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Abstract: Vaccination is the most important way to control infectious bronchitis (IB) in chickens.
Since the end of 2015, the Delmarva (DMV)/1639 strain of infectious bronchitis virus (IBV) has
caused significant damage to the layer flocks in Eastern Canada. The efficacy of a combination
of existing IB vaccines licensed in Canada was assessed against experimental challenge with this
IBV strain. The layer pullets were vaccinated during the rearing phase with live attenuated IB
vaccines of Massachusetts (Mass) + Connecticut (Conn) types followed by an inactivated IB vaccine
of Mass + Arkansas (Ark) types and then challenged with the Canadian IBV DMV/1639 strain at
30 weeks of age. Protection was evaluated based on the egg laying performance, immune responses,
viral shedding, and viral genome loads and lesions in IBV target organs. The vaccinated challenged
hens were protected from the drop in egg production observed in the non-vaccinated challenged hens.
Early (5 dpi) anamnestic serum antibody response was measured in the vaccinated challenged hens
as well as a significant level of antibodies was detected in the oviduct washes (14 dpi). In contrast,
hens in the non-vaccinated challenged group showed delayed (12 dpi) and significantly lower serum
antibody response. Viral RNA loads were reduced in the respiratory, alimentary, and reproductive
tissues of the vaccinated challenged hens compared to the non-vaccinated challenged hens. Compared
to the control groups, the vaccinated challenged hens had less marked microscopic lesions in the
trachea, kidney, magnum, and uterus. Our experimental model demonstrated inconclusive results
for cell-mediated immune responses and viral shedding. Overall, the vaccination program used in
this study minimized viral replication and histopathological changes in most IBV target organs and
protected challenged hens against drop in egg production.

Keywords: infectious bronchitis virus (IBV); Delmarva (DMV)/1639 strain; IB vaccine; layer; Canada

1. Introduction

Avian infectious bronchitis (IB) is a leading cause of economic losses in the poultry
industry [1]. The causative agent, infectious bronchitis virus (IBV), is an epitheliotropic
virus that primarily affects the respiratory tract, although different strains have different
tropisms for other tissues such as the alimentary and the urogenital tracts [1]. The spike (S)
glycoprotein of IBV is a determinant of tissue tropism and pathogenicity, and the S1 subunit
contains serotype- and neutralization-specific epitopes [2]. Mutations and recombination
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within the S gene are the driving forces for the emergence of new IBV variants globally [3],
which makes the control of the IB through vaccination difficult [4].

Clinical indications of IBV-induced respiratory disease in broilers include coughing,
sneezing, tracheal rales, watery eyes, and thickened mucosa of the trachea and nasal pas-
sages. In addition to the poor weight gain and lost feed efficiency, some virulent IBV
strains cause high mortality in young chickens due to nephritis [5]. In susceptible layers,
IBV can cause a variety of clinical manifestations including decline in egg production,
deformed eggshells, and poor internal egg quality [6,7]. A series of lesions can be de-
tected in the female reproductive system including shortened oviduct, reduction in the
number of hierarchical follicles in the ovary, and yolk peritonitis [8,9]. Microscopic le-
sions of tubular gland dilatation, inflammatory cell infiltration, edema of the interstitial
region, and epithelial sloughing in the oviducts are common in the infected layers [10].
The virus can infect layer pullets at an early age leading to devastating effects on the
developing reproductive tract [11]. The problem of false layers with permanent damage of
the oviduct was highlighted more recently with the emergence of the QX and DMV/1639-
like strains [12,13]. Abnormal oviducts of false layers are characterized by dilatation with
serous fluid accumulation (cystic formation) and areas of non-patency [14].

Vaccination has been used to prevent IBV infection and its harmful effects for decades.
In young birds, live-attenuated IB vaccines are commonly sprayed over chicks in the
hatchery before being placed in the barn. Revaccination with another live IB vaccine
of the same or a different serotype could be carried out in the field within two weeks
of the first vaccination. In layer-type chickens, multiple live vaccinations are usually
followed by a killed vaccine administered before the onset of lay to give long-lasting
immunity [4]. Development of a new live-attenuated IB vaccine for every pathogenic IBV
strain is an unrealistic objective; therefore, there are no homologous live vaccines available
for several IBV variants. However, the protectotype approach, using live attenuated
vaccines containing different IBV serotypes, has been shown to induce a broader range of
cross-protection [15,16].

