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Abstract

Mitochondrial genomes compete for transmission from mother to progeny. We explored this 

competition by introducing a second genome into Drosophila melanogaster to follow transmission. 

Competitions between closely related genomes favored those functional in electron transport, 

resulting in a host-beneficial purifying selection1. Contrastingly, matchups between distant 

genomes often favored those with negligible, negative or lethal consequences, indicating selfish 

selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation 

displaced a complementing genome leading to population death after several generations. In a 

different pairing, opposing selfish and purifying selection counterbalanced to give stable 

transmission of two genomes. Sequencing of recombinant mitochondrial genomes revealed that 

the non-coding region, containing origins of replication, governs selfish transmission. Uniparental 

inheritance prevents encounters between distantly related genomes. Nonetheless, within each 

maternal lineage, constant competition among sibling genomes selects for super-replicators. We 

suggest that this relentless competition drives positive selection promoting change in the 

sequences influencing transmission.

Natural selection culls populations of compromising mutations and favors traits that enhance 

organismal fitness. Nuclear genes have a relatively uniform exposure to natural selection as a 

result of regimented replication and segregation. In contrast, unconstrained competition 

among multiple mitochondrial genomes creates alternative ways to select for fit genomes, as 

well as opportunities for selfish genomes to increase in abundance.

In heteroplasmic lines of Drosophila, mitochondrial genomes harboring mutations 

detrimental to oxidative phosphorylation (OXPHOS) function suffered a transmission 

disadvantage, even when complemented by co-resident wild-type genomes. The resulting 
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purifying selection is based on competition among genomes within the organism rather than 

survival of fit organisms1,2. However, a selfish advantage might also bias transmission and 

provide an evolutionary drive (i.e. selfish drive)3–5. For example, in S. cerevisiae, 

preferential replication promotes inheritance of hypersuppressive petite mitochondrial DNA 

(mtDNA)6–8. In multicellular organisms, defective mitochondrial genomes carried in 

animals can also benefit from selfish drive to enhance their propagation9–14.

To study head-to-head competition between mitochondrial genomes, we used cytoplasmic 

transplantation to bypass uniparental inheritance, which normally prevents encounters 

between unrelated genomes. In the resulting heteroplasmic lines, purifying selection 

dominated competition between closely related genomes1, but here we show that when 

distantly related genomes compete, a selfish selection drives success of genomes having 

negligible, or negative consequences to the fly. Stable heteroplasmy can occur when selfish 

selection benefits one genome and purifying selection benefits the other. Our findings 

indicate that competition among mitochondrial genomes influences their evolutionary 

trajectory.

We impose selection for OXPHOS function by raising the temperature of a line carrying a 

marked genome with a temperature sensitive lethal mutation in the cytochrome c oxidase 

subunit I gene (mt:ND2del1 + mt:CoIT300I) (Figure 1a). When paired with a related wild-

type genome in heteroplasmic strains, selection reduced the transmission of temperature 

sensitive genome due to an intra-organismal competition among mitochondria genomes1,2. 

In contrast, when paired with the ATP6[1] genome15,16, a diverged D. melanogaster 
mitochondrial genome with numerous sequence differences (Figure 1), the temperature 

sensitive genome completely displaced the ATP6[1] genome17. Unlike purifying selection, 

this displacement occurred at either 25 °C or 29 °C, hence was not substantially influenced 

by the ability of the genome to contribute to OXPHOS (Figure 1a). Even at the restrictive 

temperature, the population expanded as long as the ATP6[1] genome provided 

complementing mt:CoI function. However, after several generations, just as the ATP6[1] 
genome disappeared, the entire stock died. We conclude that the temperature sensitive 

genome has a transmission advantage despite carrying a detrimental allele that leads to 

lethality.

