studies, such as in Zhang et al. (2020), trajectories with missing records
over one day and lasting less than one day were excluded from the training and testing
process [28]. However, in this study, we do not execute this pre-processing because
eliminating the routes or trajectories with missing data can be applied only when they have
been defined, that is, only when using other methods (see Table 2). Because of the nature
of our dataset, we consider an AIS message to be an outlier when its time interval from
the previous messages is more than 48 h. These outliers (individual AIS messages, not the
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entire trajectories) are removed from the training process but are retained in the testing
process.

An end-to-end DL model was developed to supersede a vessel position prediction
model that requires arduous preprocessing steps (e.g., trajectory reconstruction) as the time
intervals of the AIS data vary considerably. A trajectory reconstruction becomes impractical
as the time intervals and their variation grow. The asynchronous nature of AIS messages
with time intervals of less than 3 min allows the application of a trajectory reconstruction
from a short-interval to a long-interval dataset without a significant error. This is because
the AIS points can be aligned using a simple method of sampling the nearest point in the
time dimension that satisfies the x interval condition as lim

∆t→x
|∆t− x| = 0. Nonetheless,

this preprocessing destroys information regarding latent variables [32]. Specifically, it
causes distortion (the trajectory becomes compressed or simplified), on turn causing the
acceleration (derived from speed over ground) and rate of turn to become unusable [33].
Then, if the values of the time interval ∆t are relatively large with uneven distribution, the
interpolation causes a considerable error in the aligned positions [34].

In this study, the dataset has ∆t values ranging between almost zero and 48 h (in the
absence of outliers), indicating that although the dataset consists of daily AIS messages
(averaging 24 h), their exact time interval can be longer than 24 h (see Figure 1). The large
gap in time intervals between two consecutive AIS messages signifies that the interpolation
to create an evenly spaced dataset time series would result in large errors. For instance,
in a time window of 24 h, a moving ship generally has an average distance interval of
more than 400 km. Consequently, interpolating the ship position in this extended time
window is expected to result in a significant error in the aligned positions, thus accumu-
lating additional errors when predicting the subsequent position. Figure 2 illustrates the
uncertainty of trajectory reconstruction of the long-time-interval data. The aligned data are
prone to result in a large error; therefore, any application or method that requires trajectory
reconstruction is considered impractical.
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Figure 2. Uncertain trajectory reconstruction of long-time-interval data with uneven distribution.

Based on the nature of the AIS dataset while achieving the objective (which eventually
focuses on the long-time interval data and large observation area), performing a trajectory
reconstruction is unattainable. Therefore, in this study, DL with the regular feed forward
network (MLP) was employed to solve the long-term position prediction. Previous studies
have also attempted to use this basic architecture but have been limited to shallow networks
with limited time intervals and area sizes. We aimed for a larger-scale and longer timespan
of the AIS dataset, and more importantly, developed a more general and updatable model
from a dataset with a long-time-interval distribution, which has not been achieved thus
far. By leveraging the advantages of deep learning systems supported by extensive fleet
data and computing power, the model was developed to learn robustness to noise from
extensive data with unrestricted trajectories in international open waters and to realize
generalization to data variation of time intervals, vessel activities, statuses, and locations.
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4. Methodology
4.1. Overall Prediction Methodology

A straightforward method that takes advantage of the capacity provided by deep
learning systems with sufficient data and computing power is proposed to produce long-
term ship position prediction. Fast result generation and generalization from the trained
model make the proposed method suitable for practical use. The flowchart in Figure 3
summarizes the overall method for long-term vessel position prediction. Given a selected
location and time range, a sizeable chunk of the AIS dataset is queried from the database.
Next, a set of input features Xi and a set of target features yi comprising vessel positions at
the next time step t + 1 are created. Each set is standardized and then input for training
into two independent DL models with the same model properties. The model generates a
prediction of the displacements in longitude and latitude directions that are uncorrelated
with each other. Then, the results are passed through inverse standardization using the
standardization parameters of the target features. Finally, the predicted ship position (i.e.,
latitude and longitude) is systematically evaluated and analyzed.
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4.2. Input and Target Features

A set of AIS messages is first retrieved from the SQL database, given a boundary
condition of location and time. The specified input and output features are then extracted
from the dataset with vessel states at the current time step t as the input matrix Xi and its
location at the next time step t + 1 as the target vector yi. The input X is composed of 10 fea-
tures: longitude λ, latitude ϕ, speed over ground Uog, course over ground ψog, heading ψh,
time interval ∆t, distance d, Haversine distance (great-circle distance calculation between
two points on a sphere given their coordinates) dh, Manhattan distance (distance between
two points measured along axes at right angles) dm, and average speed Uavg. Meanwhile,
the component of the target y follows the DL model output that targets particularly one of
the two variables: the displacements of longitude ∆λ and latitude ∆ϕ between the current
time step t and the next time step t + 1. The input matrix and target vectors are expressed
as follows:

Xi =
{

λi
t, ϕi

t, Uog
i
t, ψog

i
t, ψh

i
t, ∆ti

t, di
t, dh

i
t, dm

i
t, Uavg

i
t

}
(1)

yiλ =
{

∆λi
t

}
; yi ϕ =

{
∆ϕi

t

}
(2)

where i = {0, 1, . . . , m}, the subscript t represents the time step, ∆λt = λt+1 − λt is the
longitude interval, and ∆ϕt = ϕt+1 − ϕt is the latitude interval.

