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SUMMARY

The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, 

maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively 

transduce biological information. We argue that mitochondria are the processor of the cell, and 

together with the nucleus and other organelles they constitute the mitochondrial information 

processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to 

both endogenous and environmental inputs through morphological and functional remodeling; 

(2) integrate information through dynamic, network-based physical interactions and diffusion 

mechanisms; and (3) produce output signals that tune the functions of other organelles and 

systemically regulate physiology. This input-to-output transformation allows mitochondria to 

transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that 

enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes 

the role of communication in mitochondrial biology. This framework also opens new avenues to 

understand how mitochondria mediate inter-organ processes underlying human health.

INTRODUCTION

Our collective view of mitochondria evolved from that of dynamic cytoplasmic granules 

or “bioblasts”1 to bean-shaped ATP-synthesizing chemiosmotic machines,2,3 motivating 

the popular “powerhouse of the cell” analogy.4 Subsequently, mitochondria became 

known as maternally inherited organelles5 with their own genome, in which mutations 
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can cause disease,6,7 setting off the field of mitochondrial medicine. The imaging of 

living mitochondria dynamically exchanging proteins and DNA8 and triggering death via 

propagating apoptotic waves9,10 later sparked an era of mitochondria as dynamic organelles 

undergoing constant fusion/fission events, enabling functional complementation11,12 and 

mitochondrial quality control.13 Most recently, the omics era and a new quantitative 

handle on intermediate metabolism have cast mitochondria as biosynthetic and signaling 

organelles14,15 that produce signals influencing cell and organism behaviors via metabokine/

mitokine signaling,16–18 mitonuclear crosstalk,19–22 and remodeling of the epigenomic 

machinery across species.23–26 Through these theoretical transitions, mitochondria have 

become the most studied organelle in the biomedical sciences (Figure 1).

Outside of their intracellular roles as organelles, mitochondria also operate beyond the 

confines of the cell.27 They undergo physical transfer from cell to cell,28–30 influence 

neurotransmitter metabolism and inter-cellular communication at the neural synapse,31,32 

synthesize all circulating steroid hormones that ensure sexual reproduction and species 

survival in mammals,33 and as discussed below, even contain receptors for systemic 

hormones.34 These discoveries are not only blurring cellular boundaries, but also revealing 

mitochondria in a light that emphasizes communication—i.e., the bidirectional transfer of 

information from organelle to organism—as a natural aspect of their biology.

It is a particularly exciting time for mitochondrial biology. Community resources 

like MitoCarta35 and MitoCoP,36 together with spectacular theoretical advances in 

mitochondrial research, have brought insights to diverse fields across the biological 

sciences and medicine.37 This includes, but is not limited to, immunometabolism, 

behavioral neuroscience, and psychobiology. As examples, energy metabolism in general 

and mitochondria in particular play permissive and instructive roles in stem cell 

differentiation and in the acquisition of immunometabolic phenotypes,38 influence whether 

animals are socially dominant or submissive,39 and influence how multiple organ 

systems in mice respond to evoked stress.40 In humans, mitochondrial energy production 

capacity also appears to dynamically respond to subjective psychosocial experiences,41,42 

providing a foundation to begin understanding the mind-mitochondria connection. These 

discoveries are contributing to mechanistically linking sub-cellular bioenergetic processes 

to physiological, health-related organismal phenotypes. Thus, scientific progress not only 

among mitochondrial biology but also more broadly in the biomedical sciences43 has been 

and likely will continue to be catalyzed by increasingly accurate and integrative models of 

mitochondrial behavior.

In this perspective, we argue that as we move toward increasingly accurate mechanistic 

models of the role of mitochondria in human health, we need an understanding of 

mitochondrial behavior extending far beyond energetics. As echoed by others,44,45 the 

“powerhouse” analogy promotes an overly simplistic picture of this beautifully complex 

organelle. The outdated mechanical analogy is too unidimensional to guide integrative 

scientific thinking. The challenge ahead is to integrate current prevailing perspectives 

of mitochondria as inherited, dynamic, energy-transforming, signaling organelles whose 

influence extends to all cellular compartments, and to the whole organism. Here we propose 

that our existing knowledge of mitochondrial biology can be integrated under the common 
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framework of mitochondrial signal transduction. Consequently, a more integrative and 

accurate analogy portrays mitochondria as the processor of the cell—or more precisely as 

the mitochondrial information processing system (MIPS).

WHY MITOCHONDRIAL SIGNAL TRANSDUCTION?

Signal transduction involves input-to-output transformation. It is a generalizable process 

in biology, taking place across all living, complex adaptive systems. Signal transduction 

allows single cells to sense, migrate toward, and respond to stimuli,46 and enables organelle 

networks to interact and accomplish complex cellular operations that isolated organelles 

could not accomplish.47 At the organ level, signal transduction also allows the brain 

to receive, integrate, and process multiple streams of sensory information to generate 

a coherent internal representation of the outside world.48 This process is analogous to 

the way in which an antenna or sensor coupled to information processing systems—as 

in a cell phone, for example—receives and converts simple signals (e.g., radio waves) 

into intelligible outputs of different kinds (e.g., sounds, images, etc.). In the same way, 

cellular signal transduction systems such as the MIPS convert complex combinations of 

ions, proteins, nutrients, and energetic states into goal-driven genetic programs, which guide 

the reorganization of metabolic pathways and drive adaptive behaviors (to grow and divide, 

contract, secrete, die, etc.). Signal transduction allows cells and organisms to respond and 

adapt to environmental demands.