Based on our recent demonstration of recombination among mitochondrial genomes17, we 

genetically mapped the sequence distinctions making the temperature sensitive genome the 

stronger competitor. Exchange events transferring these sequences should produce an 

enhanced ATP6[1] genome that would persist to give surviving flies. When five 

heteroplasmic lines were followed at 29 °C, one line gave surviving progeny carrying a 

recombinant genome (Figure 1a). This recombinant has the majority of the ATP6[1] coding 

sequence including the functional mt:CoI allele, but carried the entire non-coding segment 

and a small segment flanking coding sequence from the temperature sensitive genome 

(Figure 1b)17. Later, we isolated another recombinant with the entire coding sequence 

derived from the ATP6[1] genome but with the non-coding sequence from the temperature 

sensitive genome (Supplementary Figure 1a). At first, the surviving heteroplasmic flies had a 

low relative abundance of the recombinant genome and a preponderance of the temperature 

sensitive genome. Over subsequent generations, the relative abundance of recombinant 
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genomes increased, showing their ability to successfully compete with the co-existing 

temperature sensitive genome (Figure 1c, Supplementary Figure 1b & c). These changes in 

the relative ratios of the mitochondrial genomes (as well as those described below) occurred 

in the absence of change in the total copy number of mitochondrial genomes. These data 

show that acquisition of the non-coding region from the temperature sensitive genome is 

sufficient to endow the recombinant with an improved ability to compete against the 

temperature sensitive genome. We conclude that, at least in this pairing of genomes, the 

difference in selfish drive maps to the non-coding region of the mitochondrial genome.

The non-coding region of the mitochondrial genome, also known as the control region or the 

regulatory region, contains the origins of replication, and is the most variable sequence for 

many metazoan species18–21. The D. melanogaster version is AT-rich (> 90%) and large 

(~4.6 kb), and is mainly (> 90%) composed of five tandem type I repeats and four tandem 

type II22 (Supplementary Figure 2a). Within D. melanogaster, this region exhibits frequent 

nucleotide and length polymorphisms23–25 (e.g. Supplementary Figure 2a & b), and the 

divergence is more extensive in other Drosophila species26,27 (e.g. Supplementary Figure 

2c). For instance, D. yakuba mtDNA (NC_001322) has a shorter (~1 kb) and diverged non-

coding region. We thus introduced mitochondrial genomes from other Drosophila species 

into D. melanogaster and examined their ability to compete.

We first introduced cytoplasm of D. yakuba (diverged ~10 MY) embryos into D. 
melanogaster embryos carrying the temperature sensitive genome (Figure 2a). However, no 

lines retaining the D. yakuba mitochondrial genome were recovered. On the other hand, at 

the restrictive temperature, where selection favored retention of the D. yakuba genome, two 

of 50 injected females gave viable progeny heteroplasmic for the D. yakuba genome and a 

persisting temperature sensitive genome. The D. yakuba genome was carried at a low but 

stable level (~4%) for many generations (> 100) under constant temperature selection 

(Figure 2b).

Expression of mitochondrially-targeted PstI selectively eliminated D. melanogaster mtDNA 

(site at mt7496) giving lines containing only the D. yakuba genome (Figure 3a). These lines 

(named D. mel (mito-yakuba)) were viable and, in our measures, at least as robust as wild-

type flies (Figure 3b & c). This was surprising because examples of nuclear-mitochondrial 

incompatibility28–31 had suggested that mismatches between the nuclear genes and the 

foreign mitochondrial genes would compromise OXPHOS and hence the D. mel (mito-

yakuba) flies. Instead, the result shows that the only incompatibility is between the two 

mitochondrial genomes, apparently the result of unequal competition. Similarly, 

incompatibility between mitochondrial genomes had been noted to influence transfer of ape 

mtDNA into human tissue culture cells12.