Input features of λ, ϕ, Uog, ψog, and ψh are extracted directly from the archived AIS
messages, whereas some of the remaining inputs provide implicit information on the
position history at the previous time step t− 1. Further, the target timestamp (at the next
time step t + 1) is represented as a time interval ∆t and a rough distance to the target dt.
They are defined as follows:

∆tt = Tt+1 − Tt (3)

dt = ∆ttUogt (4)

dht = dh((ϕt−1,λt−1),(ϕt ,λt))
where ϕ, λ in radians (5)

dmt = dh((ϕt−1,λt−1),(ϕt−1,λt))
+ dh((ϕt−1,λt−1),(ϕt ,λt−1))

(6)

Uavgt = dht/∆tt (7)
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where T is the timestamp of the AIS message, and Tt+1 is referred to as the prediction
timestamp. We utilized implicit information because it enables the DL model to generate
predictions while using less information, rather than employing every possible explicit
information directly from the AIS messages (the selection is described in Section 4.3.1). The
above calculations (Equations (3)–(7)) are empirical formulas such that the extraction is
performed at a high speed.

After retrieving the input and target, all input features Xi are standardized, similar to
the target feature standardization shown in Equation (8). The standard score of the target
feature yi is calculated as follows:

y′ i = std(yi) = (yi − yi)/σyi (8)

where yi is the target feature containing yiλ and yi ϕ, yi is the mean of yi, σyi is the standard
deviation of yi, and y′ i is the standard score of yi. The standardization of the input and
output features avoids any imbalance in the network parameters and loss calculations
during training.

Two sets of standardized input and target features,
(
X′ i, y′ iλ

)
and

(
X′ i, y′ i ϕ

)
, are then

fed separately into two independent DL models with the same model properties.

4.3. Deep Learning Model
4.3.1. Model Development

A DL model refers to the process of training and testing multilayered NNs that can
learn complex structures and achieve high levels of abstraction [35]. Building a DL model to
perform a specified task satisfactorily requires hours of iterative prototyping. The process
is not a trivial task, even for a simple small model. Keras, an open-source high-level API
framework capable of running on GPU clusters [36] was used to facilitate rapid model
prototyping. The decision regarding the structure of the model and its input-target features
was determined through our extensive experimentation and evaluation, focusing on the
model objectives: performance and generalization on the observed areas.

A hold-out validation split was conducted to prevent information leakage from the
test data. AIS data from July 2010 to December 2017 were randomly shuffled into a training
set, and the dataset was disrupted with data from other vessels and timelines. Meanwhile,
a dev set was randomly sampled from half of the 2018 data. The remainder was retained as
a test set that had never been used for model prototyping. The split was designed to reflect
the dev/test set as the recent AIS data. The dev set was used to validate the training set
while having the same distribution as the test set. The randomly shuffled data combined
with mini-batch training ensured rapid convergence of the gradient descent with minimal
disturbances. Moreover, this combination prevented deep networks from conspiring to
memorize the chronological sequences of vessel locations.

During the prototyping process, the most salient input features were selected by
evaluating permutation feature importance (PFI) based on Fischer et al. (2018) [37]. After
a model was trained and the model score s was computed, a corrupted matrix Xk,j was
generated by permuting feature j in the original matrix X. Subsequently, a new score sk,j
was computed based on the prediction of the permuted data Xk,j. Finally, the PFI score Ij
was calculated as follows:

Ij =
1
K ∑K

k=1 sk,j − s
s

× 100% (9)

The permuted data Xk,j were then returned to the original order. This step was
repeated for all the features of the input data.

The PFI evaluation was conducted using the dev set at the prototyping stage to deter-
mine the extent to which the model relied on each input feature to generate predictions [38].
All irrelevant and insignificant features with minimum PFI scores were removed, and
subsequently, a new feature was extracted and re-evaluated until the final set of features
was established. Based on our evaluation, any timestep-based information added to the
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final inputs would not improve the model performance. Instead, it would overfit the
model.

4.3.2. Model Structure

The model was constructed as a DL model to solve regression problems. Compared
with the classification problem that treats portions of the covered area as classes, regres-
sion problems can achieve a higher location resolution and, therefore, higher prediction
accuracy [27]. In this investigation, the target features are the displacements of longitude
∆λ and latitude ∆ϕ directions. We performed the regression task by setting the target as a
scalar value for analysis and objective evaluation in the prototyping process at the expense
of running it twice.

The proposed model uses a deep network with six layers: five hidden layers with a
sigmoid activation function {64, 64, 32, 32, 16} and a one-unit linear output layer. The mean
absolute error (MAE) was employed as the loss function since it is less sensitive to outliers
than the root mean square error (RMSE), and mini-batch gradient descent with a mini-batch
size of 64 was used for training. We used an adaptive learning rate method involving the
adaptive moment estimation optimization algorithm (Adam), an update to the RMSProp
with momentum [39]. The learning rate was automatically reduced by a factor of 0.5 once
the validation loss stagnated for 50 epochs. Moreover, to accommodate areas with low AIS
data coverage (to avoid overfitting caused by deep networks), a validation-based early
stopping was set to interrupt training once the validation stopped improving for 100 epochs.
These in-training validation-based methods were solely used for the experiment and were
not used in the prototyping stage [40].