Through evolution, the endosymbiotic incorporation of mitochondria marked the transition 

from a selfish unicellular world to a multicellular reality.49 In multicellular organisms, 

a vital priority became the metabolic coordination and cell-to-cell cooperation toward a 

shared common goal—to sustain the organism. Cellular cooperation produced a sort of 

“social contract” among increasingly specialized cells.50 Thus unified as an organism, cells 

make decisions not based solely on their individual states hardwired in the genome, but 

based on the collective state of the organism established through information exchange 

and communication between organs, cells, and organelles.51 This collective principle 

implies that to ensure survival, cellular and organismal decisions must be matched to 

the local and systemic energetic constraints, which are reflected in the bioenergetic 

state of mitochondria.52,53 For an organism, achieving faster responses to changing 

bioenergetic conditions means faster transitions to new optimal states. This, in turn, 

maximizes energetic efficiency and minimizes the risk of damage.54 Therefore, the role 

of mitochondria in optimizing cellular and organismal behavior toward health—defined as 

optimal responsiveness to challenges55—requires mechanisms that transduce information, 

from organelle to organism.

THE PILLARS OF MITOCHONDRIAL SIGNAL TRANSDUCTION

Before reviewing the specific molecular components and mechanisms that support signal 

transduction within the MIPS, we describe some general features of signal transduction. 

Signal transduction within the MIPS is an extension of the traditional process of receptor-

mediated detection of (extra)cellular signals, signal amplification, and transduction into 

downstream secondary messengers (Figure 2). Mitochondrial signal transduction consists of 

three main processes:
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1. Sensing: The ability of mitochondria to detect metabolic and hormonal inputs, 

and to transform these inputs into morphological, biochemical, and functional 

mitochondrial states.

2. Integration: The pooling of multiple inputs into common effectors driven by 

the exchange of information among mitochondria and other organelles, and 

influenced by the current state of the mitochondrial network and of the cell.

3. Signaling: The production of mitochondrial outputs, or signals, that transmit 

information locally to direct metabolic pathway fluxes and influence other 

organelles, including nuclear gene expression, and systemically to regulate the 

physiology and organismal behavior.

The flow of information through the MIPS proceeds sequentially as follows: incoming 

signals are sensed by molecular receptors and biological structures on/within mitochondria 

(sensing), which exchange with each other molecular signals and labile states such 

as membrane potential via fusion/fission processes and other (non)physical interactions 

(integration), and which simultaneously release signaling factors such as metabolites, 

cofactors, proteins, nucleic acids, and heat that propagate information beyond the 

mitochondrial membranes (signaling). Figure 3 illustrates the repertoire of known 

mitochondrial substrates and mechanisms available for signal transduction. This broad 

repertoire emphasizes communication at different levels of biological organization, 

including protein-protein interactions (molecular), inter-organelle communication (sub-

cellular organelles), autocrine or inter-cellular paracrine transfer (cells), and endocrine 

information transfer (organs and systems).

In the following three sections, we first review the known molecular machinery responsible 

for mitochondrial input sensing (step 1), the processes enabling information integration 

within mitochondrial networks (step 2), and the resulting signals that communicate 

mitochondrial states intracellularly and systemically (step 3). To avoid the natural tendency 

to emphasize only specific well-known examples that would naturally narrow the spectrum 

of physiological processes to which mitochondrial signal transduction may apply, we discuss 

the mechanisms involved in the sensing, integration, and signaling stages sequentially. 

Recognizing that mitochondria are not all created equal, we then discuss tissue-specific 

mitochondrial features relevant to signal transduction. We close by considering outstanding 

questions and opportunities that an integrated mitochondrial signal transduction perspective 

raises for cell biology and clinical/translational research.

MITOCHONDRIAL SENSING

The main molecular features that enable mitochondrial sensing include traditional 

ligand-activated receptors, transporters, and biochemical reactions such as the oxidative 

phosphorylation (OxPhos) system within the outer and inner mitochondrial membranes 

(OMM and IMM) and the mitochondrial genome (Figure 4). These components enable 

mitochondria to rapidly and selectively sense changes in specific biochemical inputs. In the 

same way that a capsaicin receptor allows a sensory cell on the taste bud to depolarize 

and convert the spicy molecule into an action potential (recognizable as information by 

the brain), the mitochondrial sensing machinery converts simple inputs into biochemical, 
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functional, and/or morphological changes (eventually converted to outputs that cells 

recognize). Mitochondrial inputs range in their nature from atoms, gases, and ions to small 

molecules and metabolites, proteins, lipids, DNA, and temperature, as well as physical 

interactions with surrounding organelles (Figure 3). In this section, we cover the molecular 

machinery that allows the MIPS to selectively sense and respond to extrinsic and intrinsic 

inputs (MIPS step 1 of 3).

Canonical “nuclear” receptors—Mitochondria contain ligand-activated transcription 

factors traditionally known as “nuclear” receptors. These receptors are expressed and 

generally reside in the cytoplasm or directly in mitochondria, homo- or hetero-dimerize 

upon ligand binding, and then translocate either to the nucleus or to the mitochondrial matrix 

where they interact with target DNA sequences. Limitations exist around the experimental 

evidence underlying the localization of these receptors within mitochondria, calling for 

further research using rigorous designs and sensitive molecular approaches.56 The most 

well-documented examples include receptors for thyroid hormones, sex hormones (estrogen 

and androgen), and stress-related glucocorticoids (Figure 4A).

