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Abstract

regulation, and linking diverse epigenetic processes.

Background: Recent assays for individual-specific genome-wide DNA methylation profiles have enabled
epigenome-wide association studies to identify specific CpG sites associated with a phenotype. Computational
prediction of CpG site-specific methylation levels is critical to enable genome-wide analyses, but current approaches
tackle average methylation within a locus and are often limited to specific genomic regions.

Results: We characterize genome-wide DNA methylation patterns, and show that correlation among CpG sites
decays rapidly, making predictions solely based on neighboring sites challenging. We built a random forest classifier
to predict methylation levels at CpG site resolution using features including neighboring CpG site methylation levels
and genomic distance, co-localization with coding regions, CpG islands (CGls), and regulatory elements from the
ENCODE project. Our approach achieves 92% prediction accuracy of genome-wide methylation levels at
single-CpG-site precision. The accuracy increases to 98% when restricted to CpG sites within CGls and is robust across
platform and cell-type heterogeneity. Our classifier outperforms other types of classifiers and identifies features that
contribute to prediction accuracy: neighboring CpG site methylation, CGls, co-localized DNase | hypersensitive sites,
transcription factor binding sites, and histone modifications were found to be most predictive of methylation levels.

Conclusions: Our observations of DNA methylation patterns led us to develop a classifier to predict DNA
methylation levels at CpG site resolution with high accuracy. Furthermore, our method identified genomic features
that interact with DNA methylation, suggesting mechanisms involved in DNA methylation modification and

Background

Epigenetics is the study of non-genetic cellular processes
that may be inherited, are stable through cell division,
and may change in response to external and internal cel-
lular stimuli. Epigenetic markers may change within an
individual over time and have been shown to exhibit cell-
type specificity [1-3]. Epigenetics has been shown to
play a critical role in cell differentiation, development,
and tumorigenesis [4,5]. DNA methylation is probably
the best studied epigenetic modification of DNA, but our
understanding of DNA methylation is still in its infancy.
In vertebrates, DNA methylation occurs when a methyl
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group is added to the fifth carbon of the cytosine residue,
mainly in the context of neighboring cytosine and guanine
nucleotides in the genome (5-CG-3 dinucleotides or CpG
sites), and is mediated by DNA methyl-transferases [6,7].
DNA methylation has been shown to play an impor-
tant functional role in the cell, including involvement in
DNA replication and gene transcription, with substan-
tial downstream association with development, aging, and
cancer [1-3,8-10].

CpG sites are under-represented in the human genome
relative to their expected frequency as a result of being
mutation hotspots, where the deamination of methy-
lated cytosines encourages CpG sites to mutate to TpG
sites [5,11]. Although CpG sites are mainly methy-
lated across the mammalian genome [12], there are dis-
tinct, mostly unmethylated CG-rich regions called CpG
islands (CGIs), which have a G+C content greater than
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50% [5,11,13]. CGIs account for 1 to 2% of the genome
and are often located in promoters and exonic regions
in mammalian genomes [14,15]. Methylation patterns in
CGIs that are in promoter regions, where most previ-
ous studies have focused attention, have recently been
shown to differ from methylation patterns elsewhere,
indicating a specific biological role for these promoter
CGIs [12]. CGIs have been shown to co-localize with
DNA regulatory elements such as transcription factor
binding sites (TFBSs) [16-23] and DNA binding insula-
tor proteins, such as CTCF, which insulate downstream
DNA from upstream methylation activity [24]. Across the
genome, DNA methylation levels have been shown to be
dependent on context: methylation levels are relatively
predictable within particular genomic regions. In particu-
lar, predictable levels of methylation have been observed
in active chromatin marks [25-27] and cis-acting DNA
regulatory elements [14,28]. Context-dependent methyla-
tion suggests cellular processes that regulate methylation
and also provides clues as to how methylation may impact
cellular phenotypes.

The non-uniform distribution of CpG sites across the
human genome and the important role of methylation
in cellular processes imply that characterizing genome-
wide DNA methylation patterns is necessary for a better
understanding of the regulatory mechanisms of this epige-
netic phenomenon [29]. Recent advances in methylation-
specific microarray and sequencing technologies have
enabled the assay of DNA methylation patterns genome-
wide at single base-pair resolution [29]. The current gold
standard for quantifying single-site DNA methylation lev-
els across a genome is whole-genome bisulfite sequenc-
ing (WGBS), which quantifies DNA methylation levels
at ~26 million (out of 28 million in total) CpG sites
in the human genome [30-32]. However, WGBS is pro-
hibitively expensive for most current studies, is subject
to conversion bias, and is difficult to perform in par-
ticular genomic regions [29]. Other sequencing methods
include methylated DNA immunoprecipitation sequenc-
ing, which is experimentally difficult and expensive, and
reduced representation bisulfite sequencing, which assays
CpG sites in small regions of the genome [29]. As an
alternative, methylation microarrays, and the Illumina
HumanMethylation450 BeadChip in particular, measure
bisulphite-treated DNA methylation levels at ~482,000
preselected CpG sites genome-wide [33]; however, these
arrays assay less than 2% of CpG sites, and this percentage
is biased to gene regions and CGlIs. Quantitative methods
are needed to predict methylation status at unassayed sites
and genomic regions.

In this study, we examined measurements of methy-
lation levels in 100 individuals using the Illumina 450K
BeadChip [34]. Within these methylation profiles, we
examined the patterns and correlation structure of the
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CpG sites, with attention to characterizing methylation
patterns in CGI regions. Using features that include neigh-
boring CpG site methylation status, genomic location,
local genomic features, and co-localized regulatory ele-
ments, we developed a random forest (RF) classifier to
predict single-CpG-site methylation levels genome-wide.
Using this method, we were able to identify DNA reg-
ulatory elements that were especially predictive of DNA
methylation levels at single CpG sites, providing hypothe-
ses for experimental studies on mechanisms by which
DNA methylation is regulated or leads to biological
changes or disease phenotypes.

Related work in DNA methylation prediction

Methylation status is a difficult epigenomic feature to
characterize and predict because assayed DNA methyla-
tion marks are: (a) an average across the sampled cells, (b)
specific to a cell type, (c) environmentally unstable and
(d) not well correlated within a genomic locus [2,35,36].
Specific CpG sites may show differential methylation sta-
tus across platforms, cell types, individuals or genomic
regions [37,38]. A number of methods to predict methy-
lation status have been developed (Additional file 1:
Table S1). Most of these methods assume that methyla-
tion status is encoded as a binary variable, e.g., a CpG
site is either methylated or unmethylated in an individ-
ual [28,39-45].

Related methods have often limited predictions to spe-
cific regions of the genome, such as CGlIs [40-43,45,46].
These methods make predictions of average methylation
status for windows of the genome instead of individual
CpG sites (with one exception [38]). All of the studies
that achieved prediction accuracy >90% [40,43,45,46] pre-
dicted average methylation status within CGIs or DNA
fragments within CGIs. Most of the CpG sites in CGIs
are unmethylated across the genome [12] — for exam-
ple, 16% of CpG sites in CGIs in samples from the
human brain were found to be methylated using a WGBS
approach [47] — so it is not surprising that classifiers
limited to these regions perform well. Studies extend-
ing prediction beyond CGIs uniformly achieved lower
accuracies, ranging from 75% to 86%. Only two studies
predicted methylation levels as a continuous variable: one
study was limited to ~400 bp DNA fragments instead of a
genome-wide analysis [48], and the other used as predic-
tion features the same CpG site in reference samples [38].