4.4. Performance Evaluation Metrics
4.4.1. Loss Score

Two separate models were trained for each standardized target feature y′ i of ∆λt and
∆ϕt values (scalar regression model). Subsequently, each value was discretely predicted.
The predicted vessel position was then generated by inverse standardization using the
standardization parameters of the target features as follows:

ŷi = std−1(ŷ′i) (10)

where ŷi is the prediction vector after inverse normalization, and ŷ′i is the prediction vector
that combines the outputs of the two separate models (ŷ′iλ and ŷ′iϕ

). Both results (ŷλ and

ŷϕ) are then transformed into latitude ϕ̂t+1 and longitude λ̂t+1 by the addition of each
component in the input (i.e., λt, ϕt). Finally, a new loss score for each result is calculated as
follows:

MAEλ =
1
m ∑m

i=1

∣∣∣λ̂i
t+1 − λi

t+1

∣∣∣ (11)

MAEϕ =
1
m ∑m

i=1

∣∣∣ϕ̂i
t+1 − ϕi

t+1

∣∣∣ (12)

where λ̂i
t+1 =

(
ŷiλ + λi

t
)

is the prediction longitude, ϕ̂i
t+1 =

(
ŷi ϕ + ϕi

t
)

is the prediction
latitude, λi

t+1 is the target longitude, and ϕi
t+1 is the target latitude.

4.4.2. Metric Score

The metric scores for the combined results (i.e., location) were defined as the mean
distance error (MDE) and mean angular error (MaE). The distance error is the haversine
distance between the prediction and target (true position) in kilometers, signifying the
extent to which the result (prediction) deviates from the true position (target). MDE can
be a single evaluation metric for the long-term prediction of vessel location. However, in
cases where the distance between previous positions and target positions is remarkably
diverse (owing to time-interval variation), another evaluation metric is required.
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The MaE as the second evaluation metric was calculated based on the three known
points of the base, target, and predicted positions. The angular error between the target
and the prediction is a spherical triangle that can be solved using the law of haversines [41].
Because the haversine distance between the prediction and the target is small, the formula
is derived in combination with the spherical law of cosine. Accordingly, these metric scores
were calculated as follows:

MDE =
1
m ∑m

i=1 dh
i
(v,w) (13)

MaE =
1
m ∑m

i=1 Ci
(u,v,w) (14)

C(u,v,w) = arccos

 cos
(

dh(v,w)

)
− cos

(
dh(u,v)

)
cos
(

dh(u,w)

)
sin
(

dh(u,v)

)
sin
(

dh(u,w)

)
 (15)

where u is the base point (ϕt, λt), v is the true position (ϕt+1, λt+1), and w is the predicted
point

(
ϕ̂t+1, λ̂t+1

)
. The predicted position is in a vector space, and consequently, its

distance error relative to the current position may not be proportional to its angular error.
Figure 4 illustrates the relationship between distance and angular errors. Furthermore, the
distance and angular errors can reflect the accuracy and precision of the prediction of the
target, respectively.
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5. Experimental Results and Discussions
5.1. Baseline Model

A non-ML baseline and a sanity check were used as model-building guidelines to
conduct error analysis on bias and variance, gaining confidence in the overall performance
of the DL models. The baseline replicates a human-level performance as a proxy for the
Bayes optimal error in the classification problem [42].

The predicted positions were defined as the next timestep positions averaging 24-h
intervals, and consequently, a conventional formula for the dead reckoning position (in
seamanship, a position determined by plotting courses and speeds from a known position)
of the ship could not be adopted as the baseline. The dead reckoning calculation is too
simple for two distant points; while it is accurate in the Euclidian space, it fails to map
the Earth as a great circle (also known as an orthodrome, is the largest circle that can be
drawn around a sphere; Earth is not a perfect sphere, but as long as the Arctic and Antarctic
Circles are not included, all meridians on Earth can be treated as great circles). An equation
for the geodesic on a spherical surface, namely the great circle equation, is more accurate
for planning routes [43].

Therefore, the geodesic calculation was established as a baseline model, computed
based on the shortest distance on a spherical earth. Given a starting position (ϕt and λt),
current course ψht, and distance to the target (next position) dt, the destination point along
a (shortest distance) great circle arc is computed as follows:

ϕ̌t+1 = asin(sin(ϕt) cos(δt) + cos(ϕt) sin(δt) cos(ψht)) (16)

λ̌t+1 = λt + atan2(sin(ψht) sin(δt) cos(ϕt), cos(δt)− sin(ϕt) sin(ϕ̌t+1)) (17)
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where ϕt, λt, ψht are in radians, δt = dt/rearth is the angular distance, and rearth is the earth
diameter [44]. The results from Equations (16) and (17) were subjected to normalization to
degrees.

The average distance interval of the ships was adopted as a sanity check, assuming
that the next position always equals the present state. This approach is adopted to examine
the performance evaluation metrics between the current position (ϕt, λt) and the next
position (ϕt+1, λt+1).

5.2. First Experiment: DL Model for the Indian Ocean
5.2.1. Experimental Setup

In the first experiment, a DL model was built for the Indian Ocean. The observed area
is within 60◦ E–90◦ E longitude and 24◦ S–0◦ N latitude boundaries, covering 8.6 million
square kilometers (calculated by geodesic area assuming the earth is a perfect sphere with a
radius defined in WGS84 as 6,378,137 m). Compared to all previous studies, the boundaries
were relatively larger, adequately capturing the continuous long-term movements of the
vessels. Figure 5 presents the normalized density distributions of the dataset in the observed
area from nine years of AIS messages involving 1531 different IMO numbers (vessels). This
distribution was calculated using kernel density estimation (KDE), adopting a Gaussian
kernel [45], in which the background geography was visualized using an open-source
Python library Matplotlib Basemap toolkit for geospatial data processing [46].
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The dataset was split into a training set and dev-test sets according to the hold-out
validation split described in Section 4.3.1. The training set comprised more than 122,000
data records after omitting AIS messages with missing values and abnormalities, whereas
each dev and test set contained more than 10,000 data records. The size of these sets was
considered sufficiently large, thus providing high confidence in the model performance.