In contrast with vaccination-challenge experiments in young chickens, similar trials
with laying chickens are very limited [17]. Few experimental studies have investigated
a vaccination program of a live priming and subsequent boosting by an inactivated vac-
cine against the drop in egg production. A positive correlation was previously shown
between the level of post-vaccination hemagglutination inhibiting antibodies and the level
of protection against egg production drop [18]. Layers exposed to the Ark IBV strain were
not protected from negative effects on egg production and quality by a combination of
live and inactivated vaccines of the Mass type [6]. On the other hand, a significant level
of protection against heterologous challenge was demonstrated in layers receiving two
antigenically distinct IBV vaccines. Vaccinated layers had significantly higher averages
of egg production with lowered incidence of yolk peritonitis and degenerated ovaries
compared to the non-vaccinated layers [19]. With the emergence of a growing number
of IBV variants that impact the layer performance, the ability to protect laying hens has
become more challenging [20].

The distribution of IBV strains in Canadian layer flocks varies by geographic location.
IBV infections in Western Canada are mostly caused by strains of the Mass and Conn
types [21], whereas the Delmarva (DMV/1639) strain has been the most prevalent IBV
strain in Eastern Canada in recent years [22]. The Canadian DMV/1639 strain is a virulent
IBV with a broad tissue tropism and produces significant lesions in the reproductive tract
of laying hens [23,24]. Currently, there is no homologous vaccines for the DMV/1639 strain
in North America. The approach commonly used to vaccinate the Canadian layer-type
flocks involves using live attenuated vaccines (Mass and Conn types) during the rearing
phase, followed by the injection of an inactivated vaccine containing the Mass antigen at
the point of lay. Apart from the vaccines applied during the rearing pre-lay period, the
laying hens are not commonly vaccinated. In this study, we conducted a vaccine challenge
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experiment to evaluate the efficacy of commercial IB vaccines available in Canada against
the Canadian IBV DMV/1639 strain infection in laying hens.

2. Materials and Methods
2.1. Vaccines and Challenge Virus

Two commercial live IB vaccines, Mass type (Bronchitis Vaccine, Boehringer Ingelheim
Animal Health, Athens, GA, USA) and Mass + Conn types (Bronchitis Vaccine, Zoetis
Inc., Kalamazoo, MI, USA), were used. An inactivated vaccine marketed under the name
Galllimune® NC-BR containing Mass and Ark types of IBV in addition to Lasota strain
of Newcastle disease virus (Boehringer Ingelheim Animal Health, Athens, GA, USA) was
also used.

The challenge virus used was an IBV DMV/1639 strain (designated as IBV/Ck/Can/
17–036989) in its fourth serial passage in embryonated chicken eggs [23,24]. This strain
was isolated in 2017 from a commercial layer flock in Eastern Canada that had a history of
decreased egg production [22]. The 50% chicken embryo infectious dose (EID50) of the virus
was calculated with the method of Reed and Muench [25]; the titer was 107 EID50/mL.

2.2. Chickens

Forty specific-pathogen-free (SPF) white leghorn pullets at 1-day of age were pur-
chased from the Canadian Food Inspection Agency (CFIA), Ottawa, Ontario. The day-old
pullets were randomly divided into two groups (20 chicks in each) and housed in two
separate negative pressure rooms at the Veterinary Science Research Station (VSRS), Uni-
versity of Calgary. The adjustments to the feed and lighting systems were carried out
according to the management guidelines recommended for growing pullets [26]. The light
stimulation started at 17 weeks of age with a gradual light increases until a light regimen
of 16-h light:8-h dark was achieved at 24 weeks of age.