In the above heteroplasmic line, the D. yakuba genome benefits from purifying section at 

29 °C because it provides a functional mt:CoI gene. Disappearance of D. yakuba mtDNA 

within two generations at the permissive temperature shows the importance of this advantage 

(data not shown). In contrast, the D. melanogaster temperature sensitive genome, whose 

OXPHOS function is compromised by mutation, is sustained by selfish drive. These two 

selections oppose and balance each other to maintain stable transmission of the two 
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genomes. Since purifying selection operates during oogenesis to limit transmission of the 

temperature-sensitive genome1, this stage-limited selection against the temperature sensitive 

genome ought to give the D. yakuba genome a transient relative advantage. Indeed, at the 

restrictive temperature, newly deposited eggs have an especially high abundance of the D. 
yakuba genome. At the permissive temperature, eggs showed no increase, arguing that this 

increase depends on selection against the temperature sensitive electron transport defect 

(Figure 2c). The relative abundance of D. yakuba genome then declined during development, 

only to increase again during oogenesis (Figure 2c). Thus, selfish selection favoring the D. 
melanogaster genome influences competition at many stages of the life cycle, while the 

purifying selection favoring the D. yakuba genome is largely restricted to oogenesis1,2,32. 

This temporal distinction might underlie previously observed oscillations in the relative 

abundance of other heteroplasmic genomes33.

To further demonstrate that D. melanogaster mitochondrial genomes benefits from a stronger 

selfish drive, we introduced other D. melanogaster mitochondrial genotypes, many of which 

do not support organismal vigor as effectively as the D. yakuba genome (Figure 3b & 

c)16,32,34, into the D. mel (mito-yakuba) line. These tested D. melanogaster genomes 

outcompeted the D. yakuba genome at 25 °C (Figure 3d), an outcome detrimental to the 

fitness of the flies.

Notably, the competitive strengths of D. yakuba, ATP6[1] and the temperature sensitive 

genomes do not fall on a simple hierarchy: D. yakuba mtDNA is displaced by ATP6[1], 
suggesting that it is the weaker competitor, yet, the D. yakuba genome is sustained in 

conjunction with the temperature sensitive genome at the high temperature while the 

ATP6[1] genome is eliminated. Apparently, competitive strength is not determined by 

potency of a single factor.

When we re-introduced the temperature sensitive genome into the D. mel (mito-yakuba) 

line, heteroplasmy was again stabilized at the restrictive temperature, but with a higher ratio 

of the D. yakuba genome (Figure 3d). Since the sequence of the D. yakuba mitochondrial 

genome was unchanged, the ratio change is likely due to accumulation of nuclear modifiers, 

which have previously been suggested to influence competition among mitochondrial 

genomes35–37. The modification of this balance between selfish selection and purifying 

selection acting on competing genomes ought to be sensitive to minor perturbations of either 

selection. It will be interesting to explore how nuclear genes modify the competition 

between mitochondrial genomes.

The native genome is not always the winner in interspecies heteroplasmic lines. For 

instance, when we introduced D. mauritiana (diverged ~2mya) mtDNA (maI), it replaced the 

D. melanogaster genomes within a few generations (Supplementary Figure 3). A different D. 
mauritiana/D. melanogaster heteroplasmic line behaved similarly38. Previously, De Stordeur 

ranked mitochondrial haplotypes from D. simulans and D. mauritiana for their potency to 

displace each other39. While these findings suggest that mismatches in competitive strength 

are common among diverged genomes, the role of selfish drive in determining the outcome 

in these competitions has yet to be determined.
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While the mechanism of selfish drive is unknown, localization of the trait to the non-coding 

region constrains possibilities. The non-coding sequence is unlikely to influence drive by 

complex actions, such as evasion of mitophagy or localizing mitochondria to the germline. 

In contrast, the localization of the two origins for asymmetric replication of the mtDNA 

(Supplementary Figure 2a) suggests a link between replication and competitive strength. 

While specific sequence features characterize the start sites of replication40, associated 

sequences show numerous SNPs and variations in the number of repeat sequences 

(Supplementary Figure 2a & c). A previous study of large laboratory fly populations 

detected instability in repeat number and tracked transient heteroplasmy in individual flies to 

show that longer variants of the non-coding regions tended to increase in abundance during 

transmission24. We suggest that this finding is related to our observations of selfish drive. 