5.2.2. Error and Sensitivity Analyses

The MAE, as the performance evaluation metric of the model, is shown in Table 3.
These values correspond to the absolute deviation between the prediction point and
the target point in degrees (longitude λ and latitude ϕ). The results from the geodesic
calculations were computed based on the training set.

Table 3. Error analysis of the DL model.

Model MAEλ MAEϕ

Geodesic calculation 0.225 0.226
Training set 0.163 0.145

Dev set 0.169 0.147
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Interestingly, the DL model performance on the training set and dev set surpassed the
geodesic calculation as the baseline model. The model displayed minimal bias, fitting the
training and dev sets satisfactorily. In practice, the sole focus of a regression model is not
the deviation between the training loss and dev loss (i.e., variance), but rather its prediction
performance, that is, the dev loss. Nevertheless, the variance in the model was insignificant,
indicating that the model generalized very well to the dev set without overfitting.

Moreover, hyperparameters sensitivity of the DL model was carried out while also
applying regularization techniques to confirm further that the model generalized very well
to the dev set. All hyperparameters combinations were permutated except the structure of
hidden layers and their units to see the effect on prediction performance from hyperparam-
eters’ influence. This permutation was repeated for other models with regularization: 20%
and 40% dropout on all hidden layers and a model with batch normalization.

Figure 6 shows the hyperparameters sensitivity of all models. The selected hyper-
parameter proved to be the best combination for the standard DL model. The model
with no regularization achieved the most optimum error compared to other models with
regularization, confirming that the model was already generalized well without overfitting.
Applying dropout worsened the model performances than applying batch normalization.
Naturally, predictions of longitude values would have less accuracy than latitude values
since the longitude values have a distribution twice as large as latitude. This natural
divergence appears to negatively affect the model with batch normalization but at the
expense of accuracy.
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Figure 6. Sensitivity analysis of the DL model.

Based on these error and sensitivity analyses, we determined that the proposed deep
learning model achieved an optimal error with generalization to the dev set and was ready
for the evaluation on the unseen test set resembling a practical scenario.

5.2.3. Results and Discussions

The performance evaluation metrics of the DL and baseline models are presented
in Table 4. All results were computed using the test set. The average distance interval
indicates the difference between the current vessel position and the subsequent position.
Compared with these average values, the geodesic calculation appears to be reasonably
accurate for long-term predictions.
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Table 4. Comparison of the model performance.

Methods
Loss MDE

(km)
MaE

(Degree)MAEλ MAEϕ

Average distance interval 3.553 2.564 486.1 -
Geodesic calculation 0.239 0.239 40.6 3.3

Deep learning 0.174 0.149 27.0 1.7
Random forest 0.197 0.174 31.3 2.1

Gradient boosted decision tree 0.198 0.171 31.4 2.3
XGBoost 0.197 0.175 31.6 2.2

The DL model adequately outperformed the baseline model and almost doubled
its performance based on the metric scores. Given that the distance between the current
position of a vessel and its position the next day was approximately 486 km, the geodesic
calculation might be accurate for long route planning, yielding an average distance error of
40 km. However, the DL model generated more accurate and precise predictions with a
slight mean distance error of approximately 25 km and a mean angular error of 1.8◦. If we
assume that the evaluation metric (i.e., MDE) of the average distance interval created an
error of 100%, simulating a model performance similar to the classification problem, the
geodesic calculation and DL model predicted the vessel positions with 8% and 5% error,
respectively.

Moreover, several ensemble-based ML regressors have been investigated, including
random forest, gradient boosted decision trees, and extreme gradient boosting algorithm
(XGBoost) [47,48]. The hyperparameters were tuned using the exhaustive grid search
method, and therefore all hyperparameters were optimized for each ML model in this
manner. With the same input, output, and validation splits, the performances across all
the models were broadly comparable. Nevertheless, despite performing more accurately
than the geodesic calculation, their performances were not significantly different from each
other, among which the DL model still achieved the best performance (13% better than the
ML models).

5.3. Second Experiment: DL Models for the International Open Waters
5.3.1. Experimental Setup

In the second experiment, 12 DL models were built for six open oceans and six mar-
itime chokepoints with the same model properties to assess the influence of the respective
areas. Open waters of the North Pacific Ocean (NPO), South Pacific Ocean (SPO), North
Atlantic Ocean (NAO), South Atlantic Ocean (SAO), Indian Ocean (IO), and Philippine Sea
(PS) were selected considering that vessels generally sail across these deep oceans without
stopping. According to Rodrigue (2020), the primary maritime shipping chokepoints were
selected to represent long-term vessel behavior near the ports and congested (high-traffic)
waters, namely Gibraltar Strait (GS), South Africa Coast (SAC), Bab al-Mandab Strait (BMS),
Strait of Hurmuz (HS), Laccadive Sea (LS), and Malacca Strait (MS) [49]. Altogether, the
ocean and chokepoint areas correspond to the simple and complex movement of ships,
respectively.