Across these methods, features that are used for DNA
methylation prediction include: DNA composition (prox-
imal DNA sequence patterns), predicted DNA struc-
ture (e.g., co-localized introns), repeat elements, TFBSs,
evolutionary conservation (e.g., PhastCons [49]), sin-
gle nucleotide polymorphisms (SNPs), GC content, Alu
elements, histone modification marks, and functional
annotations of nearby genes. Several studies used only
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DNA composition features [28,39,42,44,48]. Bock et al.
used ~700 features including DNA composition, DNA
structure, repeat elements, TFBSs, evolutionary conser-
vation, and number of SNPs [40]; Zheng et al. included
~300 features including DNA composition, DNA struc-
ture, TFBSs, histone modification marks, and functional
annotations of nearby genes [45]. One study used as fea-
tures methylation levels from the same CpG sites in ref-
erence samples from different cell types [38]. The relative
contribution of each feature to prediction quality is not
quantified well within or across these studies because of
the different methods and prediction objectives.

The majority of these methods are based on support
vector machine (SVM) classifiers [28,38-41,43,45,46,48].
General non-additive interactions between features are
not encoded when using linear kernels, which are used
by most of these SVM-based classifiers. If a more sophis-
ticated kernel is used, such as a radial basis function
kernel, within the SVM-based approach, the contribu-
tion of each feature to prediction quality is not readily
available. Three studies included alternative classifica-
tion frameworks: one found that a decision tree clas-
sifier achieved better performance than an SVM-based
classifier [46]. Another study found that a naive Bayes
classifier achieved the best prediction performance [42].
A third study used a word composition-based encoding
method [44].

Our method for predicting DNA methylation levels
at CpG sites genome-wide differs from these current
state-of-the-art classifiers in that it: (a) uses a genome-
wide approach, (b) makes predictions at single-CpG-site
resolution, (c) is based on a RF classifier, (d) predicts
methylation levels B instead of methylation status 7, (e)
incorporates a diverse set of predictive features, includ-
ing regulatory marks from the ENCODE project, and
(f) allows the quantification of the contribution of each
feature to prediction. We find that these differences sub-
stantially improve the performance of the classifier and
also provide testable biological insights into how methy-
lation regulates, or is regulated by, specific genomic and
epigenomic processes.

Results

Characterizing methylation patterns

DNA methylation profiles were measured in whole blood
samples from 100 unrelated human participants by Illu-
mina HumanMethylation450 BeadChips at single-CpG-
site resolution for 482,421 CpG sites [50]. single-CpG-site
methylation levels are quantified by B, the proportion of
probes for this CpG site that are methylated, which is
computed as the methylated probe intensity divided by
the sum of both the methylated and unmethylated probe
intensities; thus, 8 ranges from zero (the CpG site is
unmethylated) to one (the CpG site is fully methylated).
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Within the single-CpG-site § values across individuals, we
controlled for probe chip position, sample age, and sam-
ple sex. After these data were filtered and preprocessed
(see Materials and methods), 394,354 CpG sites remained
across the 22 autosomal chromosomes.

First, we examined the distribution of DNA methylation
levels, B, at CpG sites on autosomal chromosomes across
all 100 individuals. The majority of CpG sites were either
hypermethylated or hypomethylated (levels of methylation
that are consistently higher or lower than 0.5, respec-
tively), with 48.2% of sites with 8 > 0.7 and 40.4% of
sites with B < 0.3 (Additional file 1: Figure S1A). Using
a cutoff of 0.5, across the methylation profiles and indi-
viduals, 54.8% of these CpG sites have a methylated status
(B = 0.5). Across the individuals, we observed distinct
patterns of DNA methylation levels in different genomic
regions (Additional file 1: Figure S1B). Using CGlIs labeled
in the UCSC genome browser [51], we defined CGI shores
as regions 0 to 2 kb away from CGIs in both directions
and CGI shelves as regions 2 to 4 kb away from CGlIs in
both directions [34]. We found that CpG sites in CGIs
were hypomethylated (81.2% of sites with 8 < 0.3) and
sites in non-CGIs were hypermethylated (73.2% of sites
with 8 > 0.7), while CpG sites in CGI shore regions had
variable methylation levels following a U-shape distribu-
tion (39.0% of sites with 8 > 0.7 and 46.2% of sites with
B < 0.3), and CpG sites in CGI shelf regions were hyper-
methylated (78.2% of sites with 8 > 0.7). These distinct
patterns reflect highly context-specific DNA methylation
levels genome-wide.

DNA methylation levels at nearby CpG sites have pre-
viously been found to be correlated (indicating possible
co-methylation), particularly when CpG sites are within 1
to 2 kb from each other [35,36]. These methylation pat-
terns stand in contrast with correlation among nearby
genetic polymorphisms due to linkage disequilibrium,
which often extends to large genomic regions from a
few kilobases to >1 Mb [52]. We quantified the correla-
tion of methylation levels 8 between neighboring pairs of
CpG sites using the absolute value Pearson’s correlation
across individuals. We found that correlation of methyla-
tion levels between neighboring (i.e., adjacent CpG sites
in the genome that are both assayed) CpG sites decreased
rapidly to approximately 0.4 within ~400 bp, in con-
trast to sharp decays noted within 1 to 2 kb in previ-
ous studies with sparser CpG site coverage (Figure 1A)
[35,36].

To make this decay more precise, we contrasted the
observed decay to the level of background correlation
(0.22), which is the median absolute value Pearson’s cor-
relation between the methylation levels of pairs of ran-
domly selected pairs of CpG sites across chromosomes
(Figure 1A). We found substantial differences in corre-
lation between neighboring CpG sites versus randomly



Zhang et al. Genome Biology (2015) 16:14 Page 4 of 19

A 2 '
-
— HNeighbering
— CGI
© CGlshcre&shelf
o 7 — nenCGl
—— Non-adjacent

{

Absolute Correlation
0.4 0.6
1 1

e e I

[}
!
1
)
1
|
{
1
- | |
----._.-_&|4...---_._-4..---'--"‘\I‘
o~
s T T
© 1 1
| [
1 i
1 |
e 1 v
o 1 1
B = 1 1
=] 1 1
1 1
1 1
1 1
™ _| 1 1
o 1 1
a 1 1
w | 1
> | |
o~ 1 1
% S 1 1
— 1 1
3 1 1
= 1 F T e 1
- 4 1 v - 1
=4 | - u 1
[ \._.-‘I . .
= eSS
T A o
| L
I

T T
0 1000 2000 3000 4000 5000 6000
CpG site distance

Figure 1 Correlation of methylation levels between neighboring CpG sites. The x-axis represents the genomic distance in bases between the
neighboring CpG sites, or assayed CpG sites that are adjacent in the genome. Different colors and points represent subsets of the CpG sites
genome-wide, including pairs of CpG sites that are not adjacent in the genome but that are the specified distance apart (non-adjacent). The CGI
shore and shelf CpG sites are truncated at 4,000 bp, which is the length of the CGl shore and shelf regions. The solid horizontal line represents the
background (absolute value correlation or mean squared Euclidean distance, MED) level from 50,000 pairs of CpG sites from different chromosomes.
(A) Absolute value of the correlation between neighboring sites across all individuals (y-axis). The lines represent cubic smoothing splines fitted to
the correlation data. (B) Median MED was calculated (y-axis) across pairs of CpG sites within the genomic distance window (x-axis). bp, base pair;

CGl, CpG island; MED, mean squared Euclidean distance.