Though little is known about the control of Drosophila mtDNA replication, the control 

region is likely to influence copy control, primer synthesis and initiation efficiency. Even a 

subtle gain in replication, amplified over many rounds of genome doubling, would result in a 

large competitive advantage. We thus hypothesize that selfish drive can be equated with 

replicative drive.

Each new mutation that enhances mtDNA transmission can displace genomes without this 

asset. The displacement raises the bar for the next mutation to produce a super-competitor 

that will again take over in an unending ‘arms race’41. Thus, as described in the ‘red queen’ 

hypothesis, we propose that a constant competition among co-existing mitochondrial 

genomes creates an intraorganismal positive selection for super-replicators during evolution. 

Uniparental inheritance confines each super-replicator to a lineage, fragmenting a species 

into multiple lineages within which local competition independently selects for winning 

mitochondrial genomes42. Positive selection accelerates sequence divergence, and the non-

coding sequences of mtDNA diverge especially fast42–44. Divergence in the size of this 

region by alteration of repeat number is widespread45–50. This complicates alignment of 

these sequences between species making quantification of change problematic. Using 

sequences of twelve D. melanogaster wild isolates25, we show that divergence of the non-

coding sequence exceeds neutral changes (Supplementary Figure 2b), a signature of positive 

selection. Thus, selfish selection, a positive selection, drives rapid change of noncoding 

sequences, while purifying selection, a negative or conserving selection, limits change of the 

coding sequences.

To conclude, our findings show that competition between distantly related mitochondrial 

genomes can be dominated by the selfish drive of a genome rather than its contribution to 

the fitness of an organism. As a caution, the incompatibilities observed suggest that the 

success of planned efforts to treat mitochondrial diseases using mitochondrial donors may 

well depend on the competitive strength of the donor’s mitochondrial genome.

 Online Methods

 Fly stocks

The D. melanogaster mutant alleles mt:ND2del1 and mt:CoIT300I were previously described1. 

These alleles were present either alone, or on a double mutant genome mt:ND2del1 + 

mt:CoIT300I. Flies homoplasmic for the ATP6[1] mitochondrial genome was kindly provided 
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by Dr. Michael Palladino (University of Pittsburgh, U.S.). D. mauritiana and D. yakuba flies 

were obtained from Drosophila species stock center, San Diego. Flies with different 

mitochondrial genomes were backcrossed to Canton S for 10–30 generations to homogenize 

the nuclear background. Other strains used included UAS-mito-PstI and nos-Gal4. The 

stocks were cultured at 18–25 °C on standard fly medium.

 Establishment of heteroplasmic lines

Poleplasm transplantation was used to generate heteroplasmic flies as previously described1. 

For the mt:ND2del1 + mt:CoIT300I / ATP6[1] line (‘+’ indicates alleles on the same genome 

and ‘/’ indicates the co-residence of the two indicated genomes), ATP6[1] flies were used as 

the recipient during poleplasm transplantation in order to obtain lineages with high initial 

abundance of the ATP6[1] genome. Numerous female progeny (G0) from injected embryos 

were individually crossed to mt:ND2del1 + mt:CoIT300I males for 2 days at 25 °C. After 

progeny collection, mothers were sacrificed for total DNA extraction and the proportion of 

ATP6[1] genome was estimated by qPCR as described below. The progeny (G1) of the 

mothers were either maintained at 25 °C, or shifted to 29 °C and maintained at 29 °C for 

multiple generations.