Thyroid hormones (T3, T4, and related metabolites) have potent effects on tissue oxidative 

capacity and systemic energy expenditure through their dual action on nuclear gene 

expression and directly on mitochondria. In isolated mitochondria, respiratory chain activity 

is modulated by triiodothyronine (T3) without changes in protein synthesis—taking place in 
vitro or “in organello”—substantiating the direct sensitivity of mitochondria to circulating 

thyroid hormones.57 Two putative resident mitochondrial thyroid hormone receptors have 

been described. The p28 receptor likely resides in the IMM, lacks a DNA-binding domain, 

and binds T3 with high affinity.58 It appears responsible for the rapidity (within 2 min 

in vitro, <30 min in vivo) with which mitochondrial respiration responds to thyroid 

hormone stimulation.59,60 The other p43 receptor is a 43 kDa member of the c-Erb α1 

DNA-binding family residing in the mitochondrial matrix.61 Mitochondria respond to T3 by 

increasing mitochondrial DNA (mtDNA) transcription and changing the ration of mRNA 

and rRNA.62,63 Most studies on mitochondrial T3 response have been performed on liver 

mitochondria, but mitochondrial thyroid sensing may exhibit high tissue specificity.64 

In mice, manipulating the expression of the mitochondrial T3 receptor p43 in different 

tissues triggers selective transcriptional and enzymatic effects on mtDNA-encoded OxPhos 

components (e.g., not on complex II proteins or activity),65 as well as broad cellular and 

physiological effects,66 highlighting the likely physiological significance of mitochondrial 

thyroid hormone sensing.

There are two isoforms of the estrogen receptor related to mitochondria: ERα and ERβ. 

They have relatively low homology for their ligand-binding domains and trans-activational 

domains, and therefore have strongly divergent functions.67 ERα primarily influences 

nuclear gene expression, including activation of mitochondrial biogenesis and other aspects 

of mitochondrial biology,68 whereas ERβ translocates to mitochondria and is found at 

high levels in murine and human mitochondria from neurons and cardiomyocytes.69 

Under baseline conditions in cancer cell lines, the majority of ERβ is primarily located 

in mitochondria.70 Activation of mitochondrial ERβ results in anti-apoptotic effects by 

disrupting Bad-Bcl-X(L) and Bad-Bcl-2 interactions.71 Estrogen receptor signaling may also 
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increase mitochondrial OxPhos capacity in genetically compromised cells from patients with 

Leber’s hereditary optic neuropathy (LHON), either directly by acting on the mitochondrial 

OxPhos system or indirectly by reducing oxidative stress.72

Mitochondria sense androgenic hormones via the canonical androgen receptor (AR). In 

cultured prostate cells, a substantial fraction of total AR may localize to mitochondria.73 

The mitochondrial AR influences mtDNA levels, mtDNA transcription and translation, and 

RC protein abundance and complex activity.73 This enables both genetic and functional 

mitochondrial responses to circulating androgen levels. In the human sperm mid-piece, 

both the AR and ERβ localize to mitochondria.74 Mitochondrial responses to estrogens and 

androgens via these DNA-binding receptors may in part account for sexually dimorphic 

mitochondrial features and functions.75,76

Mitochondria also contain the glucocorticoid receptor (GR) and thus can respond 

to glucocorticoid hormones, including the psychological stress mediator cortisol and 

corticosterone. Two major GR isoforms have been defined, GRα (predominant, ~90% of 

transcripts) and GRβ (minor, ~10%), which differ only in their distal domain from exon 

9 alternative splicing.77 Another isoform, GRγ, is produced through alternative splicing 

(includes an intronic codon between exon 3 and 4) and differs from GRα and GRβ isoforms 

by a single amino acid.78 Within mitochondria, the active GR receptors interact with 

mtDNA glucocorticoid response element (GRE) sequence motifs to influence mitochondrial 

rRNA synthesis79 and gene expression. The mtDNA contains 8 putative GREs: 2 within 

the D loop,80 1 in the 12S rRNA, 1 in tRNALeu(UUR), 3 in COX I, and 1 in COX III.81 

Compared to the nuclear genome, which contains approximately 680 GREs (1 GRE for 

every ~37 protein coding gene), the abundance of GREs in mtDNA is substantially higher, at 

1 mtDNA GRE for every ~1.6 protein coding gene.82 Mitochondrial glucocorticoid sensing 

is likely primarily mediated by GRγ,83 acting on D loop GREs to promote expression of 

all polycistronic rRNA and mRNA genes.84 It is worth noting that reduced mitochondrial 

GR localization may occur under certain pathological states, potentially hindering the 

mitochondrial sensing of glucocorticoid levels.85

Thus, conserved DNA-binding receptors allow mitochondria to sense the broad class of 

metabolism-regulating, sex- and stress-related hormones conveying systemic information 

about the state of the organism to core biochemical and genetic elements within the MIPS.

G protein-coupled receptors—The mitochondrial sensory system also includes one 

of the evolutionarily more recent innovations, the G protein-coupled receptors (GPCRs). 

Mitochondrial GPCRs sit in the OMM and IMM and are specific to hormones such as 

angiotensin II,86 melatonin,87 endocannabinoids,88 and purines.89 Mitochondria-localized 

GPCRs influence core mitochondrial functions including ion uptake, OxPhos, nitric oxide 

synthesis, apoptotic signaling, and reactive oxygen species (ROS) production,90 illustrating 

their potentially broad action spectrum (Figure 4B).