sampled pairs of CpG sites at matching distances, pre-
sumably because of the dense CpG tiling on the 450K
array within CGI regions. Interestingly, the slope of the
correlation decay plateaus after the CpG sites are approxi-
mately 400 bp apart (both for neighbors and for randomly
sampled pairs at a matching distance). However, the distri-
bution of correlation between pairs of CpG sites matches
the distribution of background correlation even within
200 kb (Figure 2A, Additional file 1: Figure S2A). We
found the rate of decay in the correlation to be highly
dependent on genomic context; for example, for neigh-
boring CpG sites in the same CGI shore and shelf region,
correlation decreases continuously until it is well below
the background correlation (Figure 1A). Because of the
over-representation of CpG sites near CGIs on the 450K
array, we see an increase in correlation as the distance
between neighboring sites extends past the CGI shelf
regions, where there is lower correlation with CGI methy-
lation levels than we observe in the background. While
this suggests that there may be types of methylation reg-
ulation that extend to large genomic regions, the pattern
of extreme decay within approximately 400 bp across the
genome indicates that, in general, methylation may be
biologically manipulated within very small genomic win-
dows. Thus, neighboring CpG sites may only be useful for

prediction when the sites are sampled at sufficiently high
densities across the genome.

We repeated these experiments using the mean squared
Euclidean distance (MED) between pairs of CpG site lev-
els to quantify patterns of decay of methylation within
each individual, instead of across individuals, as is mea-
sured with the correlation analyses (see Materials and
methods; Figure 1B, Figure 2B,D,F). In general, the MED
trends echo the local patterns seen in the correlation
analysis and also appear to be specific to a region. In
CGI regions, the MED of neighboring sites was low
and increased slowly with genomic distance. In contrast,
MED in CGI shore and shelf regions increased rapidly
to an MED higher than background MED (i.e., median
MED between pairs of CpG sites within the same indi-
vidual across chromosomes; 0.13), indicating that the
edges of a single shore and shelf region are less predic-
tive of each other than any two CpG sites at random.
The individual-specific MED between neighboring sites
(Additional file 1: Figure S2B) shows substantial deviation
from the background distribution of MED at 200 kb rela-
tive to the correlation at this distance, indicating that there
may be biological manipulation of methylation in larger
genomic regions, but this manipulation may be specific
to an individual, such as being driven by genetic variants
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or environmental effects. That said, for both MED and
correlation distributions, we applied the Kolmogorov—
Smirnov test to the background distribution and MED
or correlation distributions at three genomic distances.
We found that, in every case, the P values indicated that
the null hypothesis — that the two samples came from
the same underlying distribution — should be rejected.
We found it difficult to reconcile the results of these

tests against the relative histograms and quantile—quantile
plots of the same samples (Figure 2, Additional file 1:
Figure S2), which showed low levels of enrichment at
high correlation and low MED in the non-background
distributions.

As we observed that methylation patterns at neigh-
boring CpG sites depend on genomic content, we fur-
ther investigated methylation patterns within CGls, CGI
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shores, and CGI shelves. Methylation levels at CGIs and
CGI shelves were fairly constant genome-wide and across
individuals — CGIs are hypomethylated and CGI shelves
are hypermethylated — but CGI shores exhibit a repro-
ducible but drastic pattern of change (Figure 3A). CpG
sites in CGI shores have a monotone increasing pattern of
methylation status from CGIs towards CGI shelves, and
this pattern is symmetric in the CGI shores upstream and
downstream of CGIs. We examined the MED between
methylation status for pairs of CpG sites in these regions,
and we found that MED within the CGI and within
the CGI shelves is low, consistent with the variance
we observed within DNA methylation profiles in these
regions (Figure 3B). Additionally, we found that the MED
between CpG sites in the shelves appears to increase as
the sites are further away from the CGI on the shelf, sug-
gesting a circular dependency in CpG site methylation
across the ends of the shelf sequences. It is interesting that
the CpG sites in the shore regions are substantially more
predictive of CpQG sites in the shelf regions than those in
the CGI regions, although this may indicate a less precise
delineation of the shore and shelf regions relative to the
CGI and CGI shore delineation.

To quantify the amount of variation in DNA methy-
lation explained by genomic context, we considered the
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correlation between genomic context and principal com-
ponents (PCs) of methylation levels across all 100 samples
(Figure 4). We found that many of the features derived
from a CpG site’s genomic context appear to be correlated
with the first principal component (PC1). The methy-
lation status of upstream and downstream neighboring
CpG sites and a co-localized DNAse I hypersensitive
(DHS) site are the most highly correlated features, with
Pearson’s correlation r = [0.58,0.59] (P < 2.2 x 10716).
Ten genomic features have correlation r > 0.5 (P <
2.2 x 10716) with PC1, including co-localized active TEBSs
ELFI (ETS-related transcription factor 1), MAZ (Myc-
associated zinc finger protein), MXI1 (MAX-interacting
protein 1) and RUNX3 (Runt-related transcription factor
3), and co-localized histone modification trimethylation
of histone H3 at lysine 4 (H3K4me3), suggesting that
they may be useful in predicting DNA methylation sta-
tus (Additional file 1: Figure S3). That said, the features
themselves are well correlated; for example, active TFBS
ELF1 is highly enriched within DHS sites (r = 0.67,P <
2.2 x 10716) [53,54].

Binary methylation status prediction
These observations about patterns of DNA methylation
suggest that correlation in DNA methylation is local and
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dependent on genomic context. Thus, prediction of DNA
methylation status based only on methylation levels at
neighboring CpG sites may not perform well, especially
in sparsely assayed regions of the genome. Using predic-
tion features, including neighboring CpG site methylation
levels and features characterizing genomic context, we
built a classifier to predict binary DNA methylation sta-
tus. Status, which we denote using 7;; € {0,1} for i €
{1,...,n} samples and j € {1,...,p} CpG sites, indicates
no methylation (0) or complete methylation (1) at CpG
site j in sample i. We computed the status of each site
from the g;; variables: 7;; = ¥[ 8;; > 0.5]. For each sam-
ple, there were 378,677 CpG sites with neighboring CpG
sites on the same chromosome, which we used in these
analyses.

The 124 features that we used for DNA methyla-
tion status prediction fall into four different classes (see
Additional file 1: Table S2 for a complete list). For each
CpG site, we include the following feature sets:

e neighbors: genomic distances, binary methylation
status T and levels B of one upstream and one
downstream neighboring CpG site (CpG sites
assayed on the array and adjacent in the
genome)

® genomic position: binary values indicating
co-localization of the CpG site with DNA sequence
annotations, including promoters, gene body,
intergenic region, CGls, CGI shores and shelves, and
nearby SNPs

e DNA sequence properties: continuous values
representing the local recombination rate from
HapMap [55], GC content from ENCODE [56],
integrated haplotype scores (iHSs) [57], and genomic
evolutionary rate profiling (GERP) calls [58]

o cis-regulatory elements: binary values indicating CpG
site co-localization with cis-regulatory elements
(CREs), including DHS sites, 79 specific TFBSs, ten
histone modification marks and 15 chromatin states,
all assayed in the GM12878 cell line, the closest
match to whole blood [56]

We used a RF classifier, which is an ensemble classi-
fier that builds a collection of bagged decision trees and
combines the predictions across all of the trees to pro-
duce a single prediction. The output from the RF classifier
is the proportion of trees in the fitted forest that clas-
sify the test sample as a 1, ,3,;,» €l0,1] fori = {1,...,n}
samples and j = {1,..., p} CpG sites assayed. We thresh-
olded this output to predict the binary methylation status
of each CpG site, fi,j € {0,1}, using a cutoff of 0.5. We
quantified the generalization error for each feature set
using a modified version of repeated random subsampling
(see Materials and methods). In particular, we randomly
selected 10,000 CpG sites genome-wide for the training
set, and we tested the fitted classifier on all held-out sites
in the same sample. We repeated this ten times. We quan-
tified prediction accuracy, specificity, sensitivity (recall),
precision (1— false discovery rate), area under the receiver
operating characteristic (ROC) curve (AUC), and area
under the precision—recall curve (AUPR) to evaluate our
predictions (see Materials and methods).