2.3. Experimental Procedures
2.3.1. Vaccination

The live IB vaccines were maintained on ice until reconstitution with chilled sterile
distilled water (one recommended dose/30 µL) and administered via the ocular route. Each
chicken in the vaccinated group (V) received the live Mass type vaccine at 1-day of age.
The live Mass + Conn types of vaccine was used for revaccination at 2, 5 and 9 weeks of
age. At 18 weeks of age, each chicken in the vaccinated group was injected intramuscularly
with 0.5 mL of the inactivated vaccine as per the manufacturer’s instructions. The second
group of chickens was kept as non-vaccinated (NV). All the chickens were bled at 23 weeks
of age before the challenge experiment.

2.3.2. Viral Challenge

At 30 weeks of age, the vaccinated and non-vaccinated hens were further divided into
4 groups (10 chickens in each). There were 2 control groups: vaccinated non-challenged
(VNC), non-vaccinated non-unchallenged (NVNC), and 2 challenged groups: vaccinated
challenged (VC) and non-vaccinated challenged (NVC). The challenged groups received
100 µL of the challenge virus containing 106 EID50 via the oculo-nasal route [6]. The control
groups were mock inoculated with 100 µL of phosphate buffered saline (PBS). All the
experimental groups were maintained separately in four different negative pressure rooms
at VSRS.

2.3.3. Clinical Observations and Sample Collection

The hens in all groups were observed twice daily for the manifestation of clinical signs
and egg production for two weeks. The egg production was presented as the percentage of
production/group/3-day period starting from 3 days before the challenge until the end of
the experiment at 14 dpi. At 5 and 12 dpi, oropharyngeal (OP) and cloacal (CL) swabs, and
3 mL of blood from the wing vein were collected from all hens.
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At 14 dpi, all the hens were euthanized by cervical dislocation under isoflurane
anesthesia. When a hen had an egg in the oviduct at the postmortem examination, this
egg was added to the number of eggs for the next day’s egg production. Portions of
trachea, lung, kidney, cecal tonsils, oviduct, and ovary were collected in RNA Save®

(Biological Industries, Beit Haemek, Israel) and stored at −80 ◦C until processing. Portions
of trachea, lung, kidney, and oviduct were collected in 10% neutral buffered formalin (VWR
International, Edmonton, AB, Canada). Oviduct washes were collected using 10 mL of cold
PBS for each chicken [27].

2.3.4. Quantification of Viral Genome Loads from Swabs and Tissues

Viral RNA was extracted from the swabs and tissues samples using Trizol® reagent
(Invitrogen Canada Inc., Burlington, ON, Canada), according to manufacturer’s guide-
lines. Quantification of viral genome loads in 100 ng of RNA was carried out by a SYBR
green-based qRT-PCR, using an IBV nucleocapsid (N) gene-specific primers as previously
described [28]. Ct values were converted to log 10 copies of viral RNA by a standard curve
generated using six ten-fold dilutions of an in-house prepared plasmid [28].

2.3.5. Antibody-Mediated Immune Responses by Indirect ELISA

Anti-IBV antibodies in serum (1:500 dilution) and oviduct washes (1:10 dilution)
were analyzed using a commercial IBV ELISA kit (IDEXX Laboratories, Inc., Westbrook,
ME, USA) in accordance with the manufacturer’s instructions. Antibody titers were calcu-
lated using a formula provided by the manufacturer to convert the sample/positive ratio,
where titers >396 (cut-off) were considered positive.

2.3.6. Cell-Mediated Immune Responses by Flow Cytometry

A density gradient media 1.084 g/mL (Ficoll-Paque™ PREMIUM, Cytiva, Marlbor-
ough, MA, USA) was used to isolate mononuclear cells from 2 mL of anticoagulated
blood obtained at 5 and 12 dpi, according to the manufacturer’s instructions. For
each hen, 106 cells of the obtained peripheral blood mononuclear cells (PBMCs) were
washed in a PBS containing 1% bovine serum albumin (BSA) (Sigma-Aldrich, Saint
Louis, MO, USA) followed by centrifugation at 211 xg for 5 min at 4 ◦C. The cells were
resuspended in 0.2% chicken serum (diluted in 1% BSA) and incubated for 15 min
at 4 ◦C for Fc blocking. After centrifugating the cells as indicated above, the super-
natant was discarded and the cell pellets were resuspended in the dark for 20 min
at 4 ◦C using fluorescein isothiocyanate (FITC)-conjugated mouse anti-chicken CD8
(Southern Biotech, Birmingham, AL, USA) and phycoerythrin (PE)-conjugated mouse
anti-chicken CD4 (Southern Biotech, Birmingham, AL, USA). The stained PBMCs were
washed twice with 1% BSA before being fixed in 1% paraformaldehyde (Electron
Microscopy Sciences, Hatfield, PA, USA). The samples were analyzed at the Flow Cy-
tometry Core Facility, University of Calgary (BD LSR II flow cytometer, BD Bioscience,
San Jose, CA, USA). Data acquisition was done using BD FACSDiva™ 6.1.3 software
(BD Bioscience, San Jose, CA, USA).

