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Abstract

Behavioral tactics play a crucial role in the evolution of species and are likely to be found in host-parasitoid interactions
where host quality may differ between host developmental stages. We investigated foraging decisions, parasitism and
related fitness in a gregarious ectoparasitoid, Sclerodermus harmandi in relation to two distinct host developmental stages:
larvae and pupae. Two colonies of parasitoids were reared on larvae of Monochamus alternatus and Saperda populnea
(Cerambycidae: Lamiinae). Paired-choice and non-choice experiments were used to evaluate the preference and
performance of S. harmandi on larvae and pupae of the two species. Foraging decisions and offspring fitness-related
consequences of S. harmandi led to the selection of the most profitable host stage for parasitoid development. Adult
females from the two colonies oviposited more quickly on pupae as compared to larvae of M. alternatus. Subsequently, their
offspring development time was faster and they gained higher body weight on the pupal hosts. This study demonstrates
optimal foraging of intraspecific détente that can occur during host-parasitoid interactions, of which the quality of the
parasitism (highest fitness benefit and profitability) is related to the host developmental stage utilized. We conclude that S.
harmandi is able to perfectly discriminate among host species or stages in a manner that maximizes its offspring fitness. The
results indicated that foraging potential of adults may not be driven by its maternal effects, also induced flexibly with
encountering prior host quality.
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Introduction

All insect parasitoids face the problem of finding sufficient high-

quality resources for growth, maintenance and reproduction.

When foraging in a heterogeneous environment, parasitoids often

encounter a variety of host species at different developmental

stages. These hosts may differ in body size, behavioral defense,

physiological and immunological status [1–3]. Optimal foraging

strategy in host selection decisions by parasitoids may be

determined by changes in host resources or quality [4–5].

In the context of host selection, parasitoids that forage optimally

should adopt behaviors that provide the highest fitness return or

profitability in relation to the host size or age availability

distribution [4–5]. Many parasitoids are able to assess the quality

of hosts through host size and selectively parasitize hosts of a

certain size [6–7]. Host stage-selective feeding and oviposition

reduce competition for hosts between adult female and her

progeny or among progeny, with a corresponding increment in

offspring survival and performance [8]. One of the optimal

patterns to emerge from previous studies on the life history

strategies of parasitoids is that large body size confers greater

fitness [6] and closely correlates with the stage of the host at

parasitism [9–10].

For gregarious idiobiont parasitoids, which often kill or paralyze

the attacked hosts, the amount of resource may be an available cue

for adult and progeny fitness [11]. Mackauer and Sequeira (1993)

proposed that parasitoids develop in a closed resource system, and

should always grow at the maximum possible rate to take

advantage of a diminishing food supply [12]. Parasitoids are

generally expected to attack larger or near mature hosts, which

contain a greater quantity of resources than small or juvenile hosts.

Progeny that emerge from larger hosts likely benefit from larger

adult size that tends to be positively correlated to fitness

parameters, such as fecundity and survival of parasitoids [5,12].

Selection of the most profitable host stage also influences sex

allocation patterns in arrhenotokous parasitoids [6]. A higher

proportion of females may be produced from larger hosts because

of the greater nutritional requirement and reproductive benefits

for the female progeny [9].

Sclerodermus harmandi Bursson (Hymenoptera: Bethylidae) is a

successful natural parasite of Monochamus alternatus Hope (Coleop-

tera: Cerambycidae), the most important vector of the pinewood

nematode, Bursaphelenchus xylophilus Steiner et Buhrer in Japan and

China [13–14]. S. harmandi is a synovigenic anautogenous species

in which oogenesis takes place after females feed on hosts and is

stimulated by direct access to suitable hosts for oviposition [8,15].

Because host meals are essential for oogenesis throughout the

reproductive lifetime, parasitoids are often considered to have

inherent parental conflicts of interest vis-à-vis their progeny [16–

17]. S. harmandi females permanently paralyze larvae and pupae of
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hosts prior to feeding and oviposition. Parental females remain

with broods until completion of offspring development while

young females disperse after mating to search for cerambycid

larval and pupal chambers inside infested trees. Lastly, S. harmandi

likely uses effective searching tactics in finding their hosts which

tend to be solitary wood-boring insects in cryptic situations (trunk,

wood and seed) [18–20].