Using 122 features (excluding 8 for one upstream and
one downstream neighboring CpG site but including sta-
tus 7) and considering all CpG sites with two neighbor-
ing CpG sites in our data, we achieved an accuracy of
91.9% and an AUC of 0.96 (Figure 5A). We considered
the role of each subset of features (Table 1). For exam-
ple, if we only included genomic position features, the
classifier had an accuracy of 78.6% and AUC of 0.85.
Including DNA sequence properties and TFBS features
increased the accuracy to 85.7% and the AUC to 0.92.
When we included all classes of features except for neigh-
bors, the classifier achieved an accuracy of 89.0% and
an AUC of 0.94, a significant improvement in prediction
from only considering genomic position features (¢-test;
P = 7.75 x 1072%). These results suggest that TFBSs,
histone modifications, and chromatin state are predic-
tive of DNA methylation. However, we also found that
the genomic context features improved prediction sig-
nificantly over using only the neighbor features, which
has an accuracy of 90.7% and an AUC of 0.94 (¢-test;
P =345 x 10718),
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Figure 5 Prediction performance of methylation status and level. (A) ROC curves of cross-genome validation of methylation status prediction.
Colors represent classifier trained using feature combinations specified in the legend. Each ROC curve represents the average false positive rate and
true positive rate for prediction on the held-out sets for each of the ten repeated random subsamples. (B) ROC curves for different classifiers. Colors
represent prediction for a classifier denoted in the legend. Each ROC curve represents the average false positive rate and true positive rate for
prediction on the held-out sets for each of the ten repeated random subsamples. (C) Precision-recall curves for region-specific methylation status
prediction. Colors represent prediction on CpG sites within specific genomic regions as denoted in the legend. Each precision-recall curve represents
the average precision-recall for prediction on the held-out sets for each of the ten repeated random subsamples. (D) Two-dimensional histogram
of predicted methylation levels versus experimental methylation levels. x- and y-axes represent assayed versus predicted g values, respectively.
Colors represent the density of each matrix unit, averaged over all predictions for 100 individuals. CGI, CpG island; Gene_pos, genomic position;
k-NN, k-nearest neighbors classifier; ROC, receiver operating characteristic; seq_property, sequence properties; SVM, support vector machine; TFBS,
transcription factor binding site; HM, histone modification marks; ChromHMM, chromatin states, as defined by ChromHMM software [107].

Table 1 Performance of methylation status prediction using different prediction models

Feature set Features  Accuracy (%) AUC Specificity (%) Sensitivity (%) MCC R RMSE
Gene_pos® 9 78.6 0.85 72.5 83.6 0.57 0.61 0.39
Gene_pos + seq_property® 13 79.5 0.86 71.6 85.9 0.58 066 034
Gene_pos + seq_property + TFBSs 93 85.7 0.92 784 91.7 0.71 080 0.29
Gene_pos + seq_property + CREs® 118 89 0.94 839 933 0.78 086 023
Neighbor CpG methylation status + distance? 4 90.7 094 872 935 0.81 087 024
All features 122 919 096 879 95.1 084 090 019

2Genomic position features including gene region status (promoter, gene body, and intergenic region), CGl status (CGI, CGI shore, CGl shelf, and non-CGl), and
proximal SNPs. °DNA sequence properties include GC content, recombination rate, conservation score, and iHSs. °CREs include TFBSs, DHS sites, histone
modifications and chromatin state segmentation. 9Genomic distance between neighboring CpG sites.

AUC, area under ROC curve; CGl, CpG island; CRE, cis-regulatory element; iHS, integrated haplotype score; MCC, Matthew’s correlation coefficient; RMSE,
root-mean-square error; SNP, single nucleotide polymorphism; TFBS, transcription factor binding site.
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Cross-sample prediction

To determine how predictive methylation profiles were
across samples, we quantified the generalization error of
our classifier genome-wide across individuals. In particu-
lar, we trained our classifier on 10,000 sites from one indi-
vidual, and predicted methylation status for all CpG sites
for the other 99 individuals. The classifier’s performance
was highly consistent across individuals (Additional file 1:
Figure S4), suggesting that individual-specific covariates —
different proportions of cell types, for example — do not
limit prediction accuracy. Aware of the unbalanced pro-
portion of female and male samples in our study, we fur-
ther investigated prediction performance across sex. The
classifier’s performance is highly consistent when training
on females and predicting CpG site methylation status in
males, and vice versa (Additional file 1: Figure S5).

To test the sensitivity of our classifier to the number of
CpG sites in the training set, we investigated the predic-
tion performance for different training set sizes. We found
that training sets with greater than 1,000 CpG sites had
fairly similar performance (Additional file 1: Figure S6).
Throughout these experiments, we used a training set size
of 10,000, to strike a balance between sufficient numbers
of training samples and computational tractability.

Cross-platform prediction

To quantify classification across platform and cell-type
heterogeneity, we investigated the classifier’s performance
on WGBS data [59,60]. In particular, we categorized each
CpG site in a WGBS sample based on whether that CpG
site was assayed on the 450K array (450K site) or not
(non 450K site); neighboring sites in the WGBS data are
sites that are adjacent on the genome when both are 450K
sites. We use one WGBS sample from b-cells, which will
match some proportion of each whole blood sample; we
note that the 450K array whole blood samples will contain
heterogeneous cell types in contrast to the WGBS data.
Overall, we see a much higher proportion of hypomethy-
lated CpG sites on the 450K array relative to the WGBS
data (Additional file 1: Figure S7) because of the dispro-
portionate representation of hypomethylated CpG sites
within CGIs on the 450K array.

First, we investigated cross-platform prediction, train-
ing our classifier on a 450K array sample and testing on
WGBS data. We trained the classifier on 10,000 CpG
sites in the 450K array samples, and then we tested on
100,000 CpG sites in WGBS data twice — once restrict-
ing the test set to 450K sites and once restricting the
test set to non 450K sites. We repeated this experiment
ten times. Next, we performed the same experiment but
trained and tested on the WGBS data. Because the pro-
portion of hypomethylated and hypermethylated sites was
imbalanced for CpG sites not on the 450K array, we used a
precision—recall curve instead of a ROC curve to measure
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the prediction performance [61]. We used all 122 features
and considered prediction of inverse CpG status T = —
(tr — 1) in this experiment, to assess the quality of the pre-
dictions for the less frequent class of hypomethylated CpG
sites.

Trained on 450K array data and tested on WGBS 450K
sites, our RF classifier achieved an accuracy of 89.3%;
trained on 450K array data and tested on WGBS non
450K sites, our RF classifier achieved an accuracy of 92.2%
(Figure 6; Table 2). Training and testing exclusively on
WGBS data showed a similar performance, with an accu-
racy of 90.0% for CpG sites in the 450K sites and 92.4%
for CpG sites in the non 450K sites (Figure 6). Predic-
tions for CpG sites in non 450K sites had lower precision
at high recall rates because it is more difficult to predict
unmethylated sites in the sequencing data as there are
many more unmethylated CpG sites. These results suggest
that our RF classifier is able to generalize across platforms
and methylation assay types.