For the D. yakuba/mt:ND2del1 + mt:CoIT300I line, cytoplasm from D. yakuba embryos was 

transplanted into the mt:ND2del1 + mt:CoIT300I embryos and eclosed adults were kept at 

29 °C to select for flies with the D. yakuba genome. By doing this, two independent lines 

were established and both stably transmitted D. yakuba mtDNA (~4%) from generation to 

generation at 29 °C. Subsequently, a mitochondrially-targeted restriction enzyme, mito-PstI, 

was expressed in the germline of the two heteroplasmic lines to eliminate the mt:ND2del1 + 

mt:CoIT300I genome, as only the D. melanogaster mtDNA contain a PstI site. Through this, 

several lines with only wild-type D. yakuba mtDNA were established. The D. mel (mito-
yakuba) line was then used a recipient for subsequent cytoplasm transplantations.

For lines heteroplasmic for D. mauritiana and D. melanogaster mtDNA, cytoplasm from D. 
mauritiana embryos was transplanted into D. melanogaster embryos homoplasmic for wild-

type mtDNA, mt:ND2del1 + mt:CoIT300I, or mt:ND2del1. Several G0 mothers were crossed 

to wild-type mtDNA, mt:ND2del1 + mt:CoIT300I, or mt:ND2del1 males respectively for 2 

days at 25 °C to produce G1 females in order to establish independent lineages.

 Phenotypic analysis of flies with different mitochondrial genotypes

Flies homoplasmic for mt:ND2del1 + mt:CoIT300I, ATP6[1], mt:ND2del1 and D. yakuba 
mitochondrial genome were backcrossed to Canton S males for at least 10 generations. To 

assay the lifespan, newly eclosed flies were separated by sex and over 80 flies of each sex 

were used to follow each population in each condition. To avoid crowding, these were 

housed at a density of 10 flies per vial or less throughout the analysis (Supplementary Table 

1). The flies were transferred to fresh vials and survivorship was recorded every two days at 

both 25 °C and 29 °C. The climbing assay was performed as previously described1. Briefly, 

20 flies (backcrossed for 30 generations) of various ages were transferred to a plastic 

cylinder (22 cm long, 1.5 cm diameter) with a mark 10 cm line from bottom. After 1 h for 

acclimation, the flies were knocked down to the bottom by gently tapping the tubes. The 
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time required for 50% of the flies to climb to the marked 10 cm line was recorded. Three 

trials were conducted for each group, and three groups were used for each genotype. For all 

the above phenotypic studies, individual flies were picked randomly and the climbing assay 

was performed blind to avoid cognitive bias in scoring. For statistical analysis, Log-rank test 

and unpaired Student’s t-test was performed for the survivorship and climbing assay data, 

respectively, in order to compare flies homoplasmic with different mitochondrial genotypes.

 DNA isolation

Total DNA was extracted from adults as described preiously1. Frequencies of mitochondrial 

genotypes were measured in individual founding females (G0) and their further generations 

via qPCR. When populations were analyzed, we extracted DNA from groups of 40 

individuals.

 Sequencing the D. yakuba mtDNA

Three long-range PCR reactions using Expand Long Template PCR system (Roche) were 

performed using the total DNA from D. yakuba and D. mel (mito-yakuba) as template: 

mt186 – 7519, mt7229 – 14797 and mt12822 – 400 with the following program: 1 cycle of 

93 °C for 3 min, 30 cycles of 93 °C 15 s, 50 °C 30 s, 60 °C 8 min, and 1 cycle of 60 °C for 

10 min. Primers were designed to give full coverage of the D. yakuba mitochondrial genome 

(Supplementary Table 2) for sequencing by QuintaraBio (Albany, CA).

 qPCR Parameters

qPCR assays were performed as described previously1. Briefly, the total mtDNA copy 

number in heteroplasmic flies was measured by qPCR of a 52 bp region (mt361 – 412) 

present in all mtDNA genotypes (primer mt361F and mt412R, Supplementary Table 2). 