2.3.7. Histopathology

Tissues collected in 10% neutral buffered formalin were embedded in paraffin wax,
cut into 5µm sections, and the sections were stained with hematoxylin and eosin (H&E) at
the Diagnostic Services Unit (DSU) of the University of Calgary before they were examined
with light microscopy (Olympus BX51, Center Valley, PA, USA). Stained sections of trachea,
lung, kidney, and oviduct (magnum, isthmus, and uterus) were examined for IBV-related
lesions (Table 1). The lesions were scaled according to a modified scoring system previously
described by Benyeda et al. [29] and Chousalkar et al. [10] as no change (−,0), mild (+, 1),
moderate (++, 2), or severe (+++, 3).
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Table 1. Lesions scored for each tissue examined at 14 dpi following infection with the Canadian
DMV/1639 strain (IBV/Ck/Can/17–036989).

Tissue Lesions

Trachea

Loss of epithelial lining
Loss of cilia
Necrosis of epithelial lining
Inflammatory cell infiltrations in the lamina propria

Lung

Peri-bronchitis
Inflammatory cell infiltrations in the interstitial tissue
Circulatory disturbances (hyperemia, edema, and hemorrhage in
the interstitial tissue

Kidney
Necrosis of ducto-tubular epithelium
Inflammatory cell infiltrations in the interstitial tissue
Renal tubular dilatation

Oviduct (magnum, isthmus,
and uterus)

Epithelial cell necrosis
Loss of cilia
Tubular gland dilatation
Lymphocyte infiltrations in lamina propria
Edema in lamina propria

2.3.8. Statistical Analysis

The proportions of egg production were compared between all groups using Pearson’s
chi-squared test. The pre-challenge antibody titers were compared between the vaccinated
and non-vaccinated groups using unpaired t test. One-way analysis of variance (ANOVA)
followed by Tukey’s multiple comparisons test was used to identify the differences in the
IBV genome loads in swabs and tissues, post-challenge antibody titers, and peripheral
blood T cells between all groups. The mean lesion scores were compared between all groups
using Kruskal–Wallis’s test followed by Dunn’s multiple comparisons test. GraphPad Prism
9.3.1 Software (GraphPad Software, San Diego, CA, USA) was used for the data analysis
and to draw graphs.

3. Results
3.1. Clinical Observations and Egg Production

No appreciable clinical manifestations such as coughing, sneezing or conjunctivitis
could be detected in any of the groups, except the dullness with ruffled feathers in two
NVC hens on 6 dpi. The egg production of all groups is shown in Figure 1. The egg
production from 1–15 dpi of the NVC group was significantly lower than that of any other
group (p < 0.05). The egg production in the VC group was not significantly different from
the control groups (p > 0.05). In comparison with the pre-challenge egg production, the
NVC group showed a maximum drop of 30% at 7–9 dpi. At the end of the experiment,
the egg production of the NVC group was 16.7% lower than the pre-challenge level. The
egg production in the VC group dropped by a 10% at 10–12 dpi, while returned to the
pre-challenge level at the end of the experiment.
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Figure 1. Three-day interval mean percentage of egg production starting from 3 days before the challenge
until 15 dpi following infection with the Canadian DMV/1639 strain (IBV/Ck/Can/17–036989).