We report on the responses of S. harmandi to various host

stages, and subsequently, the suitability of hosts for parasitoid

fitness-related performance. Trade-offs related to the maternal

host in different developmental stages is tested by using two

parasitoids populations. First we hypothesize that S. harmandi can

adaptively integrate foraging preference with adult and offspring

performance as it relates to host development stages. Under

laboratory conditions, we tested the prediction by measuring

feeding preference of S. harmandi females from two colonies using

two host species in different stages. We further investigated the

effects of host stages on host preference and performance of S.

harmandi. The relative suitability of larvae and pupae of two host

species for S. harmandi was determined by measuring perfor-

mance of parental parasitoid (pre-oviposition period and

fecundity) and progeny (developmental time, body weight,

survival and sex ratio).

Results

Behavioral response to host stage
When the host stages were exposed simultaneously to S. harmandi

females from M. alternatus and S. populnea colonies (Ma colony and

Sp colony), significant preferences were detected in the selection of

two stages (Fig. 1). A higher proportion of Ma colony landed on

pupae than on larvae in 24 h (Fig. 1a,b; x2
1 = 9.800, P,0.001;

x2
1 = 9.800, P,0.001). However, females of Sp colony had no

significant differences between larvae and pupae of M. alternatus or

S. populnea in 24 h (Fig. 1a,b; x2
1 = 1.636, P = 0.201; x2

1 = 0.167,

P = 0.683).

Sp parasitoids preferred to feed on pupae of M. alternatus than

those of S. populnea in 24 h (Fig. 1c; x2
1 = 5.400, P,0.05). For the

Ma colony, no significant differences were detected between pupae

of M. alternatus and S. populnea in 24 h (Fig. 1c; x2
1 = 3.200,

P = 0.074). Between pupae and larvae of S. populnea, the Ma colony

preferred to attack pupae than larvae of S. populnea in 24 h (Fig. 1c;

x2
1 = 9.800, P,0.005) which the Sp colony had no preferences

between them (Fig. 1c; x2
1 = 0.167, P = 0.683). Females from the

two colonies showed significant preference to their original hosts

(Fig. 1d; Ma colony, x2
1 = 8.909, P,0.005; Sp colony,

x2
1 = 3.846, P,0.05).

Adult performance to host stage
Adult performance of females varied significantly between host

species and host stages. When the two host species and stages were

exposed separately to females, the shortest periods of pre-

oviposition by Ma colony females were observed in the parasitism

of M. alternatus pupae (Fig. 2; ANOVA; F7,154 = 50.93, P,0.001).

However, pre-oviposition periods of Ma colony females were

significantly prolonged by 2.1 days on pupae as compared to

larvae of S. populnea (Fig. 2; t-test: t38 = 8.404, P,0.001). The pre-

oviposition periods of Sp colony females were clearly longer on

larvae of M. alternatus than on larvae of S. populnea (Fig. 2; t-test:

t40 = 8.457, P,0.001) and pupae of M. alternatus (Fig. 2; t-test:

t39 = 27.484, P,0.001).

Figure 1. Feeding preference of Sclerodermus harmandi from different culturing systems on two development stages of hosts: (1a)
pupae vs. larvae of Ma, (1b) pupae vs. larvae of Sp, (1c) pupae of Ma vs. Sp, and (1d) larvae of Ma vs. Sp. Abbreviations used: Ma,
Monochamus alternatus; Sp, Saperda populnea; Ma larvae, Ma pupae, larvae and pupae of M. alternatus, respectively; Sp larvae, Sp pupae, larvae and
pupae of S. populnea, respectively (Mean6SE, n = 25 females in each treatment, ** P,0.01, * P,0.05 and ns. P.0.05).
doi:10.1371/journal.pone.0018563.g001