Angiotensin type 1 and 2 receptors (AT1R and AT2R) are present on both the nuclear 

membrane and on the IMM.91 Despite lacking a canonical mitochondrial targeting sequence, 

transfection of full-length GFP-tagged AT2R naturally results in their mitochondrial 
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localization.86 Mitochondrial AT2R appears to colocalize with its endogenous ligand 

Angiotensin II (thus forming an endogenous renin-angiotensin system) in several cell types 

including (from most to least abundant) mouse hepatocytes, cardiomyocytes, and renal 

tubule cells, and in human monocytes.91 Functionally, activation of AT2R on isolated 

mitochondria was found to increase nitric oxide production by ~25% with a proportional 

decrease in complex I-driven O2 consumption capacity,86 supporting the physiological 

effects of the angiotensin GPCR on mitochondrial oxidative capacity.

Mitochondria also contain the functional melatonin GPCR MT1. In mouse brain neuron 

mitochondria, MT1 is located on the OMM with its signal transduction apparatus coupled 

to cyclic AMP in the intermembrane space.87 In isolated mitochondria, activation of MT1 

by melatonin could partially inhibit permeability transition and subsequent cytochrome c 
(Cyt c) release, and expectedly conferred downstream protection from ischemic injury, 

permeability transition pore (PTP) opening, and subsequent cell death.87 Other potential 

functions of mitochondrial melatonin signaling involve redox modulation as melatonin is 

a potent antioxidant,92 and may also include stimulation of mitochondrial biogenesis.93 

However, further research in neurons and other cell types is needed to disentangle the effects 

of MT1 signaling on mitochondria versus on the plasma membrane.

Another functional GPCR localized to mitochondria is the type I cannabinoid receptor 

(mtCB1). mtCB1 is expressed in neurons,88 astrocytes,94 and skeletal muscle myofibers.95 

Similar to CB1 localized at the plasma membrane of neuronal synapses where their 

signaling inhibits neurotransmitter release, mtCB1 receptors on the OMM signal through 

intra-mitochondrial Gαi protein activation and inhibition of soluble-adenylyl cyclase 

(sAC),34 which inhibits protein kinase A (PKA)-dependent phosphorylation of target 

OxPhos subunits.34 Functionally, mitochondrial endocannabinoid sensing through CB1 

reduces complex I activity and mitochondrial respiration.88 In mice, the effects of mtCB1 

signaling affect neuronal function and memory formation,34 suggesting that mitochondrial 

endocannabinoid sensing also has downstream effects on the behavior of the organism.

Mitochondria sense and respond to cytoplasmic purine (ATP, ADP, and AMP) levels 

via the purine GPCRs P2Y1 and P2Y2. These receptors, whose precise sub-organellar 

location remains unclear, have been suggested to be coupled to phospholipase C (PLC) and 

downstream regulation of the mitochondrial calcium uniporter (MCU).89 In hepatocytes, 

activation of mitochondrial P2Y1 stimulates Ca2+ uptake whereas activation of P2Y2 inhibits 

uptake.96 A receptor of the same family, the P2X7 ionotropic purinoceptor (P2Y7R), also 

appears to be present in both the plasma membrane and in the OMM of cultured mouse and 

human cells.97 Deletion of P2X7 reduces transmembrane potential and respiratory capacity 

and leads to the accumulation of NADH (i.e., reductive stress) likely secondary to complex 

I inhibition.97 The presence of surface ADP-sending GPCRs in mitochondria, along with the 

ADP/ATP carrier and F1/F0 ATP synthase system (discussed below), illustrates the potential 

value of redundant mechanisms allowing the MIPS to sense particularly critical cytoplasmic 

signals such as the cytoplasmic ADP:ATP ratio.

Other receptors may also localize to the MIPS. For example, GPCRs internalized from 

the plasma membrane, such as the kynurenic acid-activated GPR35, may translocate 
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to the OMM and modulate the OxPhos system under stress conditions.98 The ligand-

gated ion channel α7 nicotinic acetylcholine receptor (nAChR) on the OMM may also 

enable mitochondria to sense acetylcholine (and nicotine) to modulate Ca2+ transients, 

permeability transition, and mtDNA release.99,100 Additional work is required to discover 

and validate additional mitochondrial receptors, and to determine the ligand specificity and 

functional significance of mitochondrial GPCRs as components of the mitochondrial sensing 

machinery.

Metabolite signaling—In a process highly integrated with cytoplasmic micronutrient 

sensors such as mTORC1 and AMPK, mitochondria sense and respond to metabolite levels 

and availability through specific carriers and transporters embedded within the IMM (Figure 

4C). One of the classic MIPS inputs that triggers responses among the OxPhos system 

and multiple downstream mitochondrial processes is the phosphorylation potential (ΔGp), 

reflected simplistically in ADP levels.101 An increase in cytoplasmic ADP concentration 

(or more accurately a decrease in ΔGp, or ATP:ADP ratio) is rapidly transmitted to the 

mitochondrial matrix via monomers of the ADP/ATP carrier spanning the IMM.102 This 

sets the rotary FoF1 ATP synthase into motion, transiently dissipating the protonmotive 

force (ΔpH+Δψm: pH gradient + mitochondrial membrane potential).103 In this single 

step, the shift in ATP/ADP levels causes a consequential thermodynamic shift that sends 

biochemical ripples sequentially accelerating (1) proton pumping and electron flow by 

respiratory chain complexes I, III, and IV; (2) the reduction of O2 to H2O by Cyt c 
oxidase (complex IV); and (3) the oxidation of reducing equivalents NADH and FADH2 

at complexes I and II, respectively, thus (4) driving the oxidation of metabolic intermediates 

in the TCA/Krebs cycle, which in turn (5) increases CO2 production and (6) increases the 

diffusion gradient for the uptake of cytoplasmic substrates/metabolites into the matrix.101 In 

isolated mitochondria, this ADP-induced change in state from low flux to actively respiring 

mitochondria is associated with profound conformation changes of the mitochondrial cristae 

membranes—from the orthodox to condensed state.104 This simple example illustrates the 

breadth and complexity of ultrastructural and biochemical responses that a single input, such 

as ADP, can elicit within the MIPS.