3.2. Viral Shedding

Viral RNA loads in OP and CL swabs were below the detection limit in the control
groups during the experiment. For challenged groups, the VC group demonstrated signifi-
cantly decreased viral RNA loads in OP and CL swabs collected at 5 dpi compared to the
NVC group (p < 0.05; Figure 2a,b). The viral RNA loads in OP and CL swabs did not differ
significantly between the challenged groups at 12 dpi (p > 0.05; Figure 2a,b).
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Figure 2. IBV genome loads in OP (a) and CL (b) swabs collected at 5 and 12 dpi following infection
with the Canadian DMV/1639 strain (IBV/Ck/Can/17–036989). The average starting IBV copies was
quantified per 100 ng of the extracted RNA and differences between groups were identified using
one-way ANOVA followed by Tukey’s multiple comparisons test, and the error bars represent the
SD. Statistical significance: * p < 0.05, *** p < 0.001, **** p < 0.0001.

3.3. Anti-IBV Antibody Titer

Hens were bled prior to challenge at approximately 5 weeks following completion of
the vaccination regimen. A significantly high level of antibody titer was measurable in the
vaccinated group (p < 0.05; Figure 3), while the non-vaccinated group had no detectable
antibodies. At challenge, a significantly higher antibody titer was observed in the VC
group compared to all other groups at 5 and 12 dpi (p < 0.05). The NVC group was
seronegative at 5 dpi, while it had a significantly higher antibody titer compared to the
control groups at 12 dpi (p < 0.05). There was no significant difference in the antibody
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titer in the oviduct washes between the challenged groups (p > 0.05); however, the VC
group showed significantly higher antibody titer compared to the control groups (p < 0.05;
Figure 3).
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3.4. Peripheral Blood CD4+ and CD8+ T Cells

There were no significant differences in the percentages of CD4+ and CD8+ T cells
between all the groups at 5 and 12 dpi (p > 0.05; Figure 4a,b).
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Figure 4. Percentages of CD4+ (a) and CD8+ (b) T cells in peripheral blood mononuclear cells
(PBMCs) at 5 and 12 dpi following infection with the Canadian DMV/1639 strain (IBV/Ck/Can/17–
036989). Mean percentages of CD4+ and CD8+ T cells were compared between groups using one-way
ANOVA test followed by Tukey’s multiple comparisons test, and the error bars represent the SD.

3.5. IBV Genome Loads in Tissues

Viral RNA loads were below the detection limit in all IBV target organs of the control
groups. The viral RNA was quantifiable in the trachea, lung, kidney, ovary, and oviduct
(magnum, isthmus, and uterus) of the challenged groups with the cecal tonsils containing
the highest amount of viral RNA. The VC group had significantly lower viral loads in
all examined tissues (p < 0.05) except the kidney (p > 0.05) compared to the NVC group
(Figure 5).
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Figure 5. IBV genome loads in trachea, lung, kidney, cecal tonsil, ovary, magnum, isthmus, and uterus
collected at 14 dpi following infection with the Canadian DMV/1639 strain (IBV/Ck/Can/17–036989).
The average starting IBV copies was quantified per 100 ng of the extracted RNA and differences
between groups were identified using one-way ANOVA followed by Tukey’s multiple comparisons
test, and the error bars represent the SD. Statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.

3.6. Histopathology

There was no significant pathology in the trachea, lung, kidney, or different parts of
oviduct of the control groups (Figure 6a,d,g,j,m,p).