Figure 7 shows the location and size of each area (red rectangles). The size of the
observed maritime chokepoint area was as large as that of the open ocean. Each has the
same observation area size, within 30-interval longitude and 24-interval latitude, covering
more than eight million square kilometers. The same procedure as in the first experiment
was applied to the models: each used the same model properties and followed a similar
hold-out validation split. We limited the worldwide observation to these 12 areas to avoid
building an excessively large model. A large model is prone to fit noise from inferior-quality
data and random vessel behavior contained in the massive AIS dataset. Regularization
methods might be a constructive solution; however, they require an extremely large model
to fit all nonlinear problems.
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5.3.2. Results and Discussions

The performance evaluation metrics of the models for each examined area are listed
in Table 5. Again, the DL models substantially outperformed the geodesic calculation as
the baseline model in all areas, especially in the chokepoint areas. The improvement score
(Is) was the only inference to determine the extent to which the DL model outperformed
its counterpart baseline model based on the MDE scores. The improvement scores were
notably higher in the chokepoint areas than in the open ocean areas, scoring more than
a 50% improvement over the baseline model for almost all the chokepoint areas. The
geodesic calculation appears accurate enough to predict moving vessels. However, it
fails to predict vessel behavior near the ports and high-traffic areas (i.e., the chokepoint
areas). With no information regarding vessel status, historical trajectory, or destination,
conventional calculations would fail.

Table 5. Comparison of the loss and metric scores of the DL model and baseline model on each observed area.

Area

DL Model

IS (%)

Geodesic Calculation
Number of Test

Data
Average Distance

Interval
Loss MDE

(km)
MaE
(deg)

Loss MDE
(km)

MaE
(deg)MAEλ MAEϕ MAEλ MAEϕ

NPO 0.18 0.13 27 1.8 27 0.20 0.23 37 3.1 471 485
SPO 0.13 0.11 20 1.5 15 0.13 0.15 24 2.1 499 484
NAO 0.30 0.22 41 3.7 15 0.33 0.28 48 4.5 2474 467
SAO 0.13 0.11 19 1.7 24 0.15 0.15 26 2.5 4672 491

IO 0.17 0.15 27 1.7 33 0.24 0.24 41 3.3 10,888 486
PS 0.25 0.31 48 8.0 37 0.48 0.46 77 10.5 9206 453
GS 0.54 0.27 63 21.7 38 0.78 0.53 102 20.2 4263 355

SAC 0.35 0.23 46 15.4 50 0.59 0.54 92 15.0 13,337 389
BMS 0.28 0.31 51 4.3 55 0.56 0.75 113 10.9 1251 473
HS 0.34 0.27 52 39.8 58 0.77 0.70 123 31.0 3734 259
LS 0.26 0.33 51 37.4 50 0.57 0.63 102 27.8 5975 273
MS 0.37 0.34 63 16.7 60 0.88 0.93 158 19.5 22,745 417

Both the DL model and geodesic calculation showed more accurate predictions for the
ocean areas than the chokepoint areas, but not in the average distance intervals between
the current position and the next position, indicating that more vessels have shorter
distance intervals in the chokepoint areas. Almost all vessels were moving in the ocean
areas, whereas in the chokepoint areas, many vessels were idle for berthing or resting
at anchorages. These activities resulted in an extremely short distance interval between
two consecutive AIS messages at any time interval. Many vessel activities have very low
distance intervals in the chokepoint areas but not in the ocean areas. Consequently, the
average distance intervals in the chokepoint areas would indicate lower performance
evaluation metrics than the ocean areas. The irregularity of idle vessels and activities other
than sailing with minimal distance intervals renders the MaE unsuitable as a metric score.
The angle between the prediction and the target no longer corresponds to the accuracy of
the prediction because the distance interval between two consecutive positions is extremely
short. Accordingly, for the evaluation of the chokepoint areas, the MDE alone suffices as a
single metric score.
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5.3.3. Discussions: Influence of the Area

Figure 8 presents the distance error distribution of the predicted positions based on
the distance interval, where the distance errors are the haversine distance between the true
position (ϕt+1, λt+1) and the predicted point

(
ϕ̂t+1, λ̂t+1

)
.
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In the ocean areas, as most data have distance intervals between 400 and 600 km, the
DL models generated continuous accurate predictions with a distance error below 40 km
for 80% of the population over the entire test set. For the same 80% population, the geodesic
calculation generated a distance error below 60 km with a more diverse distribution, where
its standard deviation was twice as high as that of the DL models.

In the chokepoint areas, as most data have distance intervals distributed between
400 km and near zero, the DL models constantly generated accurate predictions with a
distance error below 65 km for 80% of the population. In contrast, the geodesic calculation
generated projections with distance errors below 100 km for only 65% of the population.
Its projections resulted in grave errors when the distance intervals were broad, but the
errors became less severe when the distance intervals were near zero. Overall, the geodesic
calculation fails to make accurate projections for the complex movements of vessels in
chokepoint areas.

Deep learning systems can learn from large datasets to effectively improve their
performance to generate accurate predictions by discovering complex variations across
all input features [50]. Accordingly, we computed the mean PFI score of the DL models
on the ocean areas and chokepoint areas to determine which features play a vital role in
improving the overall performance (shown in Figure 9). The scores were calculated based
on the test set of each area and were grouped by ocean and chokepoint areas and then
averaged. The input features were classified into five components: distance, speed, angle,
time, and position.



Sensors 2021, 21, 7169 16 of 25

Sensors 2021, 21, x FOR PEER REVIEW 17 of 25 
 

 

The model performance can be enhanced by incorporating additional information 

regarding the vessel status, destination, or historical trajectory without a trajectory defi-

nition. Thus, this approach remains a topic to explore in our future work. 