Comparison of random forest classifier with other
classifiers

We compared the prediction performance of our RF clas-
sifier with several other classifiers that have been widely
used in related work (Table 3). In particular, we com-
pared our prediction results from the RF classifier with
those from a SVM classifier with a radial basis function
kernel, a k-nearest neighbors classifier (k-NN), logistic
regression, and a naive Bayes classifier. We used identical
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1 1
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L

0.2

— Train on WGBS, test on WGBS non450K site
—— Train on WGBS, test on WGBS 450K site
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Figure 6 Prediction performance on WGBS data and
cross-platform prediction. Precision—recall curves for cross-platform
and WGBS prediction. Each precision-recall curve represents the
average precision-recall for prediction on the held-out sets for each
of the ten repeated random subsamples. WGBS, whole-genome
bisulfite sequencing.
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Table 2 Performance of methylation prediction using whole-genome bisulfite sequencing data

Training set Test set Accuracy (%) Precision (%) Recall (%) TN FN TP FP R RMSE
WGBS 450K sites WGBS non 450K sites 924 86.5 445 78264 6095 4890 764 0.64 0.24
WGBS 450K sites WGBS 450K sites 90 91.8 823 51260 6374 29726 2653 0.86 0.23
450K data WGBS non 450K sites 922 88.5 414 78437 6442 4543 591 0.62 0.23
450K data WGBS 450K sites 89.3 93.0 79.3 51762 7465 28635 2151 0.84 0.24

FN, false negatives; FP, false positives; RMSE, root-mean-square error; TN, true negatives; TP, true positives; WGBS, whole-genome bisulfite sequencing.

feature sets for all classifiers, including all 122 features
used for prediction of methylation status with the RF clas-
sifier. We quantified performance using repeated random
resampling with identical training and test sets across
classifiers.

We found that the k-NN classifier showed the worst
performance on this task, with an accuracy of 73.2% and
an AUC of 0.80 (Figure 5B). The naive Bayes classifier
showed better accuracy (80.8%) and AUC (0.91). Logis-
tic regression and the SVM classifier both showed good
performance, with accuracies of 91.1% and 91.3% and
AUC:s of 0.96% and 0.96%, respectively. We found that our
RF classifier showed significantly better prediction accu-
racy than logistic regression (t-test; P = 3.8 x 1071°) and
the SVM (¢-test; P = 1.3 x 10~13). We note also that the
computational time required to train and test the RF clas-
sifier was substantially less than the time required for the
SVM, k-NN (test only), and naive Bayes classifiers. We
chose RF classifiers for this task because, in addition to
the gains in accuracy over SVMs, we were able to quantify
the contribution to prediction of each feature, which we
describe below.

Region-specific methylation prediction

Studies of DNA methylation have focused on methy-
lation within promoter regions, restricting predictions
to CGIs [40,41,43-46,48]; we and others have shown
DNA methylation has different patterns in these genomic
regions relative to the rest of the genome [12], so the accu-
racy of these prediction methods outside of these regions

Table 3 Performance of methylation status prediction
using different classifiers

Classifier Accuracy (%) AUC Specificity (%) Sensitivity (%) MCC
k-NN 732 080 726 73.7 0.46
Naive 80.8 091 644 94.2 0.62
Bayes

Logistic 91.1 096 873 94.1 0.82
regression

SVM 91.3 0.96 86.6 95.1 0.82
Random 918 0.96 879 95.1 0.84
forest

AUC, area under the receiver operating characteristic curve; k-NN, k-nearest
neighbors classifier; MCC, Matthew's correlation coefficient; SVM, support vector
machine.

is unclear. Here we investigated regional DNA methy-
lation prediction for our genome-wide CpG site predic-
tion method restricted to CpGs within specific genomic
regions (Additional file 1: Table S3). For this experiment,
prediction was restricted to CpG sites with neighboring
sites within 1 kb distance because of the small size of CGIs.

Within CGI regions, we found that predictions of
methylation status using our method had an accuracy of
98.3%. We found that methylation level prediction within
CGIs had an r = 0.94 and a root-mean-square error
(RMSE) of 0.09. As in related work on prediction within
CGI regions, we believe the improvement in accuracy is
due to the limited variability in methylation patterns in
these regions; indeed, 90.3% of CpG sites in CGI regions
have B < 0.5 (Additional file 1: Table S4). Conversely,
prediction of CpG methylation status within CGI shores
had an accuracy of 89.8%. This lower accuracy is con-
sistent with observations of robust and drastic change in
methylation status across these regions [62,63]. Predic-
tion performance within various gene regions was fairly
consistent, with 94.9% accuracy for predictions of CpG
sites within promoter regions, 93.4% accuracy within gene
body regions (exons and introns), and 93.1% accuracy
within intergenic regions. Because of the imbalance of
hypomethylated and hypermethylated sites in each region,
we evaluated both the precision-recall curves and ROC
curves for these predictions (Figure 5C and Additional
file 1: Figure S8).

Predicting genome-wide methylation levels across
platforms

CpG methylation levels 8 in a DNA sample represent the
average methylation status across the cells in that sample
and will vary continuously between 0 and 1 (Additional
file 1: Figure S9). Since the Illumina 450K array mea-
sures precise methylation levels at CpG site resolution,
we used our RF classifier to predict methylation levels at
single-CpG-site resolution. We compared the prediction
probability (ﬁi,j € [0,1]) from our RF classifier (with-
out thresholding) with methylation levels (8;; € [0,1])
from the array, and validated this approach using repeated
random subsampling to quantify generalization accuracy
(see Materials and methods). Including all 122 features
used in methylation status prediction, but modifying the



Zhang et al. Genome Biology (2015) 16:14

neighboring CpG site methylation status 7 to be continu-
ous methylation levels 8, we trained our RF classifier on
450K array data and evaluated the Pearson’s correlation
coefficient (r) and RMSE between experimental and pre-
dicted methylation levels (Table 1; Figure 5D). We found
that the experimentally assayed and predicted methyla-
tion levels had r = 0.90 and RMSE = 0.19. The correlation
coefficient and the RMSE indicate good recapitulation of
experimentally assayed levels using predicted methylation
levels across CpG sites.

We quantified the performance of methylation level pre-
diction on WGBS data. We trained on CpG sites from the
450K array, and tested the classifier on CpG sites from
the WGBS data, both restricted to CpG sites in the 450K
sites set and restricted to CpG sites in the non 450K sites
set. We achieved different correlations (r = 0.62 and
0.84, P < 2.2 x 1071) but similar RMSE (0.23 and 0.24,
P = 3 x 1071%) when predicting methylation levels for
CpG sites in the 450K sites set and CpG sites in the non
450K sites set, respectively, in WGBS data. We suspect
that the performance difference between the two experi-
ments reflected in the correlation coefficients may be due
to the overabundance of CpG sites from CGIs included on
the 450K array and, correspondingly, in the 450K sites set
of CpG sites.