Mitochondrial metabolite uptake and sensing are broadly enabled by >50 proteins from the 

SLC25 family of transporters, known as the mitochondrial carrier system (MCS).105 These 

transmembrane IMM proteins are essential to both MIPS sensing and also to fulfill the 

biosynthetic functions of mitochondria, allowing the export of the ingredients for growth 

and repair, i.e., several amino acids and one-carbon carrying folate forms, carboxylic acids, 

fatty acids, cofactors, inorganic ions, and nucleotides to the whole cell.106 In relation to 

mitochondrial sensing, the MCS provides sensory capacity to small molecule metabolite 

carriers including pyruvate (MPC1/2),107,108 dicarboxylate (malate-phosphate, DIC) and 

tricarboxylate (citratemalate, CTP) carriers, aspartate-glutamate (AGC1/2), the phosphate 

carrier105 and NAD carrier,109 and many others. Some mitochondrial transporters are 

often alternatively expressed variants of genes encoding plasma membrane carriers, as 

for the mitochondrial glutamine transporter that allow mitochondria to respond directly to 

cytoplasmic glutamine levels.110 In cancer cells, the diverse MCS enables mitochondria to 

sense cytoplasmic levels of key amino acids via the TCA cycle, and to undergo secondary 
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morphological changes.111 Thus, metabolite carriers and transporters allow the MIPS to 

sense and respond to inputs from numerous metabolic pathways.

We also note that the bioenergetic state of the cell exerts regulatory control on dozens 

of mitochondrial enzymatic reactions. As a result, high ATP:ADP and NADH:NAD+ 

ratios favor anabolism and promote export of metabolites, shifting metabolism toward 

non-oxygen-dependent glycolysis and biosynthesis.112 In cases of OxPhos defects, NADH 

accumulates and reduce the availability of NAD+, causing reductive stress,113,114 driving 

the flux of metabolic pathways toward mitochondrial anabolic pathways contributing to 

disease.115,116 The collective action of metabolic inputs on mitochondrial OxPhos and the 

NADH:NAD+ ratio also translates into the availability of downstream substrates, including 

coenzyme A (CoA) and NADP(H). Changes in CoA availability affect the conversion of 

acetyl to acyl-CoA used to post-translationally acetylate and functionally modulate not 

only cytoplasmic enzymes and nuclear chromatin,117 but also dozens of mitochondrial 

proteins.118 Together, these biochemical dial systems provide a set of molecular cascades 

that dynamically integrate and convert biochemical inputs into functional mitochondrial 

recalibrations,119 thereby allowing the MIPS to sense a broad array of biochemical inputs 

about the dynamic bioenergetic state of the cell.

Electrophysiology of mitochondria: Ion signaling—Mitochondria sense and respond 

to ions, which is a logical consequence of the relatively high membrane potential across 

the IMM, generating a large diffusion potential for charged atoms and molecules (Figure 

4C). One of the most studied examples of ionic mitochondrial sensing is calcium (Ca2+). 

The MCU enables rapid Ca2+ uptake within seconds.120,121 Mitochondrial Ca2+ uptake from 

the cytoplasm and ER triggers rapid changes in mitochondrial physiology through post-

translational modifications (PTMs) of dehydrogenases that increase TCA cycle activity122 

and results in membrane potential changes.123 Although genetic ablation of the MCU is not 

lethal in most mouse strains, its loss prevents mitochondria from sensing surrounding Ca2+ 

levels123 and may impair mitochondrial fusion during cell-cycle division,124 highlighting the 

significance of mitochondrial Ca2+ sensing on the MIPS.

Mitochondrial Ca2+ is also linked with sodium (Na+) signaling. The organellar Ca2+ levels 

are affected by the activity of the mitochondrial Na+/Ca2+ exchanger (NCLX). NCLX sits 

in the IMM and extrudes matrix Ca2+ in exchange for cytoplasmic Na+.125 Entry of sodium 

into the cytosol during an action potential in neurons, or in response to glucose stimulation 

in the pancreatic beta cell, triggers the extrusion of calcium from the mitochondria, 

preventing mitochondrial calcium overload and subsequent cell death.126 By lowering 

the intra-mitochondrial Ca2+ levels ([Ca2+]mito) in cardiomyocytes and brown adipocytes, 

NCLX activity thereby decreases intra-mitochondrial calcium levels and directly regulates 

mitochondrial PTP (mPTP) dynamics and downstream signaling.127,128 But in addition to 

decreasing [Ca2+]mito levels, NCLX activity rapidly elevates matrix [Na+] levels,129 likely 

preventing collapse of the MIPS through the flux of Ca2+ and Na+ ions.