Primers cognate to the mt:ND2 loci of specific genomes were designed to measure copy 

number of genomes with ATP6[1], or D. yakuba, or D. mauritiana genomes without 

amplifying a product from the D. melanogaster mt:ND2del1 allele: these were used for qPCR 

of a 51 bp from the mt:ND2 region of these genomes (See Supplementary Table 2 for 

primers). Standard curves were constructed using a series of 10-fold dilutions of purified 

PCR fragment containing both the common region and ATP6[1], or D. yakuba, or D. 
mauritiana mt:ND2 region. The efficiency of the 2 primer sets was normalized each time by 

comparing total mtDNA copy number estimated for the same wild-type DNA sample. qPCR 

was performed with the following reaction conditions: 95 °C for 10 min, 40 cycles of 95 °C 

30 s and 48 °C 30 s. For each 20 µl qPCR reaction, 1% of a fly’s total DNA was used as 

template. The Ct values used ranged from 13 to 33 and each reaction was repeated 3 times or 

more. To distinguish the ATP6[1] genome from the D. yakuba mtDNA, two different sets of 

primers were designed for the qPCR assay (Supplementary Table 2): mt6237F and mt6314R 

as the common primers; and mt6652F and mt6811R as primers specific for recognizing D. 
yakuba mtDNA.

 Monitoring abundance of the D. yakuba mitochondrial genome during development

Four females heteroplasmic for D. yakuba and mt:ND2del1 + mt:CoIT300I genomes were 

individually crossed (in separated vials) to mt:ND2del1 + mt:CoIT300I males for 2 days at 
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29 °C. The mothers of each vial were transferred to new vials to collect eggs for 16 h at 

29 °C. Subsequently, the mothers and half of the collected eggs were sacrificed to measure 

the relative abundance of D. yakuba genome via qPCR described above. The rest of the eggs 

were allowed to developed into late 3rd instar larvae at 29 °C before they were sacrificed to 

measure the relative abundance of D. yakuba genome. To examine the abundance of D. 
yakuba mtDNA in newly laid eggs when oogenesis occurs at 22 °C, late 3rd instar larvae 

were shifted from 29 °C to 22 °C, and the eggs were collected at 22 °C and sacrificed to 

measure the abundance of D. yakuba genome.

 Quantitative analyses of D. mauritiana mitochondrial genome based on restriction 
cleavage

For lines heteroplasmic for D. mauritiana wild-type mtDNA and D. melanogaster wild-type 

mtDNA, the sequence difference between the two genomes did not allow performance of 

qPCR. Thus, we quantified the relative amount of genomes distinguished by restrictions 

enzyme cleavage site by comparing the ratios of diagnostic restriction fragments. Total DNA 

was collected from 40 adult flies of various heteroplasmic lines from generation 1 to 

generation 4 (for generation 0, total DNA was collected from the mother after it was mated 

with males at 25 °C for two days to lay eggs). A mtDNA region (mt11517 – 12529) was 

amplified by PCR (30 cycles of 95 °C 30 s, 50 °C 30 s and 60 °C 60 s). The PCR products 

were then digested completely with XhoI under the conditions recommended by the supplier 

(NEB). The digested DNA was separated by gel electrophoresis, and the ratio of cut and 

uncut DNA was estimated by measuring the intensity of bands using ImageJ.

 Southern analysis

Southern blotting was used to detect the recombinant genome and monitor the length 

variation in the non-coding region of the mitochondrial genomes. It was performed as 

described in Ma and O’Farrell17. In brief, digested DNA was separated on a 0.8% agarose 

gel by electrophoresis and transferred to Hybond N+ membrane by the capillary method. 

The blot was hybridized with PCR-generated probes (mt1577 – 2365 or mt21 – 400, see 

Supplementary Table 2) that were labeled with DIG-11-dUTP.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Selection based on selfish drive in a heteroplasmic line containing the ATP6[1] genome and 

the temperature sensitive double-mutant: mt:ND2del1 + mt:CoIT300I. (a) Decline of the 

ATP6[1] genome when co-existing with mt:ND2del1 + mt:CoIT300I. A schematic (upper left) 

of D. melanogaster mitochondrial genome with protein coding genes (blue), rDNA loci 

(light cyan), tRNAs (pink) and the non-coding region (brown). Key features distinguishing 

the ATP6[1] and temperature sensitive genomes are indicated (upper right panel). A PCR 

primer set that selectively amplifies the intact ND2 locus of the ATP6[1] genome is 
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indicated (BglII site, yellow highlight). The relative abundance of the ATP6[1] genome as 

assessed by qPCR for five lines maintained at 25 °C and 29 °C for multiple generations. 