Feature importance for methylation prediction

We evaluated the contribution of each feature to over-
all prediction accuracy, as quantified by the Gini index.
In the RF classifier, the Gini index measures the decrease
in node impurity, or the relative entropy of the observed
positive and negative examples before and after splitting
the training samples on a single feature, of a given feature
over all trees in the trained RF. We computed the Gini
index for each of the 122 features from the trained RF
classifier for predicting methylation status. Our analysis
confirmed that the upstream and downstream neighbor-
ing CpG site methylation statuses are the most impor-
tant features for prediction (Additional file 1: Table S5,
Figure 7). When we restrict prediction to promoter or
CGI regions, the Gini score of the neighboring site sta-
tus features increased relative to other features, echoing
our observation that the non-neighbor feature sets are
less useful when a CpG site’s neighbors are nearby, and
thus more informative. In contrast, we found that the Gini
index of the genomic distance to the neighboring CpG site
feature decreased, suggesting that neighboring genomic
distance is an important feature to consider when some
neighbors are more distant and correspondingly less
predictive.

The CRE features also have variable Gini indices across
experiments. We found that DHS sites are strongly pre-
dictive of an unmethylated CpG site; the DHS site feature
has the third most significant Gini index across these
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experiments. This observation is consistent with a previ-
ous study showing that CpG sites in DHS sites tend to
be unmethylated [64]. GC content, which was also ranked
highly based on Gini index, may have a substantial con-
tribution to prediction as a proxy for other important fea-
tures, such as CGI status and CpG density. We found that
the feature rankings based on Gini index differed when
predicting methylation status in specific genomic regions
(Figure 7), implying context-specific DNA methylation
mechanisms.

When predicting methylation status in arbitrary
regions, several transcription factors (TFs) and histone
modifications were among the most highly ranked fea-
tures across experiments. Some of these CREs have a
reported association with DNA methylation, including
ELF1, RUNX3, MAZ, MXI1, and MAX. Indeed, the ETS-
related transcription factor (ELFI) has been shown to be
over-represented in methylated regions, associating DNA
methylation with hematopoiesis in hematopoietic stem
cells [65]. RUNX3 (Runt-related transcription factor 3), a
strong tumor suppressor associated with diverse tumor
types, has been suggested to be associated with cancer
development through regulating global DNA methyla-
tion levels [66-71]. RUNX3 expression is associated with
aberrant DNA methylation in adenocarcinoma cells [70],
primary bladder tumor cells [68], and breast cancer
cells [69]. For another tumor suppressor transcription
factor, MX11 (MAX-interacting protein 1), expression lev-
els (specifically, lack of expression) have been reported to
be associated with promoter methylation levels and neu-
roblastic tumorigenesis [72]. It has been suggested that
suppression of MAZ (Myc-associated zinc finger protein)
may be associated with DNA methyltransferase I, the key
factor for de novo DNA methylation [73,74]. MXII and
MAX (Myc-associated factor X) both interact with c-
Myc (myelocytomatosis oncogene), a well-characterized
oncogene, which has been shown to be methylation
sensitive, meaning that the TF motifs contain CpG sites
and, thus, TF binding is sensitive to methylation status
at those sites [75]. This suggests a potential regulatory
relationship between MAX, MXII, and DNA methy-
lation that may extend to downstream cancer tumor
development.

The association between specific histone modifications
and DNA methylation is poorly understood. A previ-
ous study suggested that high H3K4 methylation and H3
acetylation are associated with MYC recognition [76],
suggesting regulatory relationships among DNA methyla-
tion, histone modification, and transcription factor bind-
ing. Our results suggest that further work is needed to
clarify this relationship, as a subset of histone modifica-
tions appear to be predictive of methylation status.

We found that the correlation between a binary fea-
ture and PC1 is proportional to the Gini index of that
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CpG site; DownDist, distance in bases to the downstream CpG site.
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Figure 7 Top 20 most important features by Gini index. Gini index of the top 20 features for prediction in different genomic regions. Colors
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feature (Figure 4 and Additional file 1: Table S5). The vari-
ation in the Gini index rankings for CREs varied more
than we expected based on the other features (Additional
file 1: Figure S10). CREs that co-occur with CpG sites
more often tend to be more important for prediction,
according to the Gini index. We found that the Gini index
of a binary feature has a log linear relationship with the
number of co-occurrences of that binary feature with
CpG sites in the data set: the more often a CpG site
in the training data co-occurred with a CRE, the higher
the Gini index rank of that CpG site (Additional file 1:
Figure S10). There were several outliers to this trend,
including co-localization with bound POL3 (RNA poly-
merase III), C-fos (a proto-oncogene), and histone mod-
ifications H3K9ac and H4K20me. These features were
less important than we would predict using the fitted
linear regression model of log Gini index. This trend lim-
its the strong conclusions that associate specific CREs
with DNA methylation biochemically from a high Gini
index rank for that CRE; it may be that there are gen-
eral relationships between CREs and CpG sites that we
are learning, but a relatively high CRE frequency in these
data may artificially inflate the rank of that CRE in com-
parison to the others (Additional file 1: Figure S10). Most
CpG sites within TFBSs have low average methylation
levels (Additional file 1: Table S4). Several TFBSs have
disproportionately high average methylation levels, for
example, ZNF274 (Zinc-finger protein 274) and JunD
(Jun D proto-oncogene); however, both of these outliers
also have a low co-occurrence frequency with CpG sites
in these data, suggesting that this finding may be an
artifact.

Discussion

We characterized genome-wide and region-specific pat-
terns of DNA methylation. We performed these char-
acterizations based on summary statistics instead of a
model-based analysis, which may lead to less dramatic
region-specific methylation patterns than in our study (L
Pachter, personal communication). These region-specific
patterns raise additional questions, including how these
observations may resolve or at least suggest causal rela-
tionships between methylation and other genomic and
epigenomic processes. Since there are SNP associations
with complex traits, it is likely that the genotype drives
associated processes rather than the other way around;
the causal relationship is established by inductive logic,
since it is biologically difficult to perform site-specific
mutation. The dynamic nature of CpG site methylation
means that no such causal relationship can be estab-
lished inductively; however, experiments can be designed
to establish the impact of changing the methylation sta-
tus of a CpG site [77,78]. Conditional analyses, such as
those developed for DNA, may prove to be illuminat-
ing for epigenomics [79,80], but the current data are still
difficult to interpret. For example, does a TFBS con-
taining a CpG site prevent methylation when a tran-
scription factor is actively bound, or does a methylated
CpG site in a TFBS prevent a TF from binding to that
site?

We built a RF predictor of DNA methylation levels
at CpG site resolution. In our comparison between an
RF classifier and alternative classifiers, we found that
improvements of the RF classifier include better predic-
tion, especially in sparsely sampled genomic regions, and
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biological interpretability, which comes from the ability
to readily extract information about the importance of
each feature in prediction. An additional benefit of using
cell-type-specific features (i.e., CREs) is that the predic-
tions are robust to differential methylation across cell
types [81,82]. The accuracy results for predictions based
on this model are promising, in particular the cross-cell-
type heterogeneity and cross-platform performance, and
suggest the possibility of imputing CpG site methylation
levels genome-wide in the future using WGBS samples
as reference. For example, if we assay a set of indi-
viduals in an epigenome-wide association study on the
Illumina 450K array, we may be able to impute the miss-
ing genome-wide CpQG sites up to WGBS assays. We are
still far from the prediction accuracies currently expected
for SNP imputation for downstream use in genome-wide
association studies; however, in imputation we would
include CpG site-specific methylation levels from refer-
ence samples, instead of predicting methylation levels in
a site-independent way [38,83]. Our cross-sample analysis
illustrates that including methylation profiles from other
individuals as reference may improve accuracies substan-
tially. However, because of biological, batch, and environ-
mental effects on DNA methylation, it is possible that
precise imputation will require a much larger reference
panel relative to DNA imputation. As in genome-wide
association studies, all of these imputation methods will
fail to predict rare or unexpected variants [84], which
may hold a substantial proportion of association signal for
both genome-wide and epigenome-wide association stud-
ies [85-87]. This work raises the additional question, then,
of how best to sample CpG sites across the genome given
the methylation patterns and the possibility of imputation;
for example, it may be sufficient to assay a single CpG site
within a CGI and impute the others, given the high corre-
lation between methylation values in CpG sites within the
same CGIL.