 

Figure 9. Mean PFI score of the DL models on the ocean areas (left) and chokepoint areas (right). 

5.3.4. Discussions: Influence of Data Size 

The proportion of AIS messages varied widely according to the area location. This 

variability among different areas is a general characteristic of AIS data: rarely passed areas 

contributed only a limited amount of data, whereas congested areas contained a substan-

tial quantity of information. Figure 10 presents the size distribution of the training and 

dev-test sets in each observed area based on the same hold-out validation split. 

The proportion of the dev-test sets to the training set increased in the areas with the 

busiest shipping routes; for instance, the Malacca Strait (MS) area encompasses half of 

South East Asian waters, including the most congested maritime primary chokepoints 

and three secondary chokepoints in Indonesian waters [49]. The proportion was drasti-

cally reduced in the rarely transited areas, such as the Pacific Ocean. Consequently, areas 

with a small amount of test data would indicate lower confidence in the overall perfor-

mance of the model than areas with extensive data. The K-fold validation split can solve 

this problem. Nonetheless, it would produce non-comparable models. 

 

Figure 10. Size distribution of the training set and dev-test sets for each area. 

Figure 9. Mean PFI score of the DL models on the ocean areas (left) and chokepoint areas (right).

Based on the results for both the chokepoint and ocean areas, the speed component of
the vessel (i.e., Uog, Uavg) does not appear to be essential because the distance d already
represents it, whereas the course over ground ψog proves vital for making predictions.

Models in the ocean areas rely primarily on input features of angle and distance
components but not on speed and position components. This is similar to the geodesic
calculation, which generally proved accurate for position projections of vessels moving in
a definite straight direction or making simple movements.

Meanwhile, models in the chokepoint areas rely more on the current position (i.e., λt,
ϕt), implying that they can be used to develop high-level abstraction to alternatively predict
the next position when vessels deviate from a simple trajectory. Furthermore, focusing
on the distance component, they also rely more on the distance d as a rough estimate of
the distance interval to the next position than the haversine distance dh and Manhattan
distance dm as the distance interval between the current position and the previous position,
suggesting that the previous position of the vessel at t− 1 is not as important as its current
position at t and a rough estimate projection at t + 1. Nonetheless, the utilization of all
input features may not suffice to cover the entire range of unexpected vessel behavior near
ports or with complex movements.

The model performance can be enhanced by incorporating additional information re-
garding the vessel status, destination, or historical trajectory without a trajectory definition.
Thus, this approach remains a topic to explore in our future work.

5.3.4. Discussions: Influence of Data Size

The proportion of AIS messages varied widely according to the area location. This
variability among different areas is a general characteristic of AIS data: rarely passed areas
contributed only a limited amount of data, whereas congested areas contained a substantial
quantity of information. Figure 10 presents the size distribution of the training and dev-test
sets in each observed area based on the same hold-out validation split.

The proportion of the dev-test sets to the training set increased in the areas with the
busiest shipping routes; for instance, the Malacca Strait (MS) area encompasses half of
South East Asian waters, including the most congested maritime primary chokepoints and
three secondary chokepoints in Indonesian waters [49]. The proportion was drastically
reduced in the rarely transited areas, such as the Pacific Ocean. Consequently, areas with
a small amount of test data would indicate lower confidence in the overall performance
of the model than areas with extensive data. The K-fold validation split can solve this
problem. Nonetheless, it would produce non-comparable models.
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The dataset size affects deep learning performance, as a small amount of training data
may degrade the performance [51]. We recreated the DL model for the Malacca Strait (the
area with the most extensive dataset size) for each variation in the training set to show
the effect of the data size on the model performance (see Figure 11). The most significant
improvement in the performance occurred when the training set size exceeded 25,000. The
model performance began to stabilize when the training set reached approximately 200,000.
This effect may not represent all areas because three areas have a small dataset of less than
25,000 thresholds (i.e., NPO, SPO, BMS). However, all the models were trained with eight
years of data and are thus still capable of producing accurate predictions.
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5.4. Third Experiment: Application of the DL Model
5.4.1. Experimental Setup

In the third experiment, a DL model was built for the Malacca Strait (MS) area,
and a sample location was selected in which the number of ships was counted each day
consecutively, resembling a simulation of practical application. In the MS area, ships
traveled approximately 417 km daily on average (see Table 5). Thus, the Malacca Strait
itself, between Malaysia and Indonesia (95.2◦ E–103.2◦ E longitude and 0.5◦ N–6◦ N
latitude), was selected as the sample location, covering an area of half a million square
kilometers. Figure 12 shows the sample locations in the MS area. As the highest density
area, Singapore waters were not included in the sample because there would be many
outliers in the northeast and southeast portions that enter the observed sample location.
Nonetheless, long-term ship behavior near ports can be observed on Malaysia’s Teluk
Rubiah port inside the location.
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density distribution is calculated based on the test set.

For the application, uninterrupted AIS data for a period of time were required as the
test set. Consequently, the previous hold-out validation split cannot be applied because the
test and dev sets are equivalently derived from shuffled 2018 data. In addition, the training
and dev sets have to be generated in the same manner as the models in the previous
experiment to produce a generalized DL model similar to the previous experiment.

Therefore, a different scheme for the hold-out validation split was developed. Ran-
domly shuffled AIS data from July 2010 to September 2017 were used as the training set,
while randomly shuffled data between October 2017 and September 2018 were used as the
dev set. The last three-month data were not randomized and were retained chronologi-
cally as the test set. The predictions were processed sequentially, day by day, rather than
instantaneously. Subsequently, the number of ships was counted at the selected locations
every day.