Mitochondria sense and also respond to surrounding concentrations of various atoms and 

ions including magnesium (Mn), inorganic phosphate (Pi), chloride (Cl), iron (Fe), and 

possibly others including lithium (Li),130 although the underlying mechanisms for the 
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most part are not resolved. Mitochondria are also sensitive to divalent gases such as 

nitric oxide (NO), which acts directly on complexes I and IV by chemically modifying 

sensitive residues, thereby modulating respiration.131 One fairly well-studied input is 

molecular oxygen (O2), which is sensed directly by a combination of complex I-132,133 and 

complex III-derived134 bursts of ROS during hypoxia. In low-oxygen conditions (hypoxia), 

acidification of the mitochondrial matrix in a complex I-dependent manner solubilizes intra-

mitochondrial calcium-phosphate deposits, which increases soluble [Ca2+]mito (even in the 

absence of MCU). In mouse embryonic fibroblasts, hypoxia activates NCLX and causes a 2- 

to 3-fold increase in mitochondrial matrix Na+, which interacts with IMM phospholipids 

to decrease membrane fluidity and promote superoxide formation by semiquinone,129 

transforming information about oxygen availability into molecular information within the 

MIPS. Mitochondrial O2 sensing undoubtedly complements cytoplasmic sensors such the 

hypoxia-inducible factor 1 alpha (HIF-1α) pathway that primarily act on the nucleus.135 

Overall, several evolutionarily ancient ion channels, transporters, and mechanisms based on 

chemical modifications thus ensure that mitochondria can sense and rapidly respond to their 

surrounding intracellular ionic environment.

Intrinsic mtDNA defects—In addition to cytoplasmic signals sensed through canonical 

receptors and carriers, mitochondria also dynamically recalibrate their structure and internal 

processes in response to intrinsic signals, such as those arising from the mitochondrial 

genome (Figure 4D). The mtDNA codes for 37 canonical genes, including 13 protein-coding 

mRNA sequences,136 plus small mitochondria-derived peptides (MDPs).137 As the mtDNA 

can be affected by external factors (e.g., mutagens, nucleotide availability) and produce 

outputs (RNA, proteins) that influence and shape the OxPhos system and downstream 

mitochondrial behaviors, the mtDNA is a component of the mitochondrial sensing system.

Defects in the mtDNA sequence, which are either inherited138 or acquired,139 alter the 

synthesis of OxPhos subunits, which consequently impair respiratory capacity, OxPhos 

function, and Δψm, culminating in disease.140,141 Because most biochemical reactions 

taking place within mitochondria are directly or indirectly linked to OxPhos and Δψm, 

including substrate and ion uptake, mtDNA perturbations have widespread consequences for 

several metabolic pathways.113,142 Within skeletal muscle, for example, acquired somatic 

mtDNA deletions can disrupt OxPhos enzyme activities and trigger local mitochondrial 

proliferation when in proximity to a nucleus143 (see section on mitochondrial signaling). 

Milder mtDNA variants are also sensed, are translated in metabolite levels,144 and result 

in variation in cellular and organismal phenotypes that influence lifespan and disease 

risk.145,146 Moreover, because some mutagens and toxins may preferentially affect the 

mtDNA relative to the nuclear DNA—in part owing to the negatively charged matrix 

compartment (which attracts positively charged molecules), rapid replication, poor repair, 

or other factors—the mitochondrial genome maintenance and expression systems may act as 

a cellular “sentinel” of genotoxic stress.147

Certain intrinsic mitochondrial inputs such as nucleotide availability and genotoxic 

molecules may not influence any of the mitochondrial biochemical processes directly, and 

may in fact only be sensed through the (replicating) mtDNA. For example, low nucleotide 

availability impairs OxPhos function specifically through the decline in mtDNA copy 
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number,148 which may or may not induce nucleotide salvage or cytoplasmic nucleotide 

synthesis pathways. We propose that the mtDNA replisome is an actively communicating 

structure, which tunes its function based on cellular nucleotide pools and the local mtDNA 

expression machinery. The actual signals contributing to mtDNA communication within the 

MIPS are still poorly understood.

Summary of mitochondrial sensing—Mitochondria are equipped with a surprisingly 

wide variety of receptors and molecular features that give them the ability to sense 

hormonal, metabolic, ionic, genetic, and other inputs. With such sensitivity to a broad 

spectrum of inputs, the MIPS senses both the local biochemical conditions surrounding 

each organelle and systemic neuroendocrine signals produced in distant anatomical locations 

of the organism: by other cells, within other organs. Mitochondrial behavior is therefore 

not only driven by changes in nuclear gene expression—which produce the sensing 

components—but also more acutely and reversibly by biochemical and endocrine inputs 

that dynamically modulate their biochemical, genetic, ultrastructural, and physiological 

properties.

The evolutionary co-opting of a variety of DNA-binding receptors, GPCRs, and transporters 

suggests that increasing the range of inputs that mitochondria were capable of sensing must 

have positively contributed to the organism’s adaptive capacity. As a result, the diverse 

mitochondrial sensing machinery has been evolutionarily selected and likely also enriched in 

mitochondrial membranes relative to other organelles. Defining the full spectrum of inputs 

directly sensed by the MIPS across different cell types is an outstanding research challenge. 

Expanding our understanding of the inputs that directly shape mitochondrial biology could 

illuminate new disease pathways, independent or upstream of OxPhos or other well-defined 

disease-causing mechanisms.

Next, we turn our attention to dynamic factors that physically and functionally connect 

sensing mitochondria as interactive networks capable of signal processing and integration.

