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Abstract

From birth to 5 years of age, brain structure matures and evolves alongside emerging

cognitive and behavioral abilities. In relating concurrent cognitive functioning and

measures of brain structure, a major challenge that has impeded prior investigation

of their time-dynamic relationships is the sparse and irregular nature of most longitu-

dinal neuroimaging data. We demonstrate how this problem can be addressed by

applying functional concurrent regression models (FCRMs) to longitudinal cognitive

and neuroimaging data. The application of FCRM in neuroimaging is illustrated with

longitudinal neuroimaging and cognitive data acquired from a large cohort (n = 210)

of healthy children, 2–48 months of age. Quantifying white matter myelination by

using myelin water fraction (MWF) as imaging metric derived from MRI scans, appli-

cation of this methodology reveals an early period (200–500 days) during which

whole brain and regional white matter structure, as quantified by MWF, is positively

associated with cognitive ability, while we found no such association for whole brain

white matter volume. Adjusting for baseline covariates including socioeconomic

status as measured by maternal education (SES-ME), infant feeding practice, gender,

and birth weight further reveals an increasing association between SES-ME and

cognitive development with child age. These results shed new light on the emerging

patterns of brain and cognitive development, indicating that FCRM provides a useful

tool for investigating these evolving relationships.
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1 | INTRODUCTION

The first 1,000 days of life, spanning conception to a child's second

birthday, represent an important period during which the foundations

for the lifelong development of brain and cognition are established

(Pujol et al., 2006; Räikkönen, Pesonen, Roseboom, & Eriksson, 2012).

Across this age range, the brain's structural and functional growth are

at their most rapid (Dubois et al., 2008, 2014; Johnson, 2001; Lenroot &

Giedd, 2006). Advancements in magnetic resonance imaging (MRI)

techniques have allowed brain structure and function to be mapped

and characterized across early childhood (Fair et al., 2007; Gilmore

et al., 2012; Knickmeyer et al., 2008).

Previous analyses have revealed early and persistent cross-sectional

and longitudinal differences in brain structure, volume, and growth
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associated with cognitive ability (Deoni et al., 2016; O'Muircheartaigh

et al., 2014), infant feeding and nutrition (i.e., breast milk vs. formula

vs. mixed feeding) (Deoni et al., 2013), specific genotypes (Dean et al.,

2014; Knickmeyer et al., 2014), and measures of child and family

socioeconomic status (SES; Noble et al., 2015). Especially the influence

of early nutrition and feeding choice has received significant

attention (Anderson, Johnstone, & Remley, 1999; Girard, Doyle, &

Tremblay, 2017; Horwood & Fergusson, 1998; Huang, Peters,

Vaughn, & Witko, 2014; Kramer et al., 2008; Lucas, Morley, Cole,

Lister, & Leeson-Payne, 1992; Mortensen, Michaelsen, & Sanders,

2002), and previous cross-sectional neuroimaging studies have

revealed differences in brain structure in infancy, childhood, and

adolescence in breast versus formula-fed children, including differ-

ences in regional and total brain white and gray matter volume

(Deoni, Dean, et al., 2013; Isaacs et al., 2010; Kafouri et al., 2013;

Luby, Belden, Whalen, Harms, & Barch, 2016; Ou et al., 2014).

There is, however, less known about the time-evolution of the

relationship between brain structure and cognitive development,

which was the primary motivation for our study. The nature of the co-

development of these two longitudinal processes has been of recent

interest (Girault et al., 2019; Jolles et al., 2016). Previous modeling of

the relationship between white matter and cognitive development is

sparse and has been cross-sectional (Nagy, Westerberg, & Klingberg,

2004), considered a few age bins (Dubois et al., 2008; Jolles et al.,

2016), or used parametric random effects models to provide longitudi-

nal summaries for trajectory clustering (Deoni et al., 2016). As these

studies used coarse-grained methods to deal with the longitudinal

aspects, they did not go much beyond establishing a general positive

relationship between cognitive and structural brain development.

In the present study, our focus was on white matter maturation as

quantified by myelin water fraction (MWF), and we also considered

whole brain white matter volume. Both metrics were extracted from

longitudinal MRI measurements (Deoni et al., 2011). While MWF has

previously been shown to correlate with cognitive and behavioral devel-

opment (Deoni, Dean III, Joelson, O'Regan, & Schneider, 2018; Fields,

2008; Fields, 2010; Nagy et al., 2004; Zatorre, Fields, & Johansen-Berg,

2012), the nature of this relationship is still largely unknown, which

motivated our study. Specifically, we analyzed data from a longitudi-

nal study of 210 children between 65 and 1,481 postnatal days to

elucidate the time-evolving relationships between language, motor,

and general cognitive functioning, derived from the Mullen Scales of

Early Learning (MSEL, Mullen, 1995), and concurrent measures of

white matter MWF, obtained using a multicomponent relaxometry

approach (Deoni et al., 2016; MacKay et al., 1994). The MSEL is a

standardized and population-normed assessment tool for measuring

emerging thinking skills, language, and motor development in chil-

dren from birth to 68 months of age.

Myelination is a fundamental process of early development. Begin-

ning in the cerebellum and brainstem, the elaboration of the myelin

sheath around neuronal axons follows a characteristic posterior-to-

anterior, deep-to-superficial arc (Barkovich, Kjos, Jackson, & Norman,

1988; Paus et al., 2001; Yakovlev & Lecours, 1967). This pattern of

development spatially and temporally mirrors maturing cognitive

abilities (Nagy et al., 2004). That is, increases in language ability are

associated with the maturity of language networks and brain regions

supporting this skill, due to the tight coupling between myelination and

neural activities (Fields, 2005; Fields & Stevens-Graham, 2002).

A second major goal of our study was to demonstrate how one

can address the problem of sparsely and irregularly observed longitu-

dinal measurements that is prevalent in many brain developmental

studies. The longitudinal modeling approach we proposed addresses

the complexity of sparsely observed longitudinal data as present in

our cohort. Here applied to white matter structural development, the

proposed models can also be widely utilized to study other develop-

mental processes, such as longitudinal cortical maturation or mor-

phometry through different imaging measurements.

Previously, parametric models for longitudinal data have typically

been used to investigate differences in the shape and pattern of early

brain developmental trajectories (Remer et al., 2017). Depending on

the imaging measure and the investigated age range, both linear and

nonlinear parametric models coupled with mixed effects have been

used. This ranges from fitting linear, quadratic, and cubic trajectories

(for cortical thickness and surface area, depending on region; Shaw

et al., 2008), to modeling curvilinear associations such as logarithmic

(total and regional brain volumes), exponential (quantitative relaxation

times and diffusion imaging metrics including fractional anisotropy,

qT1, qT2, FA, and the axial and radial diffusivities, AD and RD; Hasan,

2013; Lebel & Beaulieu, 2011), inverted U-pattern (Arshad, Stanley, &

Raz, 2016), and sigmoidal relationships (white matter myelination,

Dean, Jerskey, et al., 2014; Croteau-Chonka et al., 2016).