In the NVC group, the trachea showed epithelial cell necrosis with deciliation, and
the lamina propria was infiltrated with focal lymphoplasmacytic aggregates (Figure 6b).
The lung demonstrated hyperplasia of the epithelial cells lining the secondary bronchi
together with mononuclear cell infiltrations in the lamina propria. Furthermore, the
tertiary bronchi and atria were occupied by homogenous eosinophilic material, and
the interstitial connective tissue was infiltrated with mononuclear cell infiltrations
(Figure 6e). The kidney showed tubular cell necrosis with cellular exfoliation. Dilated
renal tubules were occluded by intra-luminal casts containing a mixture of necrosed
epithelia, mucus and disintegrated heterophils. The interstitial connective tissue
was predominantly infiltrated with lymphoplasmacytic inflammatory cells, and few
heterophils could be observed (Figure 6h). In the oviduct, the surface epithelium varied
from areas of attenuation to patchy areas of necrosis and sloughing with ciliary losses.
The lamina propria was infiltrated with multi-focal mononuclear cell infiltrations.
Moreover, there was glandular dilatations together with edema among some glands
particularly in the magnum and uterus (Figure 6k,n,q).
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Figure 6. (A) Microscopic lesions detected in trachea, lung, and kidney; (B) Microscopic lesions
detected in magnum, isthmus, and uterus. Tissue sections were examined at 14 dpi following infection
with the Canadian DMV/1639 strain (IBV/Ck/Can/17–036989). (a,d,g,j,m,p) are control groups
(VNC and NVNC). (b,e,h,k,n,q) are vaccinated challenged group (VC). (c,f,i,l,o,r) are non-vaccinated
challenged group (NVC). Black arrowheads refer to epithelial necrosis; long black arrows refer to
mononuclear cell infiltrations; coiled black arrow indicates homogenous eosinophilic materials filling
the lumen of tertiary bronchi; long white arrow refers to cellular casts inside the renal tubule; short
black arrows show glandular dilatation; short white arrow reveals edema in lamina propria.
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In the VC group, the trachea was characterized by epithelial cell necrosis with cilia
and goblet cell losses, and the lamina propria was thickened because of mononuclear cell
infiltrations (Figure 6c). The lung revealed diffuse mononuclear cell infiltrations in the
lamina propria of the secondary bronchi (Figure 6f). In the kidney, the interstitial connective
tissue was thickened due to diffuse lymphoplasmacytic cell infiltrates (Figure 6i). The
magnum showed epithelial cell necrosis and deciliation in some areas with some dilated
albuminous glands in the lamina propria (Figure 6l). The isthmus was characterized
by diffuse mononuclear cell infiltrations among the inter-glandular connective tissue
(Figure 6o). The uterus revealed only a widened area of edema in the lamina propria
(Figure 6r).

The mean lesion scores in trachea, lung, kidney, magnum, isthmus, and uterus are
summarized in Table 2. Although the lesion scores in all tissues did not differ significantly
between the challenged groups (p > 0.05), only the NVC group showed significantly higher
lesion scores in the trachea, kidney, magnum, and uterus compared to the control groups
(p < 0.05; Figure 7). Both the challenged groups had significantly higher lesion scores in
the lung and isthmus compared to the control groups (p < 0.05; Figure 7). Comparative
histopathology of trachea, lung, kidney, magnum, isthmus, and uterus are shown in
Supplementary Tables S1–S6.
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Figure 7. Mean lesion scores in trachea, lung, kidney, magnum, isthmus, and uterus at 14 dpi
following infection with the Canadian DMV/1639 strain (IBV/Ck/Can/17–036989). Mean lesion
scores were calculated according to the severity of the observed lesions in ten hens per group and
differences between groups were compared using Kruskal–Wallis’ test followed by Dunn’s multiple
comparisons test, and the error bars represent the SD. Statistical significance: * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001.

Table 2. Mean lesion scores in trachea, lung, kidney, magnum, isthmus, and uterus at 14 dpi following
infection with the Canadian DMV/1639 strain (IBV/Ck/Can/17–036989).

Groups VC NVC Control Groups

No
Change

(−)

Mild
(+)

Moderate
(++)

Severe
(+++)

No
Change

(−)

Mild
(+)

Moderate
(++)

Severe
(+++)

No
Change

(−)

Mild
(+)

Moderate
(++)

Severe
(+++)

Trachea 6/10a 1/10 3/10 0/10 1/10 4/10 2/10 3/10 10/10 0/10 0/10 0/10
Lung 0/10 8/10 2/10 0/10 010 5/10 4/10 1/10 10/10 0/10 0/10 0/10

Kidney 6/10 0/10 3/10 1/10 3/10 4/10 2/10 1/10 10/10 0/10 0/10 0/10
Magnum 4/10 6/10 0/10 0/10 2/10 7/10 0/10 1/10 10/10 0/10 0/10 0/10
Isthmus 2/8 6/8 0/8 0/8 1/7 5/7 0/7 1/7 10/10 0/10 0/10 0/10
Uterus 4/10 6/10 0/10 0/10 4/10 5/10 0/10 1/10 10/10 0/10 0/10 0/10

a = Mean severity score of each tissue: No change (−) = 0; mild (+) = > 0 to 1; moderate (++) = > 1 to 2; severe
(+++) = > 2 to 3.