Optimal Foraging as Intraspecific Détente
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In the no-choice tests, female fecundity of Ma colony was higher

on larvae and pupae of M. alternatus than on the other host S.

populnea, and they were not significantly different to each other

(Fig. 2; t-test: t36 = 21.344, P = 0.187). Females of Sp colony laid

more eggs on larvae than pupae of S. populnea (Fig. 2; t-test:

t33 = 28.88, P,0.001). However, when it was reared for only one

generation on larvae and pupae of the other host M. alternatus,

fecundity of Sp colony showed no differences between larvae and

pupae of M. alternatus (Fig. 2; t-test: t36 = 21.880, P = 0.07), but

lower than on each stage of S. populnea (Fig. 2).

Offspring performance response to host stage
Female offspring of Ma colony always had shorter development

time on larvae of S. populnea than on the other host species and

stages (Fig. 3; ANOVA; F7,131 = 14.76, P,0.001). Likewise, male

offspring of Ma and Sp colony had shorter development time on

larvae of S. populnea than on the other host species and stages

(Fig. 3; ANOVA; F7,125 = 7.81, P,0.001). Moreover, the male

offspring development time of Sp colony was shorter than Ma

colony (Fig. 3; t-test: t38 = 22.796, P,0.01).

The Ma colony had higher offspring survival on larvae than

pupae of M. alternatus (Fig. 4; t-test: t33 = 2.756, P,0.01), whereas

there was no significant differences between larvae and pupae of S.

populnea (Fig. 4; t-test: t33 = 0.854, P = 0.399). However, lower

offspring survival was observed in the Sp colony on larvae pupae

of M. alternatus, and they were not significantly different to each

other (Fig. 4; t-test: t25 = 1.391, P = 0.176). Offspring sex ratio of

the two colonies were female-biased and did not differ between the

two host species and host stages (Fig. 4; ANOVA; F7,130 = 1.85,

P = 0.08).

Adult offspring of Ma and Sp colony that developed on pupae of

M. alternatus had the highest weight compared to other host species

and stages (Fig. 5a, b; ANOVA; Ma colony, female, F3,116 = 58.995,

P,0.001; male, F3,116 = 21.209, P,0.001; Sp colony, female,

F3,116 = 50.553, P,0.001; male, F3,116 = 21.169, P,0.001). How-

ever, compared to the weight of offspring that developed on pupae

of M. alternatus, there were differences between Ma and Sp colony

(Fig. 5a, b; t-test: female, t58 = 1.904, P = 0.062; male, t58 = 0.199,

P = 0.844). Offspring weight of Ma colony reared on larvae of M.

alternatus was significantly higher than on those of Sp colony

(Fig. 5a, b; t-test: female, t58 = 2.586, P,0.05; male, t58 = 4.849,

P,0.001). Surprisingly, after switching brood hosts of Ma colony on

larvae of S. populnea, the body weight of its female offspring was

lower than on pupae of the host (Fig. 5b; t-test: t58 = 211.811,

P,0.001), whereas there were no differences in the body weight of

its male offspring (Fig. 5b; t-test: t58 = 20.177, P = 0.861). Adult

offspring of Sp colony had higher weight on larvae than pupae of M.

alternatus (Fig. 5a, b; t-test: female, t58 = 29.352, P,0.001; male,

t58 = 28.195, P,0.001). The body weight of adult offspring of Sp

colony were not siginificantly different between larvae and pupae of

S. populnea (Fig. 5a, b; t-test: female, t58 = 21.590, P = 0.117; male,

t58 = 20.264, P = 0.793).