While parametric models provide an important basis for longitudi-

nal modeling and the fitted model parameters as metrics can exhibit

child group differences or correlate with demographic or cognitive

variables of interest, they suffer from a lack of flexibility and require

substantial prior knowledge in order to avoid biases. These models

may not transfer across brain regions or pediatric populations and are

often difficult to validate. In contrast, nonparametric modeling tech-

niques from functional data analysis (Chen, Zhang, Petersen, & Müller,

2017; Müller, 2008; Ramsay & Silverman, 2005; Wang, Chiou, &

Müller, 2016) can be advantageous since they make no a priori assump-

tion regarding the shape or structure of data, but instead learn ade-

quate flexible shapes from the data. Additionally, the reconstruction of

continuous trajectories using parametric models is complicated by the

sparse, unbalanced, and noisy nature of typical longitudinal MRI and

neurocognitive data, which is often due to logistical challenges encoun-

tered in the majority of developmental imaging studies.

Prior parametric analyses typically involved examining sequential

cross-sectional relationships; group-wise comparisons of structural

trajectories in children stratified by cognitive ability; or associations

between changing cognitive score and changing brain structure across

variable age windows. While informative, these methodologies provide

an incomplete and often fragmented view of the evolving relationships

between brain structure and cognition. One goal of our study was to

demonstrate that these limitations can be addressed by employing a

functional data analysis methodology to construct FCRMs (Şentürk &

Müller, 2010), where measures of cognitive functioning are directly
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related to concurrent measures of brain structure. FCRM is able to

handle sparse and irregular longitudinal observations, which is realistic

and common in longitudinal neuroimaging studies. Moreover, FCRM is

highly flexible, making it the ideal tool for discovering the shape of the

underlying developmental trajectories when there is insufficient prior

knowledge to adopt parametric models.

Imaging methods, including quantitative T1 and T2 relaxometry,

diffusion (tensor and higher order models), magnetization transfer,

and susceptibility-weighted imaging each inform on complementary

aspects of white matter microstructure and myelin content (Alexander

et al., 2011). Multicomponent relaxometry (MCR) is a method that

decomposes the measured tissue MRI signal into contributions from

distinct microanatomical water pools based on their relaxation proper-

ties (MacKay et al., 2006). MCR consistently reveals the presence of

at least two water pools within brain tissue. Human disease and histo-

logical (Laule et al., 2006) studies have ascribed the two pools to

restricted myelin water trapped between the lipid bilayers of the mye-

lin sheath, and the less restricted intracellular and extracellular water

(MacKay et al., 1994). MWF, defined as the fractional ratio of these

two pools, provides a validated and noninvasive assessment of myelin

density that well correlates with histological assessments (Kolind et al.,

2012; Laule et al., 2006; Wood et al., 2016). However, few previous

studies have applied MWF imaging to study pediatric populations, or

more broadly, neurodevelopment. This reflects both the relatively

recent development of whole-brain MWF imaging methods (Deoni,

Rutt, Arun, Pierpaoli, & Jones, 2008) and the difficulty in imaging pedi-

atric populations.

To obtain whole-brain MWF measures in a time-efficient protocol,

we use the multicomponent DESPOT (mcDESPOT, Deoni et al., 2008;

Deoni, Dean, O'Muircheartaigh, Dirks, & Jerskey, 2012) method.

We have previously used mcDESPOT MCR to characterize the spatio-

temporal pattern of human brain myelination as reflected by MWF

(Deoni et al., 2012; Deoni et al., 2016), and to explore the cross-

sectional relationships between MWF and cognitive development

(Deoni et al., 2016; O'Muircheartaigh et al., 2014). In addition to pedi-

atric applications, mcDESPOT has also been used to investigate mye-

lin change in known white matter demyelinating and dysmyelinating

disorders, for example, multiple sclerosis (Kitzler et al., 2012; Kolind

et al., 2012; Kolind et al., 2013), Alzheimer's disease (Dean et al.,

2017), and dementia (Bouhrara et al., 2018).

In this work, we sought to identify critical growth periods when

white matter myelination as measured by MWF has significant associ-

ations with cognitive function. FCRM is employed on longitudinal

MSEL and white matter MWF data acquired from a large cohort

(n = 210) of healthy and typically developing children spanning 2 months

to 4 years of age, adjusting for baseline covariates including SES as mea-

sured by maternal education (SES-ME), infant feeding choice (breastmilk,

formula, or mixed feeding), child gender, and birth weight. Our results

reveal that white matter MWF is positively associated with cognitive

ability in an early developmental period (200–500 days) and that breast

feeding, female child, higher SES-ME, as well as increased birth weight,

are associated with better cognitive abilities, where the association of

SES-ME increases with child age. Additional analysis suggests that MWF

in different brain regions has differing strength of association with cogni-

tive abilities, which also varies temporally over developmental periods,

thus providing for the first time an assessment of the spatiotemporal

relations between brain structural and cognitive development.

2 | METHODS

2.1 | Population demographics

Four hundred and sixteen longitudinal data points from a total of

210 children (120 male) recruited as part of a large study of neuro-

typical development (the BAMBAM study) were included in this analy-

sis. The age-range of acquired data spans 65–1,481 postnatal days,

corrected for a 40-week gestation duration. Among all children, 93 were

scanned once; 60 were scanned two times; 30 were scanned three

times; 23 were scanned four times; 3 were scanned five times; and

1 was scanned six times. In general, children under 2 years of age were

scheduled to have follow-up visits (including MRI and psychometric

assessments) every 6 months; and children over 2 years were followed

annually. The distributions of age-at-all-scans (pooling all scans for all

children), age-at-first-scan, and age-at-last-scan are reported in

Figure 1, which shows most of the scans were made before 900 days

of age, with more scans available within the younger age range. Most

of the children had their first scans around 180 days of age, though

some had their first scans after 1,000 days (and thus providing lim-

ited information for our analysis); most scans were made around

250 days of age. A summary of the typically developing sample is

provided in Table 1, and a display of longitudinal growth and cogni-

tive measurements by gender is shown in Figure 2.

Children for this study came from a larger longitudinal study of

normal brain development (Deoni et al., 2012) and were recruited

from Providence, Rhode Island, and the surrounding areas. To date,

approximately 470 children have been recruited between the ages of

1 month and 5 years of age with study visits performed at 6- or

12-month increments. Children with known risk factors for abnormal

brain or cognitive development were excluded. These factors included

in utero exposure to alcohol, cigarette smoke, or other illicit sub-

stances; premature birth before 37 weeks' gestation, neurological

trauma, or family history of major psychiatric or learning disorder,

including maternal depression requiring medication. Specific inclusion

criteria included: (a) healthy singleton birth between 37 and 42 weeks'

gestation; (b) uncomplicated pregnancy and delivery; (c) APGAR

scores >8; (d) no reported abnormalities on fetal ultrasound; (e) no

reported neurological history in the child; (f) No reported psychiatric

or learning disability history in the child or first degree relatives.