5.4.2. Results and Discussions

The fitted plots of the overall results from the DL models and geodesic calculations
were compared to the actual data, as shown in Figure 13. The results are the daily prediction
of the number of ships inside the Malacca Strait from October to December 2018. The r-value
measures the linear relationship between the predictions and actual values. Compared to
the actual data, a strong relationship with the r-value of 0.83 from the DL model confirms
that predictions with an average time interval of 24 h using deep learning are possible,
which is contrary to the belief that the motion-based method is not effective for long-term
vessel location prediction. By using proper DL systems and massive data, this result
confirms that an accurate long-term prediction of the vessel position can be generated with
the straightforward motion-based method. In contrast, the geodesic calculation showed a
weak relationship with an r-value of 0.51, suggesting that conventional calculations cannot
be used for the long-term position projection of a vessel moving in congested waters or
near the ports.

Moreover, Figure 14 shows the daily prediction of the number of ships inside the
sample location for the entire month of November 2018. The estimated target values
from the DL model and geodesic calculations were compared to the ground truth target
values. The DL model proved that it can accurately predict the quantity inside the location
for an entire day without additional information regarding historical navigational status.
Meanwhile, as the geodesic calculation failed to predict the long-term position of a vessel
moving in congested waters or near the ports, it also failed to predict the number of ships.
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Detailed ship position predictions inside the sample location are shown in Figure 15.
The ship position prediction from the DL model and geodesic calculation in the Malacca
Strait was compared with the actual position on 10 and 11 November 2018. In this location,
most ships were moving, and some were idle near Malaysia’s Teluk Rubiah port. Examining
the actual data on 9 November, there was a line of ships moving from the northwest to
the southwest, three of which were separated at the rear. These three ships moved to the
southwest the next day, and another line of ships appeared from the northwest, which
eventually was the start of a congested line of moving ships that appeared on the 11th. The
DL model closely mimicked the position of these ships and the movement of the ground
truth targets on 10 and 11 November, even for ships idling at the port. The number of ships
and their positions were reliably predicted by the model. From these results, the dl model
appears to have a sense of the dimension of the geographic coordinate system that can
be or is often passed. In contrast, geodesic calculation failed to predict the position of the
ships either in the moving position or idle near ports, and also resulted in a poor estimate
of the number of ships inside the area.
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Figure 15. Ship positions in the Malacca strait on three consecutive days in November 2018: TP
is the true position (left), DL is the deep learning prediction (center), and GC is the geodesic
calculation (right).

6. Discussions on Robustness of End-to-End Deep Learning Models
6.1. Comparison of End-to-End DL Models

The MLP model shows a remarkable performance compared to the ensemble-based
ML models and conventional approach from the dataset with the long-time-interval distri-
bution. End-to-end means that the approach does not need a trajectory reconstruction and
other preprocessing/postprocessing steps for making a prediction.

To further clarify the robustness of end-to-end DL-based models, we built two DL-
based models: Deep RNN and LSTM. These sequence-based DL architectures were built
with the same input, output, and validation splits to the MLP model so that their perfor-
mances are broadly comparable (the structure was also constructed as closely as possible to
the MLP model while also tuned to the most optimized). The input does not go through an
interpolation or trajectory reconstruction to ensure an equivalent model. It already carries
information regarding time interval ∆t and a rough distance dt to the target. The Deep
RNN and LSTM models have five hidden recurrent layers with recurrent units of {64, 64,
32, 32, 16} and a one-unit linear output layer. The model was trained in mini-batch with
the loss function of mean absolute error (MAE) optimized by Adam. The stacked deep
recurrent layers were easily prone to overfit the training set (LSTMs are much easier), which
was alleviated using a combination of recurrent dropout and recurrent layer normalization.

The Indian Ocean and Malacca Straits areas similar to the second experiment, repre-
senting the simple and complex movement of ships on the ocean and chokepoint areas,
respectively, were selected as a definitive test for the DL-based models. The overall pre-
diction methodology of these two recurrent models is similar to the second experiment.
The models were also set to generalize on the data at which the training set was shuffled.
The number of steps was considered one-time steps: the input only contains information at
time step t (the implicit information of t− 1 is included) to make a prediction at t + 1, and
thus this resembles a multivariate time series with a single time step.

The performance of the DL-based models is presented in Table 6. The results of the
proposed MLP model in the ocean and chokepoint areas are slightly more accurate than
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the other DL architectures. However, with only a 1% improvement, the performance of the
feed-forward model is considered similar to the recurrent models (RNN and LSTM) that
have more trainable parameters. Applying more computational cost and complex models
appears to negatively improve the performance. The MLP model took the fastest total
training times on both areas with the least parameters than the other DL models. These
results were obtained on a single Intel i7-9700K processor (8 CPU @3.60 GHz).

Table 6. Comparison of the deep learning model performance.