Figure 2. The performance of Sclerodermus harmandi females
from different culturing systems on two host species and
stages: (2a) pre-oviposition period of adult females, (2b)
female fecundity. Same alphabets on columns indicate no
significant differences (P,0.05). For abbreviations see Figure 1
(Mean6SE, n = 20–24 females in each treatment, ** P,0.01, * P,0.05
and ns. P.0.05).
doi:10.1371/journal.pone.0018563.g002

Figure 3. Offspring development time of Sclerodermus harmandi
from different culturing systems on two host species and
stages: (3a) female offspring, (3b) male offspring. Same
alphabets on columns indicate no significant differences (P,0.05). For
abbreviations see Figure 1 (Mean6SE, n = 20–24 females in each
treatment, ** P,0.01 and ns. P.0.05).
doi:10.1371/journal.pone.0018563.g003

Optimal Foraging as Intraspecific Détente
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Discussion

Parasitoid wasps frequently have been used as model organisms

for the study of life history evolution [5,21–23]. The preference,

utilization and performance of S. harmandi on larvae and pupae of

M. alternatus and S. populnea were used to ascertain whether female

host selection and subsequent fitness corresponded with host

quality. S. harmandi females from the two colonies (Ma colony and

Sp colony) oviposited more quickly on pupae than on larvae of M.

alternatus. Subsequently, their offspring development time was

faster and they gained higher body weight on the pupal hosts. The

capacity of S. harmandi females to grow on hosts of two

developmental stages suggests an ability to adjust to the constraints

specific to each age or stage.

Many studies have sought to establish if parasitoid host selection

conforms to predictions of ‘optimal foraging theory’ [24–25] and

‘optimal oviposition theory’ [9,26]. Both theories stress that there

were trade-offs between maternal fitness through host-feeding [27–

28] and enhanced reproduction through oviposition on the same

host individual as used for host-feeding [9,29]. However, we found

that optimum foraging strategy was combined with optimum

oviposition strategy. Because the selection of the most profitable

host stage for parasitoid development was due to foraging

decisions and offspring fitness-related consequences of S. harman-

di,this may not mean that one of offspring’s success was built on

the side of the expense of maternal fitness.

This study demonstrates the existence of a flexible foraging

strategy that occurs during host-parasitoid interactions, of which

the quality of the parasitism (highest fitness benefit and

profitability) is related to the host developmental stage utilized.

The better quality (higher fitness benefit and profitability) of

pupae compared to larvae of M. alternatus, resulted in more pupae

being successfully parasitized, shorter pre-oviposition time by

adult parasitoids and higher body weight gained by their

offspring. However, S. harmandi females would probably use

suboptimal hosts when their availability, either in terms of

accessibility or abundance, makes them profitable even though

individuals using these resources may suffer in their individual

fitness. This study clearly stressed the need to incorporate the

diversity of optimal foraging strategy existing between parasitoids

and host life-history traits (physiological and behavioural

characteristics) in the prediction of the host-parasitoid interac-

tions. In addition, female S. harmandi from both colonies

demonstrated significantly higher preference on maternal host

larvae. These results were consistent with our previous works as

the preference is likely to be an adaptation to a specific host over

multiple generations [15,30].

Additionally, the effect of maternal host/colony is not replicated

as all parasitoid individuals come from the same long-term

colonies. Any differences found between the two colonies is not

necessarily due to the maternal host, but could be caused by other

reasons. There are some behavioural defenses between larvae and

pupae of Monochamus alternatus. The latter is more active and the

former is more defensive. For most parasitoid wasps, successful

parasitism is associated with multiple trade-offs between different

physiological and behavioural constraints. Indeed, host size varied

with host development stage generally determines host’s physio-

logical and behavioural defense, particularly where juvenile

parasitoids consume virtually all host tissues before pupation

[5,10,28,31]. The immature beetles respond to the parasitoid

attacks by shaking their body and biting the attackers. These

defense behaviors have been shown to differ between immature

host stages as pupae move far less than larvae and lack the

functional mandibles to defend themselves.

On the other hand, the host’s immune system, metabolism, and

nutritional status changes with development and can influence the

quality of immature hosts, and thus, result in a lower fitness. We

speculated that it would result from a trade-off of S. harmandi

females to immune response of suboptimal hosts or non-maternal

hosts. Moreover, the hosts’ behavioral and immune system could

explain its longer pre-oviposition time of S. harmandi on those hosts

with bigger bodies and higher activity.