After the ATP6[1] abundance fell to a low level (illustrated), the flies at 29 °C started to die 

(not shown), but in one line a few survivors expanded and showed an increasing abundance 

in a genome with the ATP6[1] ND2 region (red line, black arrow). (b) The map of the 

recombinant genome sequenced by PacBio SMRT technology. Red lines indicate the 

distribution of SNPs characteristic of mt:ND2del1 + mt:CoIT300I genome that are present in 

the recombinant. The ATP6[1] genome also lacks ~1.6 kb of the non-coding region17. (c) 
The transmission of the recombinant genome was favored when paired with the temperature 

sensitive genome. The directional arrows indicate how the abundance of a particular 

genotype was increasing or decreasing at any given generation.
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Figure 2. 
Stable transmission of the D. yakuba mtDNA in the D. melanogaster nuclear background. 

(a) A heteroplasmic line was established by transferring cytoplasm of D. yakuba embryos 

into embryos carrying the mt:ND2del1 + mt:CoIT300I genome. (b) The proportion of D. 
yakuba mtDNA was maintained at ~4% for over 30 generations in two independent 

heteroplasmic lines at 29 °C. (c) The abundance of the D. yakuba mtDNA oscillated during 

development: high in newly deposited eggs, declined during development and rose in 

oogenesis to reach a high level in eggs again at 29 °C. The first three entries come from 

analysis of different stages of the lifecycle across one generation. As expected for a stably 

propagated stock, an analysis of eggs collected at a different time (egg population 2) gave 

the same relative abundance for the S. yakuba genome. However, when mothers were shifted 

to 22 °C at the end of 3rd instar larval stage so that oogenesis occurred at the permissive 

temperature, the eggs laid had a reduced abundance of the D. yakuba genome (egg 

population 3). Results are means ± SD (n = 4 for each data point). Unpaired Student’s t-test 

was performed to compare the difference in the abundance of D. yakuba mtDNA between 

newly deposited eggs, 3rd instar larvae and adult flies (** = p < 0.01, *** = p < 0.001).
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Figure 3. 
Cross species analysis of functional conservation and competitive strength of mitochondrial 

genomes. (a) The D. melanogaster genome was eliminated from a heteroplasmic line by 

expressing PstI that is targeted to mitochondria. (b) D. mel (mito-yakuba) flies climb faster 

than D. melanogaster flies carrying various native mitochondrial genomes. Time (means ± 

SD, n = 3) required for 50% of flies (25 °C) of the indicated age (D = days) and sex to climb 

to a prescribed height after being gently knocked down was recorded. Significance of 

differences is based on unpaired Student’s t-test (* = p < 0.05, ** = p < 0.01, *** = p < 
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0.001). (c) Lifespan of congenic flies with different mitochondrial genotypes at 25 °C and 

29 °C. Survivorship was recorded every two days (n > 80, see Supplementary Table 1a). The 

D. yakuba mitochondrial genome supports robust survival that exceeds that supported by 

several native genomes (see Supplementary Table 1b & c for statistical analysis). (d) The D. 
yakuba mitochondrial genome was quickly outcompeted by various D. melanogaster 
genomes at 25 °C. Native mitochondrial genomes were introduced into the D. mel (mito-

yakuba) line, and the relative abundance of the D. yakuba genome was followed over 

generations by qPCR (see Online Methods). The differently colored lines represent 

independently produced heteroplasmic lines. The D. yakuba mtDNA was only maintained 

when partnered with the temperature sensitive genome at 29 °C.
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