Inclusion criteria were confirmed during phone interview prior to

enrollment. Infant, parent, and sibling history questionnaires were

used to verify inclusion criteria as well as gather additional information

regarding each child's neurological and psychiatric history; maternal and

paternal education levels; maternal prenatal and postnatal health, sub-

stance use, and breastfeeding practices; gestation duration; and birth

weight. Maternal SES was determined using the Hollingshead 4-Factor

Index (HI; Hollingshead, 1975). Specifically, we used the 7-point
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educational index to reflect overall socioeconomic status, where 1 cor-

responds to less than a 7th grade education; 2 to junior high school;

3 to partial high school; 4 to high school graduate; 5 to at least 1 year

of college or university; 6 to college or university graduate; and 7 to

a professional or graduate degree. Our analysis included only data

records that have a complete set of considered variables.

Written informed consent was obtained from each child's parents

or legal guardian and the study was performed with approval from the

Brown University Internal Review Board.

2.2 | MRI methods

Children under 4 years of age were, in general, scanned during natural,

nonsedated sleep; while children over this age who could remain still

were scanned while watching a favorite movie. All imaging was per-

formed on a 3-Tesla Siemens Tim Trio scanner equipped with a

12-channel head RF array. To minimize intra-scan motion, children

were swaddled with an infant or pediatric MedVac vacuum immobiliza-

tion bag (CFI Medical Solutions, Fenton, MI) and foam cushions were

placed around their head. Scanner noise was reduced by limiting the

peak gradient amplitudes and slew-rates to 25 mT/m/s. A noise-

insulating insert (Quiet Barrier HD Composite, UltraBarrier, San Leandro,

CA) was also fitted to the inside of the scanner bore. MiniMuff pediatric

ear covers and electrodynamic headphones (MR Confon, Germany) were

used for all children. A pediatric pulse-oximetry system and infrared cam-

era were used to continuously monitor the infants and children during

scanning (Dean, Jerskey, et al., 2014).

2.2.1 | mcDESPOT imaging

Age-specific and acoustically muffled imaging protocols (Deoni et al.,

2012) were used to acquire quantitative qT1, qT2 and MWF data in

each subject using the mcDESPOT method (Deoni et al., 2008). Each

mcDESPOT protocol consisted of 8 T1-weighted spoiled gradient echo

images (SPGR or spoiled FLASH) and 16 balanced T1/T2-weighted

steady-state free precession (bSSFP or TrueFISP) images acquired

across multiple flip angles (Deoni, Matthews, & Kolind, 2013). Two

inversion-prepared (IR) SPGR images were additionally acquired for

F IGURE 1 Distributions for age-at-
all-scans combined (red), age at first scan
(green), and age-at-last-scan (blue) [Color
figure can be viewed at
wileyonlinelibrary.com]

TABLE 1 Study population demographics for the whole sample

Gender

Male (n) 120

Female (n) 90

Racial background

Caucasian (n) 114

African American (n) 26

Asian (n) 6

Hispanic (n) 22

Mixed race (n) 42

Parent marital status

Married/living together (n) 162

Divorced/single (n) 48

Number of times scanned 1×:2×:3×:4×+
93:60:30:27

Age-at-all-scans 584.1 ± 402.0

Age-at-first-scan 473.6 ± 423.9

Age-at-last-scan 753.2 ± 431.2

Number of children in family (n) 2.1 ± 1.2

Gestation (weeks) 39.5 ± 1.3

Birth weight (g) 3,350 ± 487

Birth length (cm) 51 ± 3.06

Maternal education 5.74 ± 1.14

Paternal education 5.70 ± 1.08

ELC 101.0 ± 16.7

NVDQ 108.3 ± 17.9

VDQ 101.5 ± 22.0
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correction of radiofrequency (B1) inhomogeneities and bSSFP images

were acquired with two-phase cycling patterns (180� and 0�) for cor-

rection of main magnetic field (B0) inhomogeneities (Deoni, 2011). Total

imaging times ranged from 15 minutes for the youngest infants to

24 minutes for older children. Imaging protocols are provided in

Table 2. In all cases, the spatial resolution was held constant, with the

field of view and imaging matrix increased to accommodate changing

child head size.

Following acquisition, data were visually assessed for motion arti-

facts (including blurring, ghosting, etc.) by the same research team

member (SCLD) and standard mcDESPOT processing was performed

(Deoni et al., 2012). Approximately 5% of all data (22 scans) acquired

had significant motion-related artifacts and was deemed unusable. In

addition to visible artifacts, an automated approach was used that

flagged participants that displayed more than 2 mm of mean motion

in the center of gravity between each SPGR and bSSFP image. No

additional data were discarded on the basis of this automated metric.

Standard mcDESPOT processing included linear co-registration of the

individual's SPGR, IR-SPGR, and bSSFP images to account for poten-

tial intra-scan head movement (Jenkinson, Bannister, Brady, & Smith,

2002), nonparenchymal voxel removal (Smith, 2002), and correction

of flip angle (B1) errors and off-resonance (B0) inhomogeneities

using DESPOT1-HIFI and DESPOT2-FM (Deoni, 2011). From these

preprocessed data, voxel-wise MWF estimates were calculated

using a three-pool model, representing the myelin-associated water,

intra/extracellular water, and a nonexchanging free water pool

corresponding to cerebral spinal fluid. This model expands on the

two-pool model (Deoni et al., 2008) and incorporates additional

nonexchanging components into the matrices of steady-state SPGR

and bSSFP magnetizations, relative water pool volume fraction,

F IGURE 2 Longitudinal growth measurements (height, weight, whole brain white matter MWF) and cognitive scores (ELC, NVDQ, and VDQ)
made at scans. The bold curves are the estimated mean curves over time by local quadratic smoothing, and the shaded bands are 95% confidence
intervals (very narrow for white matter MWF) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Age-optimized mcDESPOT protocols

Age group (months) 3–9 9–16 16–28 28–48 48+

Field of view (cm3) 14 × 14 × 13 17 × 17 × 14.4 18 × 18 × 15 20 × 20 × 15 20 × 20 × 16.5

Acquisition matrix 80 × 80 × 72 96 × 96 × 80 100 × 100 × 88 112 × 112 × 88 112 × 112 × 96

SPGR TE/TR (ms) 5.8/12 5.9/12 5.4/12 5.2/11 4.8/10

SPGR Flip angles (degrees) 2, 3, 4, 5, 7, 9, 11, 14 2, 3, 4, 5, 7, 9, 11, 14 2, 3, 4, 5, 7, 9, 11, 14 2, 3, 4, 5, 7, 9, 12, 16 3, 4, 5, 6, 7, 9, 13, 18

IR-SPGR inversion times (ms) 600, 950 600, 900 500, 850 500, 800 450, 750

bSSFP TE/TR (ms) 5/10 5.1/10.2 5/10 4.4/8.8 5/10

bSSFP Flip angles (degrees) 9, 14, 20, 27, 34,

41, 56, 70

9, 14, 20, 27, 34,

41, 56, 70

9, 14, 20, 27, 34,

41, 56, 70

9, 14, 20, 27, 34,

41, 56, 70

9, 14, 20, 27, 34,

41, 56, 70
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relaxation, off-resonance, exchange rate, and excitation flip angle;

for details, see Deoni, Matthews, and Kolind (2013). A stochastic

region contraction fitting approach was used to fit the model to the

SPGR and bSSFP data. These quantitative images (“maps”) were

then nonlinearly aligned to a custom common analysis space in

approximate MNI space using a previously described multistep

approach (Deoni et al., 2012) that first aligns the subject's high flip

angle T1 weighted SPGR image to an age-specific template and

then applies the calculated transformation matrix to the quantita-

tive maps. All image registration/normalization was performed

using the ANTS tools (Avants et al., 2011). We have previously

shown that this approach provides robust registration across the

investigated age range (2–68 months) without altering the quanti-

tative values (Dean III et al., 2014).