The success of mass rearing of S. harmandi depended on its

efficient food consumption. Our experiments focused on how

trade-offs related to the maternal host can be affected by host

species and its developmental stages. However, there are still some

challenges to improve S. harmandi’s mass-rearing efficiency in the

laboratory and its parasitism to target-hosts in the field. Future

work should pay more attention to investigate the effects of host’s

immune system, metabolism and nutritional status on the

behavioral and physiological conditioning of S. harmandi.

Host selection decision in parasitoids depends on the quality of

the hosts, but also on their availability in the habitat. Our

experimental treatments omitted much of the complexity of

parasitoid natural population and host species in the inconstant

field. For example, the host suitability experiments were limited to

two host species and two developmental periods. Under natural

conditions, choice of the targeted host developmental stage in the

field, regulation of parasitoid numbers released, and introduction

of food supplements are operational factors with a potential to

influence the level of biological control.

Materials and Methods

Experimental insects
The effects of host stage were examined by conducting the

following two experiments: 1) feeding choices by female S. harmandi

on larvae and pupae; and 2) fitness-related performance by adult

females and offspring on larvae and pupae. Base stocks of S.

harmandi for all experiments were obtained from two laboratory

colonies. Single-host colony of S. harmandi was maintained

separately on the larvae of two different hosts for ten successive

generations. One colony was reared solely on the larvae of M.

alternatus (Ma colony) whereas the other colony was reared solely

on the larvae of Saperda populnea (Sp colony). S. populnea

(Cerambycidae: Lamiinae) is commonly used as a substitute host

in mass rearing of S. harmandi. Final instar larvae and pupae of M.

alternatus were collected from Zhejiang province whereas larvae

and pupae of S. populnea were provided by the Xishan Forest

Factory. All larvae and pupae of two species were stored at

8,10uC prior to use in parasitoid rearing.

For both colonies, individual S. harmandi were reared in vials

(7.5 cm in height61.2 cm in diameter), each blocked with a cotton

plug on the port and kept at 2565uC, 70% RH under a LD

14:10 h. Mated female S. harmandi were fed on 10% honey for 5–6

days and then presented with host larvae in each vial for

subsequent ovipositioning/feeding. For the colony reared on M.

alternatus the larvae were presented at a ratio of 3:1 parasitoid/host,

whereas a ratio of 1:1 parasitoid/host was used for those reared on

S. populnea. The difference in ratios was due to the differences in

larval size [20]. Generation times for S. harmandi were approx-

imately 35 days on M. alternatus and 25 days on S. populnea.

Host stage preference experiments
To test the effect of host stage on subsequent host choices by

females (Experiment 1), we used the two types of S. harmandi (Ma

colony and Sp colony), based on their rearing histories. A two-

choice test was used to determine feeding preference of the two

Optimal Foraging as Intraspecific Détente
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treatment groups. Larvae and pupae of M. alternates and S. populnea

were used as testing hosts. There were pairwise comparison

between the four species conducted as follows: 1) larvae vs. pupae

of M. alternates (Ma larvae vs. Ma pupae); 2) pupae of M. alternates

vs. S. populnea (Ma pupae vs. Sp pupae); 3) larvae vs. pupae of S.

populnea (Sp pupae vs. Sp pupae); and 4) larvae of M. alternates vs.

larvae of S. populnea (Ma larvae vs. Sp larvae). In a two-choice

bioassay, the following choices were offered simultaneously in a

glass Petri dish of 12 cm in diameter: a) one larva and one pupa of

the same species; b) two larvae or pupae (one of each species) One

female wasp was put in the center of each dish with a fine brush.

For each of the two colonies, five females per dish were tested

simultaneously with five replicates (n = 25 females). Choice tests

were conducted at 25–26uC under a lamp (100 Lx) hanging

approximately 0.5 m above the roof of the experimental arena.

Feeding preference was expressed as the successful host-

selecting rate (SSR) of female S. harmandi to two hosts at 24 h.

In a bioassay with successful host selection, female S. harmandi

walk, search and probe throughout the arena, and generally do not

change positions for 24 h after making their selection [30]. SSR of

S. harmandi was defined as the proportion of females that attacked

hosts with simultaneously probing, stinging and feeding behaviors

for at least 5 min [SSR = (number of females attacking on each

host / total number of females) * 100%] [20,30].