4. Discussion

The use of a combined vaccination regimen including two or more antigenically
distinct IB vaccines has been demonstrated to improve protection against heterologous
IBV challenge [15,30]. The Canadian IBV DMV/1639 strain, which represents a major
threat to the egg laying industry in Canada, showed low nucleotide (77.2%) and amino
acid (73.2–75.5%) similarities in the S1 part of the S glycoprotein with the live Mass and
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Conn vaccine strains [22]. In this study, the level of protection against the Canadian
IBV DMV/1639 strain experimental challenge in layers was evaluated after a vaccination
program of a heterologous live priming by Mass and Conn types of vaccines and boosting
with an inactivated vaccine that contained Mass and Ark antigens. Egg production, viral
shedding, antibody- and cell-mediated immune responses, viral loads in tissues, and
microscopic lesions were investigated.

IBV infection is a well-known cause of decreased egg production, as well as reduced
internal and external egg quality [31]. Our earlier work demonstrated the ability of the
Canadian DMV/1639 strain to adversely affect the numbers of eggs produced by exper-
imentally challenged layers [24]. In the current study, all groups produced ≥90% from
1 to 3 dpi which excludes that the drop in egg production could have resulted from the
stress associated with handling hens during virus/mock challenge. Compared to the other
groups, the average egg production in the NVC group over 15 dpi was significantly lower.
On the other hand, the VC group demonstrated an egg laying performance comparable to
the control groups and to the pre-challenge egg production level.

Despite the genetic differences between the vaccine strains and challenge virus used in
this study, an anamnestic IBV serum antibody response was induced in the VC group. Sera
of heterologous genotype vaccines have previously demonstrated cross-reaction with field
IBV isolates using virus neutralization (VN) test [19,32]. Furthermore, De Wit et al. showed
that high levels of NV antibody against heterologous IBVs were associated with higher
level of protection to the female reproductive tract [19]. In the current study, the anamnestic
IBV serum antibody response measured by ELISA might have also been associated with
protecting the VC group against the drop in egg production. Large amounts of ani-IBV
antibodies were also detected the oviduct of the VC group, whereas local antibodies may
be more effective in protecting the reproductive tract [27]. On the other hand, the serum
antibody response in the NVC group appeared later and at a lower level than the VC group.
The cell-mediated immune response represents the other arm of the adaptive immune
response and helps in controlling acute IBV infection [33]. In the current study, changes
in CD4+ and CD8+ T cell populations in the peripheral blood following challenge were
not observed. More frequent blood sampling could have possibly helped to examine the
differences in T cell responses amongst experimental groups [34].

The Canadian IBV DMV/1639 strain was previously shown to have a wide tissue
tropism and can induce severe lesions in the respiratory, urinary, and genital tracts [23].
This study used a qRT-PCR assay to detect and monitor viral shedding and spread of the
viral RNA in IBV-susceptible tissues. The viral shedding through OP and CL routes was
significantly decreased in the VC group compared to the NVC group at 5 dpi. However,
the VC and NVC groups displayed comparable rates of OP and CL viral shedding at 12
dpi, leaving the outcome of this parameter inconclusive. A longer observation period
would have possibly shown more solid data regarding viral shedding in vaccinated layers.
Previously, when SPF pullets were infected with the Canadian DMV/1639 strain at an
early age, persistent cloacal viral shedding continued up to 105 dpi [23]. The viral RNA
was detected from all the tissues of the challenged groups; however, a significant decrease
in the viral genome loads within the trachea, lung, cecal tonsil, ovary, and oviduct was
detected in the VC group compared to the NVC group. Amongst the tissues of the VC
group that had decreased viral genome loads, the most pronounced decline was observed
in the reproductive organs. A similar finding was reported by Chousalkar et al., whereas
heterologous vaccination reduced the viral RNA of the N1/88 strain to below the detectable
levels in the oviduct of 83% of the vaccinated hens examined between 6 and 16 dpi [35].
Conversely, the highest number of copies of viral RNA was detected in the cecal tonsils,
which commonly represent the site of virus persistence [23,36].