2.3 | Neuropsychological assessments

For all children, cognitive functioning was assessed using the Mullen

Scales of Early Learning, MSEL, an assessment enjoying high test–

retest reliability (Mullen, 1995). The battery consists of 144 items

that are equally distributed across five main sub-tests: Expressive and

receptive language, visual reception, and fine and gross motor function.

Normalized composite scores, including the early learning composite

(ELC), and verbal and nonverbal development quotients (VDQ and

NVDQ, respectively) reflect overall cognitive, language, and motor func-

tioning, respectively. Each of these normalized measures has a mean of

100 and standard deviation (SD) of 15. VDQ covers test items of expres-

sive and receptive language; NVDQ comprises test items measuring

visual reception, fine motor, and gross motor function.

All cognitive assessments were performed within 7 days of successful

MRI by one of three qualified raters trained and supervised by the same

licensed clinical neuropsychologist. Assessments were performed using

the same standardized stimuli in a consistent testing environment.

2.4 | Functional concurrent regression models

We examined the time-dynamic concurrent association between cogni-

tive composite scores (ELC, VDQ, and NVDQ) and white matter matura-

tion (measured by MWF) at different ages by means of FCRMs, which

are also referred to as functional varying coefficient models (Şentürk &

Müller, 2010). As the measurements available for each child were

extremely sparse and irregular over the age range, time-dynamic regres-

sion modeling is a challenging task. Owing to the irregularity of the

data in time, with generally few data points acquired at any one age

or time-point, modeling cannot be approached simply by fitting

models cross-sectionally at each time-point. Further, estimating the time-

dynamic models using a sliding window approach, or by grouping, the

longitudinal data in large age windows may disregard important develop-

mental differences occurring within each window, and as a result, may

incur additional biases if appropriate adjustments are not made. This may

be particularly true for early brain development and myelination as mea-

sured by MWF, which occurs rapidly over the first 2–4 years (Deoni

et al., 2012; Dean et al., 2014; Yakovlev & Lecours, 1967).

As an alternative approach, FCRMs are well-established in the

statistical literature and have been extended to the case of sparse and

irregular observations (Şentürk & Müller, 2010), and subsequently

extended further (Şentürk & Nguyen, 2011) to incorporate multiple

longitudinal and baseline covariates. We assume that the longitudinal

covariates and the response have underlying smooth trajectories over

time t 2 I, where I is the time interval of interest. For each child, we

observed the longitudinal covariates and the response in his/her

sporadic visits. We denote the response by Y(t), the kth longitudinal

covariate for k = 1, … , p by Xk(t), furthermore the lth baseline covari-

ate by Zl for l = 1, … , q, and let W(t) = (X1(t), … , Xp(t), Z1, … , Zq)0 be a

column vector containing all covariates. Following Şentürk and

Nguyen (2011), the FCRM is given by

E Y tð ÞjW tð Þð Þ= α tð Þ+β tð Þ0W tð Þ, ð1Þ

which we expand to

E Y tð ÞjW tð Þð Þ= α tð Þ+
Xp
k =1

βk tð ÞXk tð Þ+
Xq
l=1

βp+ l tð ÞZl , ð2Þ

where α(t) is the intercept, and β(t) = (β1(t), … , βp + q(t))0 is the vector

of regression coefficients, for which the first p entries correspond to

longitudinal covariates (X1(t), … , Xp(t)) and the last q entries to base-

line covariates (Z1, … , Zq). The response Y(t) depends linearly on the

longitudinal and baseline covariates W(t) at age t, where the effects

are reflected in the regression coefficients β(t). The coefficients,

therefore, characterize the time-dynamics of the association between

the response and the covariates.

The FCRM allows for arbitrary smooth changes in β(t) as age var-

ies and, therefore, is considerably more flexible than any linear or

other random effects model (e.g., Gautam et al., 2014). For a fixed age

t0, β(t0) can be interpreted in the same way as the regression parame-

ters in a linear regression model, relating the effects of Xk(t) and Zv to

the response Y(t). We emphasize here that for most times t, none of

these covariates or responses are actually observed, which motivates

the application of functional data analytic methods whereby one gains

strength by borrowing information across the sample.

The estimation procedures are carried out by kernel smoothing.

Further details about the estimation method are presented in the

Appendix. We note that the intercept and the slop functions can be

consistently estimated by borrowing information across subjects, even

if only sparse measurements on each subject are available.

The software implementation of our procedure (FCReg) is included in

the R package fdapace (Dai, Hadjipantelis, Ji, Müller, & Wang, 2017).

Within this analysis, we examined the relationships between MWF as

longitudinal covariates, baseline covariates (SES-ME, child gender,

birth weight, and infant feeding choice—exclusive or nonexclusive

breastfeeding for the first 90 days), and longitudinal responses of

cognitive functioning (ELC, VDQ, and NVDQ) from 150 to 1,000

postnatal days. Though the regression coefficients were calculated

for this slightly restricted window, all scans from the complete data
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set spanning 65–1,481 days were utilized in the calculation to pro-

duce more reliable estimates. This is because the estimation of the

regression effect at each time point through kernel smoothing requires

the availability of data in a small temporal neighborhood of that time

point in order to avoid boundary effects. We constructed bootstrap

confidence intervals using 10,000 bootstrap samples for statistical

inference. Bonferroni adjustment was used for testing the regression

effects at 200, 400, 600, 800, and 1,000 days of age.

2.5 | Whole-brain white matter MWF

We used FCRMs to investigate the effects of white matter maturation

and myelination, as measured by MWF, on each of the three compos-

ite cognitive measures, ELC, VDQ, and NVDQ. Examining first the

effect of whole-brain white matter, we used the following FCRM,

E Y tð Þjcovariates½ �=α tð Þ+ β1 tð ÞWhiteMatter tð Þ+ β2 tð ÞBirthWt+ β3 tð ÞMixedFd

+ β4 tð ÞBottleFd+ β5 tð ÞMale+ β6 tð ÞSES,
ð3Þ

where Y(t) is one of the cognitive scores, MixedFd is an indicator for

mixed breastmilk and formula feeding, BottleFd is an indicator of

exclusive formula feeding, and Male is an indicator for a male child.