MITOCHONDRIAL SIGNAL INTEGRATION

In its simplest form, signal integration is the process by which inputs are converted into 

common second messengers containing transformed information about the inputs. For 

example, within cells, multiple cell surface receptors converge on the production of common 

chemical secondary messenger molecules such as cyclic AMP or Ca2+, which in turn trigger 

broad-acting downstream response(s).149 Because secondary messengers are shared products 

for multiple receptors, multiple stimuli converge on the same signaling hubs. Another good 

example of this concept takes place in neurons: dozens of neurotransmitters and modulators 

signal via ionotropic and metabotropic receptors to converge on a single cellular property—

the plasma membrane potential. The temporal combination of inputs determines whether or 

not an action potential is generated.150 As a result, in neural networks (as in mitochondrial 

networks) membrane potential serves as an integrating hub for signal transduction. The 

convergence of inputs onto chemical second messengers and membrane potential thus 

allows cells to produce coherent, integrated, and robust responses simultaneously shaped 

by multiple inputs.
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Another core concept for signal integration is that large-scale functional networks bind small 

competent units into larger scale computational agents.51 Cells and organs integrate and 

compute information as cell collectives.151 For instance, in the brain no single neuron (unit) 

can accomplish the sophisticated brain computations required to coordinate and sustain 

the rest of the body. Glial cells and neurons accomplish remarkable feats of integration 

through cell-to-cell communication, creating a functional collective (the brain) that naturally 

integrates or computes information.48 Similarly, mitochondria are functionally linked and 

operate as “social” collectives within the cell cytoplasm.152 For our purposes, integration 

refers to the functional computations (i.e., the transformation of inputs into outputs) that take 

place within the MIPS between the sensing and signaling steps.

A third and final relevant concept to signal integration states that computational processes 

are influenced by the structural properties of the network itself—i.e., how individual 

units are arranged and connected relative to other ones.153,154 The interactions between 

mitochondria, defined as the probability of direct information exchange between individual 

organelles, is termed “connectivity.” Across physical, biological, and social networks, 

the extent and nature of the connectivity between units largely define the network 

properties155,156 (Figure 5). Thus, the information processing capacity of the MIPS, created 

by networks of co-existing mitochondria, must be determined jointly by both the intrinsic 

properties of mitochondria (their sensing machinery, mtDNA, OxPhos system, etc.) and their 

functional connectivity with one another.

Below we discuss how physical inter-organellar interactions, diffusible signals, dynamic 

morphological transitions, motility, and sub-cellular positioning dynamically define the 

architecture and connectivity of mitochondrial networks, which are the basis for 

mitochondrial signal integration (MIPS step 2 of 3).

Mechanisms of homologous mitochondrial communication—Several types 

of physical interactions enable transient information exchanges among mitochondria. 

Mitochondrial “kiss-and-run” involves the partial fusion of mitochondrial membranes 

among motile mitochondria in plants157 and cultured mammalian cells.13,158 These rapid 

interactions occur in the span of seconds to minutes and require the OMM mitofusins 

(MFN1/2) and IMM optic atrophy 1 (OPA1). Kiss-and-run events enable the exchange of 

proteins and membrane potential,158 and possibly mtDNA nucleoids, although likely only in 

some cell types.159

Inter-mitochondrial junctions (IMJs) are close OMM-OMM contact sites anatomically 

similar to cell-cell gap junctions. The juxtaposition of highly electron-dense mitochondrial 

membranes, originally visualized in cardiomyocytes160 between electrically connected 

mitochondria,161 increases in frequency with cellular energy demand (e.g., exercise162) 

and with mitochondrial volume density.163 At IMJs, which are evolutionarily conserved 

from mollusks to mammals, internal cristae membranes exhibit a remarkable degree of 

coordination (i.e., cristae alignment) across the two juxtaposed mitochondria, revealing the 

exchange of information between the two linked organelles.163 Artificially linking energized 

mitochondria in vitro via synthetic linkers was sufficient to recapitulate IMJs and trigger 

cristae remodeling,163 and the iron-sulfur cluster containing OMM protein MitoNEET may 
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be one of the IMJ tethering proteins.164 Functionally, IMJs may provide the physical basis 

for the propagation of membrane potential and other physicochemical signals even in the 

absence of protein exchanges and complete mitochondrial fusion.165,166

Mitochondrial nanotunnels are thin ~100-nm-wide double-membrane protrusions that arise 

from donor mitochondria, extend over distances up to several microns, and can interact 

and fuse with a receiver mitochondrion.167 Nanotunnels transport matrix proteins and 

therefore represent a mechanism of protein sharing and communication even between 

non-adjacent mitochondria.168 In cultured cells, nanotunnels can be induced by the pulling 

action of the kinesin motor protein Kif5b.169 In vivo, the existence of nanotunnels has 

been limited to tissues where mitochondrial motility is restricted such as in the densely 

packed cytoplasm of human skeletal muscles170 and rat cardiomyocytes,171 suggesting that 

physically constrained mitochondria that cannot encounter diverse fusion partners reach out 

to other functional mitochondria via nanotunnels. In patients with mitochondrial disease, 

mitochondria with compromised OxPhos function due to mtDNA mutations were found to 

have ~6-fold more nanotunnels than in healthy controls.170 This suggests that mitochondrial 

nanotunnels may preferentially arise or stabilize between mitochondria with impaired 