We identified genomic and epigenomic features that
were most predictive of methylation status for co-located
CpG sites. The biological functions of CGI shore and
shelf regions, and in particular the impact of methyla-
tion in these regions, are mostly unknown; however, it has
been shown there is substantial DNA methylation varia-
tion in CGI shore regions relative to other regions in the
genome, and these alterations may contribute to cancer
development and tissue differentiation [62,63]. We hope
to characterize the role of CGI shore and shelf regions
better with respect to enrichment of particular regula-
tory elements in the future to understand the cellular
role of these regions and the specific, curious pattern of
methylation found within them.

One particularly important driver of methylation that
we do not study carefully here is methylation quantita-
tive trait loci (QTLs), or genetic drivers of methylation
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[35,88,89]. There is substantial work on the enrich-
ment of methylation QTLs within SNPs and genetic loci
that appear to regulate gene transcription levels (expres-
sion quantitative trait loci, or eQTLs), DHS site status
(dsQTLs), and others [35,64,88,90-92]. The characteriza-
tions described here lead us to consider identifying QTLs
associated with deviations from CRE-specific methylation
patterns instead of single CpG sites, as has been done with
methylation in CGI shore regions and associations with
cancer [63].

Conclusions

We investigated genome-wide methylation in 100 individ-
uals profiled using the Illumina 450K array. We identi-
fied patterns of correlation in DNA methylation at CpG
sites specific to CGIs, CGI shores, and non-CGlIs, quan-
tifying the variability within CGI shore regions and a
pattern of correlation across the shelf regions by which
correlation increases with distance. We built a RF clas-
sifier to predict methylation as a binary status and as
a continuous level at single-CpG-site accuracy, using as
features neighboring CpG site information, genomic posi-
tion, DNA sequence properties, and CRE co-location
information. We found that our RF-based method outper-
formed alternative methylation status classifiers and pro-
duces interpretable results. We found that the accuracy of
our classifier remained high when predicting methylation
status in WGBS data, and across samples. Our approach
quantifies features that are most predictive of CpG status:
we found that neighboring CpG site methylation levels,
location in a CGI, and co-localized DHS sites and specific
transcription factor binding sites were most predictive
of DNA methylation levels. We identified several TFBSs,
including ELF1, MAZ, MXI1, and RUNX3, and histone
modifications that are highly predictive of methylation
levels in whole blood. These predictive features may play
a mechanistic role in methylation, either in regulating the
methylation of CpG sites or as a downstream partner in
modifying the cellular phenotype.

Materials and methods

DNA methylation data

[llumina HumanMethylation450 array data were obtained
for 100 unrelated human participants from the TwinsUK
cohort [93]. All participants provided written informed
consent in accordance with local ethics research commit-
tees. The 100 individuals were adult unselected volunteers
and included 97 female and three male participants (age
range 27 to 78). Whole blood was collected and DNA was
extracted using standard protocols.

[lumina HumanMethylation450 array (Illumina 450K)
measured the DNA methylation values for more than
482,000 CpG sites per individual at single-nucleotide res-
olution. Genomic coverage includes 99% of reference
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sequence genes, with an average of 17 CpG sites per gene
region distributed across the promoter, 5' UTR, first exon,
gene body, and 3' UTR, and 96% of CGIs [34,94].

Methylation values for each CpG site are quantified by
the term B, which is the fraction of methylated bead signal
over the sum of the methylated and unmethylated bead
signals:

= max(Methy, 0) )
~ max(Methy, 0) + max(Unmethy, 0) + &

where Methy represents the signal intensity of the methy-
lated probe and Unmethy represents the signal intensity
of the unmethylated probe. The quantity 8 ranges from 0
(unmethylated) to 1 (fully methylated).

Data quality control was implemented using R [95]
(version 2.15.3). We removed 17,764 CpG sites for which
probes mapped to multiple loci in the human genome ref-
erence sequence. CpGQ sites that are SNPs, that had miss-
ing values, or that had detection P > 0.01 were excluded.
Methylation data from probes mapping to the X and Y
chromosomes were excluded. We were left with 394,354
CpG sites from 100 individuals in downstream analyses.
We normalized the data as follows. Within the methy-
lation level data, we controlled for array number, probe
position on the array, age, and sex by taking the residual
from a fitted linear regression model. The sum of residuals
and intercepts of each site was scaled to [0, 1] by trun-
cating all sites with values larger than 1 to 1 and all sites
with values smaller than 0 to 0. We assessed data quality
to identify sample outliers and batch effects using princi-
pal component analysis (PCA) [96] across individuals and
CpG sites; no obvious outliers were identified.

We downloaded the WGBS data (BED files) from NCBI
Gene Expression Omnibus (GEO) [GEO:GSE46644], sam-
ple GSM791827 [59,60]. CD19+ B cells were purified from
peripheral blood collected from one healthy female donor.
Bisulfite sequencing and read mapping processes were
described in previous work [60]. The methylation lev-
els for each CpG site were quantified by the ratio of the
number of methylated and the total reads at each CpG
site. Only CpG sites with greater than 5x coverage were
included. Methylation level data from the X and Y chro-
mosomes were excluded. After quality control, there were
10,000,890 CpG sites in the WGBS data. Because we used
only a single sample, we did not control for PCs.

Correlation and principal component analysis
The statistical analyses were implemented using R and
Bioconductor [97] (version 2.15.3). Methylation correla-
tions between CpG sites were assessed by the absolute
value of Pearson’s correlation coefficient and MED:

Yo (i — xix)?

MED = ==~ >~ | 2)
n

Page 14 of 19

where x;; and x;; represent the methylation values of
the two CpG sites being compared j and &, and # rep-
resents the number of samples in the comparison. For
neighboring CpG sites, pairs of CpG sites assayed on
the array that were adjacent in the genome were sam-
pled; the genomic distance between the pairs of CpG sites
were within the range x — 200 bp to x bp, where x €
{200, 400, 600, . . ., 6,000}. The correlation and MED of a
200-bp window was not computed, as there were too few
CpG sites. The non-adjacent pair correlation or MED val-
ues are the average absolute value correlation or MED of
5,000 pairs of CpG sites that were not immediate neigh-
bors with their genomic distances in the same range as for
the adjacent CpG sites.

We performed PCA on methylation values of CpG sites
by computing the eigenvalues of the covariance matrix
of a subsample of Cp@G sites using the R function svd.
Among the 378,677 CpG sites that have complete fea-
ture information, 37,868 sites (every tenth CpG site) were
sampled along the genome across all autosomal chromo-
somes. Absolute value Pearson’s correlation was calcu-
lated between each feature and the first ten PCs. PCA was
performed by plotting the PC biplot (scatterplot of first
two PCs), colored by feature status of each CpG site, and
by computing the Pearson correlation between the PCs
and the feature status across CpQG sites.