Children who are exclusively breastfed have MixedFd = 0 and Bot-

tleFd = 0. As a measure of SES, maternal education level was quanti-

fied by the 7-level scale in the Hollingshead 4-Factor Index of SES

(Hollingshead, 1975). In addition to white matter MWF as a longitudi-

nal covariate, child gender, birth weight, and whether the child was

exclusively breastfed for the first 90 days, exclusively bottle (formula)

fed, or received a mixture of breast milk and formula, were included

as baseline covariates.

2.6 | Regional analysis

White matter MWF values were obtained for the whole-brain white

matter as well as in 23 individual brain regions: The body, genu, and

splenium of the corpus callosum; the right and left hemisphere frontal,

occipital, parietal, temporal and cerebellar white matter; corona radiata,

cingulum, optic radiation, internal capsule, and superior longitudinal fas-

ciculus. Masks for each of these regions were derived from the ICBM

and JHU white matter atlases (Hua et al., 2008; Mazziotta et al., 2001).

Masks were superimposed on each individual's data and mean values

were calculated (Deoni et al., 2012). As previously described (Dean,

O'Muircheartaigh, et al., 2014), all data were aligned using a longitudinal

registration pipeline. Mask alignment was visually checked and manu-

ally edited if necessary. Mean MWF values were calculated for each

masked anatomical region and used for the following analysis.

For this regional analysis, we implemented a family of simple

FCRMs,

E Y tð ÞjX tð Þ½ �= α tð Þ+ β1 tð ÞX tð Þ, ð4Þ
where Y(t) denotes one of NVDQ, VDQ, or ELC, and the covariate X(t)

is the measure of MWF in one of the 23 individual brain regions.

2.7 | Coefficient of determination

In classical regression modeling, the coefficient of determination,

defined as the fraction of variance explained by the model, measures

how well the response is linearly predicted by the covariates. We

define similarly for FCRM the time-dynamic coefficient of determina-

tion, R2(t), as

R2 tð Þ= cov W tð Þ,Y tð Þð Þ0var W tð Þð Þ−1 cov W tð Þ,Y tð Þð Þ
var Y tð Þð Þ : ð5Þ

This is a direct generalization of the coefficient of determination

R2 as the fraction of variance explained by a linear model to the time-

dynamic case. The measure R2(t) is used to quantify how well the cog-

nitive scores were explained by measures of white matter MWF in

individual brain regions as age varied. Pointwise significance for R2(t)

was determined by the equivalent bootstrap confidence interval for

β(t). For the time points where the whole brain white matter MWF

effect was significant in model (Equation 3), significance results were

adjusted for 23 brain regions to control the false-discovery rate (FDR)

by the Benjamini–Hochberg procedure (Benjamini & Hochberg, 1995).

3 | RESULTS

3.1 | Whole-brain white matter MWF

The resulting estimates for the FCRM as given in Equation (3) and

pointwise bootstrap confidence intervals for the regression coeffi-

cients are shown in Figure 3, where the columns correspond to the

models for the responses NVDQ, VDQ, and ELC, respectively. Red

color indicates significance at the 5% level, while asterisks indicate

significance even after multiple adjustments. WhiteMatter MWF and

BirthWt were scaled to have unit SDs in the plots to facilitate compar-

isons of the regression effect sizes. Significant associations after

Bonferroni adjustment were white matter MWF with NVDQ at

400 days; male with VDQ at 800 days; SES-ME with all three early

learning scores at 800 and 1,000 days, and with NVDQ additionally at

600 days. Our results show that MWF is an important covariate of

early cognitive development across the first 1.5 years of life, as dem-

onstrated by the positive effect of white matter MWF on each cogni-

tive score until approximately 500 days of age. The age range across

which white matter MWF was a pointwise significant covariate was

250–450 days for nonverbal functioning (NVDQ), 260–300 days for

verbal functioning (VDQ), and 200–400 days for general cognitive

ability (ELC). For all three cognitive measures, maternal SES as mea-

sured by the education level had an increasing positive effect on cogni-

tive outcomes, becoming significant after 500 days of age. Bottle feeding

in contrast to early exclusive breastfeeding had a generally negative

impact on cognitive maturation, pointwise significant around 500 days

for ELC and NVDQ. Mixed-feeding in contrast to breastfeeding did not

have a significant effect. Being a male had a generally negative effect

on cognition, pointwise significant between 250 and 500 days for
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NVDQ, 680–1,000 days for VDQ, and 300–800 days (marginal signifi-

cance) for overall cognitive ability.

3.2 | Regional white matter MWF

While informative, investigations of whole-brain development with

respect to cognitive maturation may mask subtle, region-specific asso-

ciation given the known functional specialization of different brain

regions, systems, and networks. To shed insight into regional differ-

ences in observed relationships, we examined the associations between

cognitive scores and MWF values obtained from distinct brain regions

and white matter pathways. It is reasonable to pursue this investigation

since the whole brain white matter MWF had an association with

NVDQ, which was significant at 400 days, and with VDQ and ELC,

which was pointwise significant for certain periods before multiple test-

ing adjustments. For this analysis, we considered a family of simple

FCRMs as described in Equation (4).

We show in Figure 4 the results for the functional coefficients of

determination R2(t), quantifying the degree of association with cogni-

tive outcomes. Multiple adjustment by the Benjamini–Hochberg pro-

cedure for the 23 investigated regions was performed for NVDQ at

400 days when the whole brain white matter MWF effect was signifi-

cant. In Figure 4, each column reflects one of the three cognitive

scores of interest, and the rows denote the right, left, and midline

hemisphere structures or regions, while bolded curve segments indi-

cate unadjusted pointwise significance, and “×” signs indicate adjusted

significance after controlling the FDR at the 0.05 level. All but the

bilateral cerebellum regions were significantly associated with NVDQ

at 400 days after adjustment. For each cognitive score, the R2(t) cur-

ves displayed a generally consistent shape, with an early peak

followed by a plateau near 2 years of age. For example, most of the

R2(t) curves corresponding to NVDQ showed a peak near 400 days of

age before returning to near 0, and for bilateral frontal regions then

increasing again after 750 days of age. The R2(t) curves for VDQ were

F IGURE 3 Parameter
estimates for functional
concurrent regression models.
Each column corresponds to a
model with a different cognitive
response, as indicated at the top,
and each row corresponds to a
covariate, where the first row
shows the effects of the time-
varying covariate white matter
MWF and the other rows show
the effects of the baseline
covariates as age varies.
WhiteMatter MWF and BirthWt
are scaled to have unit standard
deviations to facilitate
comparisons. Black solid lines
correspond to the regression
function estimates, and dark and
light gray bands correspond to
50 and 95% bootstrap confidence
intervals, respectively. Where
these bands do not cover 0 this
corresponds to pointwise
significant regression effects at

the 5% level (colored in red).
Significance after adjusting for
multiple time points (200, 400,
600, 800, and 1,000 days) is
indicated by red asterisks [Color
figure can be viewed at
wileyonlinelibrary.com]
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similar but exhibited a smaller early peak magnitude and for bilateral

frontal and corona radiata regions a larger increase at 750 days. How-

ever, the R2(t) curves for bilateral corona radiata and right frontal did

not show significant early peaks for the VDQ response. The R2(t) cur-

ves for ELC are an approximate average of their corresponding NVDQ

and VDQ curves, in line with the definition of ELC. Overall the R2(t)

values for the NVDQ response models were larger than those for the

VDQ and ELC response models, suggesting that NVDQ is more asso-

ciated with white matter MWF.