Histopathological observations of the trachea, lung, kidney, and oviduct revealed
that the mean scores obtained in the challenged groups were not significantly different.
However, the trachea, kidney, magnum, and uterus of the VC group showed less marked
lesion scores (scores not statistically different from the control groups). In addition, a higher
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number of birds in the VC group had no histopathological changes in the trachea, kidney,
and magnum compared to the NVC group. Except for the kidney, no severe microscopic
lesions were detected in other tissues of the VC group (Table 2), which is consistent with
the viral genome load data. Similarly, the potential for DMV/1639 strain to induce renal
lesions in vaccinated chickens was previously shown [37].

Assessment of protection against IBV challenge is most commonly performed by
quantification of ciliostasis or virus re-isolation from the trachea, particularly as part
of the licensing procedure for IB vaccines [17]. However, egg laying performance and
health of the reproductive tract are critical factors when vaccine protection in layers is
evaluated. The vaccination program used in this study protected the challenged layers
from the negative effects on egg production by minimizing virus replication leading to
only mild lesions in the reproductive organs. Early and recent studies have indicated
the importance of incorporating an inactivated vaccine in an IBV vaccination program
for layers [18,19,38]. Interestingly, a prime-boost vaccination program utilizing the same
IBV types used in this study was previously demonstrated to improve protection of the
kidney in chickens challenged with nephropathogenic IBV strain, PA/Wolgemuth/98 [39].
A recent epidemiological and molecular study concluded that DMV/1639 strain likely
evolved from PA/Wolgemuth/98-like IBVs [37]. DMV/1639 and PA/Wolgemuth/98
strains were clustered within the same genetic lineage (GI-17) using phylogenetic analysis
based on the complete S1 gene [22]. The present results confirm the improved protection
conferred by a similar vaccination program against IBV strains of the GI-17 lineage. Gelb
et al. was also able to demonstrate cross-protection against challenge with other IBV field
strains using commercial bivalent IB vaccine containing the Mass and Ark strains [40].
This phenomenon of IBV cross-protection could be due to immunity induced against less
variable virus proteins other than the S protein [41]. It is worth mentioning that apart from
the S gene, other genes within the Canadian IBV DMV/1639 strain showed high sequence
similarity with a Conn-like vaccine strain [22], whereby the Conn strain was the main
component of our vaccination program.

In summary, a vaccination program of live priming and inactivated boosting utilizing
the commercial IB vaccines in Canada demonstrated reasonable protection against challenge
with the Canadian DMV/1639 strain in layers. Further investigations are warranted to
elucidate the role of the maternal antibodies derived from the current vaccination regimen in
protecting newly hatched chicks against DMV/1639-induced reproductive tract anomalies
(false layer syndrome). Moreover, controlled field or experimental trials using commercial
chickens can be conducted to validate the data generated using SPF chickens.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vaccines10081194/s1, Table S1: Comparative histopathology of
trachea at 14 dpi following infection with the Canadian DMV/1639 strain (IBV/Ck/Can/17–036989);
Table S2: Comparative histopathology of lung at 14 dpi following infection with the Canadian
DMV/1639 strain (IBV/Ck/Can/17–036989); Table S3: Comparative histopathology of kidney at
14 dpi following infection with the Canadian DMV/1639 strain (IBV/Ck/Can/17–036989); Table S4:
Comparative histopathology of magnum at 14 dpi following infection with the Canadian DMV/1639
strain (IBV/Ck/Can/17–036989); Table S5: Comparative histopathology of isthmus at 14 dpi fol-
lowing infection with the Canadian DMV/1639 strain (IBV/Ck/Can/17–036989); Table S6: Com-
parative histopathology of uterus at 14 dpi following infection with the Canadian DMV/1639 strain
(IBV/Ck/Can/17–036989).
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