Random forest and comparison classifier

We used the randomForest package in R in the imple-
mentation of the RF classifier [98] (version 4.6-7). Most of
the parameters were kept as default, but ntree was set
to 1,000 to balance efficiency and accuracy in our high-
dimensional data. We found the parameter settings for the
RF classifier (including the number of trees) to be robust
to different settings, so we did not estimate parameters in
our classifier. The Gini index, which calculates the total
decrease of node impurity (i.e., the relative entropy of the
class proportions before and after the split) of a feature
over all trees, was used to quantify the importance of each
feature:

[A)=1-) p, (3)

k=1

where k represents the class and py is the proportion of
sites belonging to class k in node A.

We used the SVM implementation in the e1071 pack-
age in R [99] with a radial basis function kernel. The
parameters of the SVM were optimized by tenfold cross-
validation using a grid search. The penalty constant C
ranged from 271,21, ...,2% and the parameter y in the
kernel function ranged from 272,277, ..., 21, The param-
eter combination that had the best performance — y =
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277 and C = 23 — was used to generate the results used in
the comparisons.

For k-NN, we used the knn function in R, with the num-
ber of neighbors equal to the square root of the number
of samples in the training set. For the logistic regression
classifier, we used the logistic regression classifier imple-
mented in the R base package with the function glm and
family = ‘binomial’.We set the threshold for clas-
sification to /§i,j > 0.5. For the naive Bayes classifier, we
used the naiveBayes function in the R e1071 package.

Features for prediction

A comprehensive list of 124 features were used in pre-
diction (Additional file 1: Table S2). The neighbor fea-
tures were obtained from data from the Methylation 450K
Array. The position features, including gene coding region
category, location in CGIs, and SNPs, were obtained
from the Methylation 450K Array Annotation file. DNA
recombination rate data were downloaded from HapMap
(phasell_B37, update date 19 January 2011) [55]. GC con-
tent data were downloaded from the raw data used to
encode the gc5Base track on hgl9 (update date 24 April
2009) from the UCSC Genome Browser [100,101]. iHSs
were downloaded from the HGDP selection browser iHS
data of smoothedAmericas (update date 12 February 2009)
[57,102], and GERP constraint scores were downloaded
from SidowLab GERP++ tracks on hg19 [58,103].

For the CRE features, DHS sites data were obtained
from the DNase-seq data for the GM12878 cell line
produced by Crawford Lab at Duke University (UCSC
accession [wgEncode:EH000534], submitted date 20
March 2009). Chromatin immunoprecipitation sequenc-
ing (ChIP-seq) data for 79 specific TFBSs were obtained
from the narrow peak files from the GM12878 cell line
that were available before June 2012 from the ENCODE
website. Ten histone modifications were obtained from
the peak files from the GM12878 cell line that were
available before December 2013 from the ENCODE web-
site and 15 chromatin states were obtained from the
Broad ChromHMM data from the GM12878 cell line
(UCSC accession [wgEncode:EH000033], submitted data
21 March 2011) [56].

Neighboring CpG site methylation status T was encoded
as methylated (r = 1) when the site has § > 0.5 and
unmethylated (t = 0) when 8 < 0.5. For continu-
ous features, the feature value is the value of that feature
at the genomic location of the CpG site; for binary fea-
tures, the feature status indicates whether the CpG site
is within that genomic feature or not. DHS sites were
encoded as binary variables indicating a CpG site within
a DHS site. TEBSs were included as binary variables indi-
cating the presence of a co-localized ChIP-Seq peak. iHSs,
GERP constraint scores and recombination rates were
measured in terms of genomic regions. For GC content,
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we computed the proportion of G and C within a sequence
window of 400 bp, as this feature was shown to be an
important predictor in a previous study [41]. Among all
124 features, 122 of them (excluding B values of upstream
and downstream neighboring CpG sites) were used for
methylation status predictions, and all, excluding methy-
lation status of upstream and downstream neighboring
CpG sites 7, were used for methylation level predic-
tions. When limiting prediction to specific regions, e.g.,
CGlIs, we excluded those region-specific features from the
data.

Prediction evaluation

Our methylation predictions were at single-CpG-site res-
olution. For regional-specific methylation prediction, we
grouped the CpG sites into either promoter, gene body,
and intergenic region classes, or CGI, CGI shore and shelf,
and non-CGI classes according to the Methylation 450K
array annotation file, which was downloaded from the
UCSC genome browser [51].

The classifier performance was assessed by a version of
repeated random subsampling validation. Within a sin-
gle individual, ten times we sampled 10,000 random CpG
sites from across the genome into the training set, and we
tested on all other held-out sites. The prediction perfor-
mance for a single classifier was calculated by averaging
the prediction performance statistics across each of the
ten trained classifiers. We checked the performance with
smaller training set of sizes 100, 1,000, 2,000, 5,000 and
10,000 sites in the same evaluation setup. In cross-sample
analyses, we set the size of the training set to 10,000 ran-
domly chosen CpG sites to balance computational perfor-
mance and accuracy. We then evaluated the consistency
of methylation pattern in different individuals by training
the classifier using 10,000 randomly chosen CpG sites in
one individual, and then using the trained classifier to pre-
dict all of the CpG sites for the remaining 99 individuals.
In cross-gender analyses, we randomly chose 10,000 CpG
sites from one randomly chosen female or male and tested
on all CpG sites from another randomly chosen female or
male. This was repeated ten times.

In cross-platform prediction and WGBS prediction, we
sampled 10,000 randomly chosen CpG sites from 450K
data or CpG sites categorized as 450K sites in WGBS data
as training sets. We tested on 100,000 randomly chosen
CpG sites that were categorized as 450K sites or non 450K
sites in the WGBS data. The prediction performance for
a single classifier was calculated by averaging the predic-
tion performance statistics across each of the ten trained
classifiers.

We quantified the accuracy of the results using the
specificity (SP), sensitivity (recall) (SE), precision, accu-
racy (ACC), and Matthew’s correlation coefficient (MCC).
Note that truly significant CpG sites are those that are
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methylated, and truly null CpG sites are those that are
unmethylated in these data. These values were calculated
as follows:

TN
P=—— (4)
TN + FP
TP
E=—— (5)
TP 4+ FEN
TP
Precision = —— (6)
TP + FP
TP
Recall = ——— (7)
TP 4+ FEN
TP 4+ TN
ACC = 8
TP+ FP + TN + EN ®

B TP x TN — FPxEN
~ J(TP+EN) x (TP+FP) x (IN+FP) x (IN+EN)’
©)

for true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) for a particular threshold.
We computed ROC curves, precision—recall curves, AUC,
and AUPR; AUC and AUPR reflect the overall predic-
tion performance considering both type I (FPs) and type
II errors (FNs) [39,104]. We used the ROCR package in
R [105].

To estimate continuous methylation levels (,3), we used
the classifier output of prediction probability from the
RF classifier directly as an estimate of a specific 8 €
[0,1]. Prediction accuracy was evaluated using Pearson’s
correlation coefficient and RMSE:

p L - L -
oy = Z]:l(x} x)(y] y) (10)

MCC

(p_l)'ax'ay

(11)

where x;, y; are the experimental and predicted values for
the jth CpG site, respectively, x, y are the means of the
experimental and predicted methylation levels, respec-
tively, and oy, oy are the empirical standard deviations of
the experimental and predicted values, respectively.

Availability of data and code

We have released the TwinsUK 450K Array data for
100 samples through GEO [GEO:GSE62992]. We have
released the R code associated with the processing and
analyses of these data on the Engelhardt Group website
[106].
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Additional file

Additional file 1: Supplementary Materials. All supplemental tables
and supplemental figures.
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