The results presented in Figure 4 indicate that there is an early

period during which white matter maturation, as measured by MWF, is

associated with cognitive development. Exploratory observations also

indicate an intervening period between approximately 500 and 750 days

(1.5–2 years) of age where the association is much less pronounced, and

a late period after 750 days where the association increases again for

regions such as frontal and corona radiata; these results were not

supported by significant p values, therefore are only suggestive, and will

require verification in future studies. The biological interpretation and

underpinning of these trends are unclear at this time.

4 | DISCUSSION

FCRM provides a fully longitudinal nonparametric approach for the

dynamic concurrent regression relationship between longitudinal pro-

cesses, which can be applied to identify the time-varying strength of

associations and critical periods when these associations are signifi-

cant. FCRM is able to estimate the association at arbitrary ages with

sparse and irregular observations, without a priori binning the longitu-

dinal observations or invoking shape assumptions on the longitudinal

trajectories or association. In contrast, classical linear mixed effects

models (Gautam, Nuñez, Narr, Kan, & Sowell, 2014) impose linear

constraints on growth so cannot detect association in arbitrary time

windows, and nonlinear mixed effects models (Remer et al., 2017)

have only been applied to group but not individual trajectories and

impose parametric shape assumptions on trajectories. In this study,

FCRM is applied to study associations between longitudinal cognitive

development and longitudinal white matter myelination, measured by

Mullen scores and MWF, respectively, adjusting for other covariates

such as gender, feeding method, birth weight, and maternal education.

F IGURE 4 Time-varying coefficients of determination R2(t) for the fits of functional concurrent regression models E[Y(t)|X(t)] = α(t) + β1(t)X(t),
in dependence on age t, where X(t) is the white matter MWF for one of the 23 individual brain regions, and Y(t) is one of the cognitive scores
(NVDQ, VDQ, or ELC). The three columns (from left to right) correspond to NVDQ, VDQ, and ELC response, respectively, and the three rows
(from top to bottom) correspond to the left brain, the right brain, and the corpus callosum, respectively. Bolded curve segments indicate

unadjusted pointwise significance, while “×” signs indicate significant effects after controlling the FDR at the 5% level
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This longitudinal modeling approach can be widely applied to investi-

gate the dynamic relationship between other longitudinal processes

of interest in neuroimaging studies, for example, longitudinal cortical

maturation or morphometry, and cognition and physical development.

Our results demonstrate a positive association between white

matter MWF and emerging cognitive abilities, significant at 400 days

for NVDQ as response. We also demonstrate a direct relationship

between MWF and overall cognitive ability and motor and language

functioning for various ages, allowing us to examine the evolution of

these relationships with age and to pinpoint developmental periods

when these relationships are particularly prominent. These results

build on prior investigations by our group and others that not only

relate brain structure to cognitive function, but also examine the asso-

ciation with baseline covariates.

Varying imaging acquisition parameters with age may affect

derived results, as is the case for more conventional qualitative or

semi-qualitative measures such as white matter volume or density.

However, as we and others have previously shown, quantitative met-

rics such as qT1, qT2, and MWF are much less sensitive to acquisition

parameters and even different imaging hardware (RF coils, and scan-

ner manufacturer), making the age-varying parameters less of a con-

cern (Deoni et al., 2012). Nonetheless, we performed an analysis

where white matter maturation is measured by white matter volume

(Figure S2). This additional analysis revealed no significant associa-

tions between this alternative imaging metric and cognitive function-

ing, indicating MWF might be preferable over volume as imaging

metric for white matter development.

Investigating the relationships between whole-brain and regional

white matter MWF and cognitive development, we note an evolving

trend with MWF being an important covariate from approximately

250 to 450 days of age, which is found to be significant after adjusting

for multiple testing at 400 days for NVDQ. Weak and insignificant

association appears to be manifest from 450 to 750 days, followed by

an increase for some specific brain regions into childhood, where these

observations were however not significant after adjustment, and thus

are only suggestive and will require future confirmatory analysis.

Though our main analysis focused on the population normed com-

posite scores ELC, NVDQ, and VDQ, in response to a reviewer we

also compared the analysis results for the five raw and normalized

Mullen subscales in order to investigate the effect of normalization.

On the model level (Equation (2)), any normalization of the response

in FCRM would result in an equivalent model, in the sense that the

existence of a regression effect (β(t) 6¼ 0) and the percent of total vari-

ance explained would remain the same before and after normalization.

Additional data analysis included in the Supporting Information dem-

onstrated that the regression coefficient estimates for the raw

(Figure S6) and the normalized (Figure S7) subscales had largely identi-

cal trend and similar statistical significance, where the statistical signif-

icance differed only for a few covariates within short time periods.

While it is possible to normalize within our samples instead of using

the population norm, this in-sample normalization method poses a

problem, namely the observations are utilized in both the estimation

of the mean and the SD in the normalization step (Chiou, Chen, &

Yang, 2014), as well as in the FCRM model [Equation (A3) in the

Appendix]. Additional bias may be incurred due to this two-step

procedure.

Longitudinal relationships between white matter development and

cognition have been scarcely studied, which calls for future research.

Results in our longitudinal analysis, while providing a detailed spatio-

temporal analysis, are broadly consistent with our prior cross-sectional

reports relating MWF with overall cognitive ability (Deoni et al., 2016)

and language abilities (O'Muircheartaigh et al., 2014). Deoni et al.

(2016) found little association in the first year of life, diffuse and wide-

spread associations in the second year of life, and regionally consoli-

dated associations between 2 and 5.5 years of age. Developmentally,

this is suggestive of an early period of functional onset followed by

increasing specialization into and throughout childhood. Our longitudi-

nal findings are also in agreement with prior cross-sectional analyses

identifying relationships between white matter maturation and cog-

nition across the investigated age range. Associations have been

established between white matter microstructure and working mem-

ory scores (Short et al., 2013); regional volume and Bayley scores

(Shapiro et al., 2017); as well as myelination and processing speed

(Chevalier et al., 2015).

Investigating the association with other baseline covariates also pro-

vides results that are consistent with, but extend, prior cross-sectional

findings. For example, disparities in SES, an umbrella term that incorpo-

rates factors including parental education level, family income, and social

standing, have consistently been linked to differences in child cognitive

ability, as well as social and educational outcomes (Bradley & Corwyn,

2002; Hackman & Farah, 2009; Noble, Houston, Kan, & Sowell, 2012;

Turkheimer, Haley, Waldron, D'Onofrio, & Gottesman, 2003). Thus, it

is unsurprising that our results show maternal education level to be a

significant covariate for child cognitive functioning. However, prior

reports have traditionally been cross-sectional and, thus, the evolution of

the relationship between maternal education and cognitive ability with

child age throughout early childhood has not been reported.