Areas Methods
Loss MDE

(km)
MaE

(Degree)
Training
Time (s)MAEλ MAEϕ

Indian Ocean
(IO)

MLP 0.174 0.149 27.0 1.7 1699
RNN 0.176 0.150 27.4 1.7 2758
LSTM 0.177 0.148 27.3 1.7 1845

Malacca Strait
(MS)

MLP 0.376 0.337 62.8 16.9 4257
RNN 0.384 0.335 63.6 16.6 6561
LSTM 0.381 0.336 63.4 16.2 6243

The patterns observed result from the small sequences (time steps), at which the
regular feed-forward network is sufficient for this task. This is confirmed as the application
of the LSTM model did not deliver better performance than the RNN model since LSTMs
are much more capable to handle long sequential data than simple RNNs with limited
short-term memory. The results correspond to those of Gers et al. (2002) who tested RNNs
and LSTMs for time-series predictions, but the results were poor as simple multilayer
perceptrons (MLPs) often outperformed LSTMs when applied to the same data [52].

6.2. Comparison of End-to-End DL Models on Small Dataset

A small dataset with short-time intervals near the ports was used to further analyze the
robustness of the end-to-end DL models. The dataset was retrieved from the ATD2019 chal-
lenge dataset (https://gitlab.com/algorithms-for-threat-detection/2019/atd2019; accessed
date 19 September 2021). All AIS training and challenge data with different properties
were combined and used to construct a dataset with varying time-interval distribution.
Figure 16a shows the short-time-interval distribution of the small dataset averaging around
10 s intervals. Most of the data have near-real-time intervals, and the rest vary up to 60 s.
The dataset consisted of ships movements near ports located around north of Norfolk,
Virginia, North America (see Figure 16b). In this dataset, course over ground ψog is given
but not heading ψh, and therefore, to accommodate the same 10 input features as the
previous experiments, the heading was copied from the course over ground.
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The dataset was split into a training set and dev-test sets according to the hold-out
validation split with 80% data for training and the rest 20% for validation and test. The
training set comprised more than 90,000 data records, whereas each dev and test set
contained more than 10,000 data records. The size of these sets was considered sufficiently
large, thus providing high confidence to the overall result.

Table 7 shows the results from the DL models and geodesic calculation on the small
dataset. According to the second experiment results, the pattern of MaE on the small
dataset confirms that the dataset consists of vessel behavior near ports with short-distance
intervals such as berthing, idling, and maneuvering. The average distance interval between
two consecutive AIS points is 24.6 m. At this small distance, the geodesic calculation is
qualitatively similar to the dead reckoning calculation with an error of around 3.5 m. The
DL models are 8% better than the geodesic calculation. Naturally, LSTMs can generate
the most accurate short-term predictions of vessel position. However, on this dataset with
the uneven distribution and without trajectory reconstruction, the MLP model generated
predictions as accurate as those of the LSTM with almost half of the training times.

Table 7. Comparison of the model performance on the small dataset.

Methods
Loss MDE

(m)
MaE

(Degree)
Training
Time (s)

Total
ParamsMAEλ(10−5) MAEϕ(10−5)

Average distance interval 19.7 12.1 24.6 - - -
Geodesic calculation 2.4 2.1 3.5 29.2 - -

MLP 2.3 1.8 3.2 31.5 922 8545
RNN 2.4 1.8 3.3 31.4 2537 19,041

LSTM 2.3 1.7 3.2 31.4 1693 76,113

The results show that compared to the conventional approach, the DL-based models
are not as effective as on the long-term prediction task, and the LSTM model delivers the
same performance as the feed-forward networks since the time steps are limited (single
time steps with 10 dimensions). This limited sequence allows the feed-forward networks to
deliver optimum performance but would not maximize the potential of the sequence-based
recurrent networks. Moreover, on the dataset with varying time-interval distribution and
without trajectory reconstruction, the feed-forward networks generated predictions as
accurate as those of the LSTM with faster training times and less trainable parameters.

7. Conclusions

This study employed DL models with experimentally defined properties using ex-
actEarth AIS daily data. In the first experiment, a model for the Indian Ocean area was
examined, and in the subsequent experiment, 12 models were investigated on open oceans
and maritime chokepoints. In the last experiment, a selected sample location within the
Malacca Strait area was examined, resembling a simulation of practical application.

The results demonstrated that predictions with an average time interval of 24 h were
possible, confirming that the straightforward motion-based method can generate an accu-
rate long-term prediction of the vessel position. The DL models generated more accurate
predictions than the geodesic calculation as the baseline model in all areas. Predictions in
the open ocean areas yielded higher accuracy than the chokepoint areas. However, com-
pared to the geodesic calculation, the improvement scores were higher in the chokepoint
areas than in the ocean areas because the geodesic calculation failed to predict vessel behav-
ior near the ports and congested waters. The DL model can predict the complex movement
of ships near ports and congested routes, whereas conventional calculations fail, with no
information regarding vessel status, historical trajectory, or destination. The prediction
accuracy was directly proportional to the amount of training data. Furthermore, the last
experiment demonstrated that the DL model appears to have a sense of the dimension of
the geographic coordinate system that can be or is often passed, wherein the chokepoint
areas rely more on the input features of the current latitude and longitude of the vessels.
Moreover, on the dataset with varying and uneven time-interval distribution and without
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a trajectory reconstruction, the proposed MLP model generated predictions as accurate as
those of the LSTM with faster training times.

This paper is the first study to explore long-term ship position prediction using an
AIS dataset with a long-time-interval distribution in a nine-year timespan for capesize
bulk carriers worldwide, providing a valuable benchmark for future studies. The model
properties may be enhanced by adding new essential input features regarding the vessel
status, destination, or historical trajectory (or longer time steps) without a trajectory defini-
tion. In our future studies, we intend to improve the model performance by utilizing these
techniques and incorporating other types of vessels, thereby increasing the complexity to
the model. In addition, we will attempt a longer time interval for long-term prediction.
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