Host stage suitability experiments
In Experiments 2, we determined the effects of two develop-

mental stages of hosts on performance of female S. harmandi and

offspring, respectively. We used one hundred and sixty S. harmandi

of each of Ma colony and Sp colony, as used in Experiment 1.

Mated female S. harmandi were fed on 10% honey for 5–6 days and

then kept at 8–10uC. Females of each treatment group were

placed at room temperature at least for 1 h before testing and used

only once. No-choice tests were carried out in a glass vial (as

mentioned above) and tested at 25–26uC and 14:10 h light:dark

photoperiod regime.

In the no-choice bioassay, a host was offered to the mated

females, at a ratio of 3:1 and 1:1 for larvae of M. alternatus and S.

populnea, respectively. The same experiments were performed for

pupae of M. alternatus and S. populnea, respectively. Each treatment

was replicated twenty times (n = 320 females). Adult fitness

consequences on each host were recorded after the female wasps

oviposited and completed offspring development on the paralyzed

hosts for 30–40 days [19]. Female fecundity (number of eggs laid

per female) and pre-oviposition period (days) on two development

stages of the hosts were observed and recorded. The pre-

oviposition periods of adult females were counted as time from

emergence to first reproduction in females (APOP) [18]. Host

mortality was checked daily and dead hosts were replaced.

In Experiments 3, offspring performance was determined by no-

choice experiments. The larvae and pupae of M. alternatus were

presented at a ratio of 3:1 parasitoid/host whereas a ratio of 3:4

parasitoid/host was used for those of S. populnea due to differences

in larval and pupal weight between the two species. The mean

weight of one M. alternatus larva or pupa is equal to four S. populnea

larvae [20]. Females of the two colonies were allowed to oviposit

Figure 4. Offspring survival and sex ratio of Sclerodermus
harmandi from different culturing systems on two host species
and stages: (4a) offspring survival, (4b) sex ratio (proportion of
males). Same alphabets on columns indicate no significant differences
(P,0.05). For abbreviations see Figure 1 (Mean6SE, n = 20–24 females
in each treatment, * P,0.05 and ns. P.0.05).
doi:10.1371/journal.pone.0018563.g004

Figure 5. Offspring weight of Sclerodermus harmandi from
different culturing systems on two development stages of
hosts: (5a) adult females, (5b) adult males. Same alphabets on
columns indicate no significant differences (P,0.05). For abbreviations
see Figure 1 (Mean6SE, n = 300 females, 200 males in each treatment,
** P,0.01, * P,0.05 and ns. P.0.05).
doi:10.1371/journal.pone.0018563.g005

Optimal Foraging as Intraspecific Détente
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on larvae and pupae of M. alternatus, respectively. The same

experiments were performed on S. populnea. Twenty eggs newly

laid by females were left on their original hosts and offspring

performance was determined by parameters of total development

time (days), weight of eclosing adult (mg), survival (%) and sex ratio

(proportion of male). Each treatment was replicated twenty times

(a total of 400 eggs). Host mortality was checked daily and dead

hosts were replaced.

Data analysis and statistics
Statistical analyses for this study were performed using SPSS

13.0 for Windows (SPSS Inc., Chicago, IL, USA). Chi-square test

was used to compare feeding preference (successful host-selecting

rate) to two host species among parasitoids, and to larvae vs. pupae

of each species. One-way analysis of variance (ANOVA) and

Student-Newman-Keuls (S-N-K) multiple comparisons test

(p,0.05) were performed to assess the differences in adult

performance (pre-oviposition period and realized fecundity) and

offspring performance (mean development time, body weight,

survival and sex ratio) of S. harmandi from two colonies. Differences

in these fitness measures between host stage and host species were

analyzed with independent sample t-test. Pre-oviposition period,

mean development time and body weight were transformed by a

square root transformation prior to the analysis. The percentage-

based data (survival and sex ratio) were analyzed following an

arcsine square root transformation.
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