Our finding that the effect of maternal education is the strongest

among all covariates, increases with age, becoming significant by

1.5–2 years of age may be suggestive of an early “window of opportu-

nity” during which interventions may be most effective at minimizing

later disparities (Campbell & Ramey, 1994). As was pointed out by a

reviewer, other factors that might account for this effect include the

genetic component for cognition reflected in maternal education

which has been found to increase its effect on general cognitive abil-

ity through childhood (Haworth et al., 2010), as well as the improved

reliability of the response Mullen scales (Mullen, 1995). SES was chosen

to be measured by maternal education because maternal education has

previously been shown to strongly correlate with child physical and cogni-

tive health and development (Bradley & Corwyn, 2002; Desai & Alva,

1998; Dollaghan et al., 1999). The maternal education scale of HI is rather

stable, unlike the occupational scale, and is the component most associ-

ated with the full HI score (Bornstein, Hahn, Suwalsky, & Haynes, 2003).

Results presented here extend previous findings of brain structural

disparities in breast versus formula-fed children (Deoni, Dean, et al.,

2013; Isaacs et al., 2010; Kafouri et al., 2013; Luby et al., 2016;
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Ou et al., 2014) to cognitive differences, with suggestive negative asso-

ciations between cognitive functioning and exclusive formula-feeding

relative to breastfeeding, although these associations were insignificant

after adjustment. Of note, no significant difference in cognition was

found in association with mixed breast and formula feeding and exclu-

sive breastfeeding, thus providing no evidence against the previously

reported finding that even limited breastfeeding can positively influ-

ence early neurodevelopment relative to exclusive formula (Borra,

Iacovou, & Sevilla, 2012).

Our results also suggest differential typical development with

respect to gender (Figures 2 and 3) in addition to SES-ME and early

nutrition. Males tended to have higher white matter MWF than

females between 1.5 and 2.5 years of age, but lower cognitive ability

throughout the age window we investigated, where the gender effect

is found to be significant for VDQ at 800 days, and pointwise signifi-

cant for NVDQ (250–500 days) and ELC (250–400 and 750–900 days).

These findings mirror known sexual dimorphism in trajectories of brain

structure throughout childhood (Lenroot et al., 2007) and adolescence

(De Bellis et al., 2001). Further, these findings may reflect other early

life influences not specifically investigated here. For example, early life

stress has been shown to more greatly affect male compared to female

brain structures (Shors, Chua, & Falduto, 2001; Westenbroek, Boer

Den, & Veenhuis, 2004), and there exist significant gender differences

in the prevalence of developmental disorders, including autism (Wing,

1981), attention deficit and hyperactivity disorder (Gaub & Carlson,

1997; Szatmari, Offord, & Boyle, 1989), as well as reading disabilities

(Hawke, Olson, Willcut, Wadsworth, & DeFries, 2009). Subgroup analy-

sis in males and females separately (Figures S3 and S4) revealed similar

association patterns in both genders without discernible gender interac-

tion effects.

Examining the overall relationship trends (Figure 4) we note

expected regional differences in the associations between brain MWF

and verbal, nonverbal, and overall cognitive ability, an early period of

positive association (200–500 days) when MWF is more strongly

associated with cognitive scores, and for bilateral frontal and corona

radiata regions a late period (>750 days) of increasing association, in

comparison to an intermediary period when the association is overall

low and statistically insignificant. Though generally weak, the associa-

tions between NVDQ and most brain regions at the early peak of

400 days are found to be significant after adjustment. This shows that

structural development in individual brain regions is associated with

cognitive outcomes, though the former is a weaker factor than SES or

maternal education. A nonparametric bootstrap was implemented to

investigate the significance of covariates, which is a more conserva-

tive and less biased approach compared to parametric tests based on

mixed effects models, and this may have led to less significance of the

associations.

The brain region for which MWF is observed to be most corre-

lated with overall cognitive ability (ELC) for the early period is tempo-

ral lobe white matter, and optic radiation for nonverbal (NVDQ); while

for the late period after 750 days, ELC is the most associated with the

frontal white matter. While these observations do not retain statistical

significance after multiple adjustments, they nevertheless align with

the known spatiotemporal pattern of myelination, and with established

regional function specificity. NVDQ is a composite of fine motor and

visual functioning and, thus, the involvement of the optic paths

(Berman et al., 2009) is not surprising. Further, the optic radiation con-

nects the lateral geniculate nucleus to the occipital pole through the

temporal loop (Catani, Jones, Donato, & Ffytche, 2003), which may

explain the role of the temporal white matter as an early predictor of

ELC, as for children less than 1 year of age, ELC is strongly based on

visual and motor functioning. In older children, the frontal white matter

and associated white matter pathways are associated with aspects of

executive functioning, including attention and working memory

(Alvarez & Emory, 2006; Miyake et al., 2000; Prabhakaran, Narayanan,

Zhao, & Gabrieli, 2000), which are important contributors to general

cognitive functioning (Ardila, Pineda, & Rosselli, 2000).

The nature of the time-dynamic relationships between MWF and

cognition remains less clear for the period between ~1.5 and 2 years

of age, when the association between these measures is at a low level.

Further investigation into this time period using more sophisticated

imaging measures is therefore warranted. For example, there could be a

trade-off between myelination and neuronal density throughout this

age period that is masked by our use of mean MWF measures. The use

of non-Gaussian diffusion models, such as NODDI (Zhang, Schneider,

Wheeler-Kingshott, & Alexander, 2012) may allow us to investigate

neuronal density. Further, this information can be combined with

mcDESPOT to yield the myelin g-ratio (Dean et al., 2016). These more

fine-grained measures of tissue structure may provide additional insight

into the neuroanatomical changes across this age window that are

associated with cognitive development. Additional explanations may

include high variability in quantifiable developmental assessment as

reflected in VDQ and NVDQ between 500–750 days, where low asso-

ciation was observed.

The FCRM is able to handle sparse and irregular observations, pro-

vided the pooled observations are dense within the investigated time

period. Though our complete data set included scans up to 1,481 days,

fewer scans were available after 900 days (Figure 1) and thus we chose

the window of investigation to be from 150 to 1,000 days after birth.

The complete data set was utilized in estimating the regression effects

within this time window in order to alleviate boundary effects in kernel

smoothing (see the Appendix). An additional analysis for the concurrent

regression effects up to the first 1,400 days (Figure S1) shows that the

coefficient estimates suffered from larger variances in a later period,

especially after 1,200 days, and none of the regression effects were sig-

nificant after 1,000 days after multiple adjustments.

FCRM has been proven effective and flexible in modeling the con-

current regression relationship between longitudinal responses and

covariates of time-varying or time-invariant nature. The flexibility of

FCRM for longitudinal studies is reflected in three ways: First, it is

able to tackle sparse and irregular designs and to include subjects who

have as few as one measurement; second, FCRM allows one to pin-

point the critical periods where the longitudinal association between a

covariate and the response is the most salient; and third, baseline and

longitudinal covariates can be appropriately controlled. The estimation

procedure by kernel smoothing improves efficiency of the estimates,
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as compared to a simple sliding window approach. In future work,

refined versions of FCRM may be applied to create a voxelwise spa-

tiotemporal map of association between myelination and cognitive

function.

5 | CONCLUSION

Early neurodevelopment is a dynamic process during which brain

structure and function symbiotically evolve together. Here, we have

sought to investigate this evolving structure–function relationship by

applying FCRMs to longitudinal neuroimaging and neurocognitive

data for the first time. FCRM is flexible enough to quantify arbitrary

dynamic associations between time-evolving processes at different

ages and can handle genuinely sparse and irregular data, overcoming

the limitations of cross-sectional or parametric approaches. Results

reveal a more temporally dynamic relationship pattern than previously

presented, characterized by an early period (200–500 days) of general

development, during which there is a relatively strong association

between brain myelination (measured by MWF) and cognitive ability.

Our exploratory results also suggest a late period (>750 days) of

increased association for specific regions, an observation that needs

future confirmatory analysis. Investigating the relationship of addi-

tional baseline covariates, we find that the association between

maternal education (as a proxy for SES) and cognition is not only

positive but furthermore increases with child age. These results pro-

vide new insight into the emerging patterns of brain and cognitive

development and support the further use of FCRM for investigating

these evolving relationships that could be directly applied to other

longitudinal child development data sets.
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APPENDIX

ESTIMATION

By standard least squares theory, the regression parameters can be

written as

β tð Þ= var W tð Þð Þ−1 cov W tð Þ,Y tð Þð Þ, ðA1Þ

and

α tð Þ= μY tð Þ−μW tð Þ0β tð Þ, ðA2Þ

where μY(t) = E(Y(t)) is the expected value of the response at age t, and

μW tð Þ= E W tð Þð Þ= μX1
tð Þ,…,μXp

tð Þ,E Z1ð Þ,…,E Zqð Þ
h i

0 is the expected

values of the covariates at age t.

Since the observations are sparse and irregular, it is not viable

to estimate the regression coefficients cross-sectionally. Following

Şentürk and Nguyen (2011), we pooled the information across all

subjects and obtained estimates utilizing all measurements. In

view of Equations (A1), (A2), and (5), in order to estimate α(t), β(t),

and R2(t), we need to obtain estimates for the mean and the

covariance functions using the pooled data and then use the

corresponding plug-in estimates for Equations (A1), (A2), and (5).

That is,

β
^

tð Þ= ^var W tð Þð Þ−1 ^cov W tð Þ,Y tð Þð Þ, ðA3Þ

α̂ tð Þ= μ̂Y tð Þ− μ̂X tð Þ0 β
^

tð Þ ðA4Þ

and

R̂
2
tð Þ= ^cov W tð Þ,Y tð Þð Þ0 v̂ar W tð Þð Þ−1 ^cov W tð Þ,Y tð Þð Þ

^var Y tð Þð Þ : ðA5Þ

The following describes the estimation procedure for the mean

and the covariance functions, regression coefficients, and R2(t). For

the jth visit of the ith subject at time tij, denote our observations as

(X1ij, … , Xpij, Z1i, … , Zqi, Yij) for i = 1, … , n and j = 1, … , ni, where n is

the number of subjects, and ni is the number of measurements per

subject. Here Z1i, … , Zqi are the q baseline covariates examined, and

Xkij = Xki(tij), Yij = Yi(tij) are longitudinal observations for the kth covari-

ate and the response at time tij, for k = 1, … , p, where p is the number

of longitudinal covariates examined. We used the following procedure

for estimating μW(t), μY(t), var(W(t)) and cov(W(t), Y(t)) based on

smoothing, similar to the scheme proposed by Yao, Müller, and Wang

(2005) and Şentürk and Nguyen (2011):

1. For the lth baseline covariates Zl, we estimated its mean and

covariance by the sample mean and covariance of the observa-

tions Zlif gni=1.
2. For the kth longitudinal covariates Xk(t) or the response Y(t), we

estimated the mean function by smoothing the pooled scatter plot

data tij ,Xkij

� �� �jni=1jnij=1 or tij ,Y ij

� �� �jni = 1jnij=1 using kernel local lin-

ear smoothers and obtained the mean function estimate μ̂Xk
tð Þ

or μ̂Y tð Þ.
3. We then obtained the raw auto- and cross-covariances as fol-

lows, regarding the response Y(t) the same as a longitudinal

covariate:

GXk ,Zl tij
� �

= Xkij− μ̂Xk
tij
� �� �

Zli− �Zl

� �
, ðA6Þ

GXk ,Xm tij ,tij0
� �

= Xkij− μ̂Xk
tij
� �� �

Xmij0 − μ̂Xm
tij0
� �� �

, ðA7Þ

for j, j0 = 1, … , ni and i = 1, … , n, where Xk and Xm are two arbitrary

longitudinal covariates (or the response) and �Zl is the sample mean of

the lth baseline covariate.
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4. Next, we obtained the smoothed auto- and cross-covariance

estimates by applying kernel local linear smoothers on the raw

covariances. For estimating the cross-covariances cov(Xk(t), Zl)

between a longitudinal process Xk(t) and a baseline covariate Zl

we fed raw covariances tij ,GXk ,Zl tij
� �� �� �jni = 1jnij = 1 to a one-

dimensional smoother. For estimating cross-covariances cov(Xk(t),

Xm(t)) between two longitudinal covariates Xk and Xm, contrary to

Şentürk and Müller (2010), we used a one-dimensional smoother

again, noting that Equations (A1), (A2), and (5) depend only on

the auto- and cross-covariances of two processes evaluated at

the same time-point t. We took advantage of this fact and obtained

^cov Xk tð Þ,Xm tð Þð Þ by applying one-dimensional kernel local smoothers

on the raw covariances tij ,GXk ,Xm tij ,tij
� �� �� �jni = 1jnij = 1.

The detailed forms for the one-dimensional kernel local linear

smoothers are described next. To estimate the mean function μX(t)

of a stochastic process X(t), for which we make use of the

observations tij ,Xij

� �� �jni = 1jnij = 1, we define the kernel local linear esti-

mate for μX(t) as μ̂X tð Þ= β̂0, where

β̂0, β̂1
� �

= arg min
β0,β1

Xn
i=1

Xni
j=1

K
tij−t
h

� �
Xij−β0−β1 t−tij

� �� 	2
, ðA8Þ

h > 0 is a bandwidth, and K(�) is a kernel function. Similarly, we used the

same smoother to estimate cov(Xk(t), Zl) from tij ,GXk ,Zl tij
� �� �� �jni = 1jnij = 1

and cov(Xk(t),Xm(t)) from tij ,GXk ,Xm tij,tij
� �� �� �jni =1jnij = 1. For all kernel

local smoothing, we used the Gaussian kernel with bandwidth equal

to 150days.

For numeric covariates, the sample means and standard deviations

are shown. Education level is on a 7-point scale determined by Hol-

lingshead four-factor index (Hollingshead, 1975), in which a six means

standard college or university graduation.

Abbreviations: ELC, early learning composite; NVDQ, nonverbal

development quotient; VDQ, verbal development quotient.
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