OxPhos capacity as a mean of functional complementation,167 or as a mean of increasing 

the effective functional connectivity among the mitochondrial network of the MIPS. Among 

other biological networks, enhancing the structural connectivity between individual units 

alters global network properties and can enhance robustness and computational/cognitive 

properties.172,173

Mitochondria also communicate via diffusible signals. One well-described example of 

diffusion-based mito-mito communication is ROS-induced ROS release (RIRR). Among the 

relatively uncluttered cytoplasm of cultured cells, mitochondria can generate and propagate 

waves of ROS production progressing through sequential PTP opening at rates of ~5 

μm/min.174 This soluble form of signaling relies mostly on the physical proximity of 

mitochondria. In cardiomyocytes, proximity-based propagation depends on the production 

and diffusion of superoxide anions (O2
.—) and H2O2.175 Similarly, mitochondria can 

propagate waves of apoptotic signaling by sequentially undergoing permeability transition: 

waves are propagated by groups of mitochondria that sequentially uptake and release Ca2+, 

which neighboring mitochondria then uptake and release, and so on.10 The mito-mito 

transmission of information via diffusible signals within the MIPS may also be facilitated by 

some of the physical structures described above, particularly inter-organellar tethers.

Mitochondrial dynamics: Fusion and fission

Mitochondrial fusion is a well-described process whereby two adjacent and generally motile 

mitochondria encounter each other and interact via the outwardly protruding domains of 

mitofusins (MFN1/2) and accessory proteins, leading to the sequential merging of the OMM 

and IMM of both organelles.176 After fusion, the two original mitochondria form a unified 

organelle with a continuous matrix and membrane system. Organelle fusion allows the 

exchange of all matrix, IMM, IMS, and OMM components, including mtDNA, proteins and 

RC complexes, lipids, metabolites, ions, and membrane potential.
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Experiments tracking the diffusion of photo-activable green fluorescent protein (mtPAGFP) 

in cultured mammalian cells177 and in vivo178 show that fusing mitochondria readily 

exchange molecular material.179 In cardiomyocytes cultured ex vivo, mtPAGFP is 

exchanged through kiss-and-run fusion and nanotunnels and becomes distributed to 

the entire mitochondrial network within ~10 h.168 In immortalized cell lines, the rate 

of mitochondrial fusion for each organelle is significantly faster, at one fusion event 

every ~5–20 min.13 Mitochondrial membrane fusion therefore leads to the mixture and 

homogenization of mitochondrial protein distribution (i.e., mitochondria are more similar 

to each other). On the other hand, ablation of mitochondrial fusion by double Mfn1/2 

silencing in mouse embryonic fibroblasts drastically increases mitochondrial heterogeneity 

(some mitochondria have a lot of protein x, others have little of it) within the MIPS.12 

Ex vivo studies of post-mitotic tissues and cells have made it clear that mitochondria in 

post-mitotic cells have lower fusion rates than cancer cells and immortalized cell lines 

(e.g., Eisner et al.180). Moreover, the cytoplasm of certain tissues can inhibit ex vivo 
mitochondrial fusion rates.181 But in post-mitotic cells in which mitochondrial movement is 

restricted by cytoskeletal elements, fusion and fission can take place without displacement 

of mitochondria. This can be viewed as fire-doors in a long corridor—rapidly and reversibly 

modulating the network connectivity.

The functional relevance of dynamics to mitochondrial signal transduction is that larger 

mitochondria with larger matrix volume and lower surface-area-to-volume ratio respond 

differently to incoming signals. One example is the ability of mitochondria to handle 

histamine-induced rises in cytoplasmic [Ca2+]. Relative to small fragmented mitochondria, 

larger tubular mitochondria in the same cell uptake Ca2+ at a similar rate but recover 

more quickly (within 30 s).182 In response to hyperglycemia, mitochondrial fragmentation 

precedes hyperglycemia-induced ROS production.183,184 Hyperglycemia increases ROS 

production within ~30 min, and fragmented mitochondria produce ~50% more ROS than 

filamentous mitochondria in the same cell.182 Again, the sequential events of sensing 

and responses illustrate how the functional responses of mitochondria to environmental 

inputs and stimuli are not rigidly set by genetically encoded states, but rather dynamically 

regulated by shape changes that remodel the network properties of the MIPS. Distinct fission 

signatures (i.e., where the fission event occurs along the mitochondrial tubule) are associated 

with the fate—degradation or biogenesis—of the resulting mitochondrial fragments,185 

possibly influencing long-term network properties.

The mitochondrial network also responds to metabolic signals. Mitochondrial fusion and 

fission are modulated by the cellular metabolic state,186 and in turn regulate mtDNA 

stability in vitro and in vivo.187 For example, the MIPS responds to substrate deprivation 

by undergoing MFN-dependent fusion,188,189 whereas metabolic oversupply can inhibit 

mitochondrial fusion and lead to higher DRP1-dependent fragmentation in cultured 

cells184,190,191 and in skeletal muscle in vivo.192 Morphological changes underlie intra-

mitochondrial functional changes that optimize coupling efficiency (i.e., the coupling of 

oxygen consumption to ATP synthesis) to best match the dynamic metabolic state.186,193 In 

brown adipocytes, mitochondrial fission decreases coupling efficiency in a DRP-1 and free 

fatty acid-dependent mechanism,194 reflecting an intra-mitochondrial morpho-functional 

response that increases fatty acid utilization and heat production. Like neural connections 
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that come and go through activity-dependent sprouting and pruning,195 mitochondrial 

interactions and connections also persist and vanish over variable time periods, modulating 

information flow within the MIPS network.

Motility—Mitochondrial motility refers to the ability of mitochondria to travel to and 

from different parts of the cell. Motility influences MIPS structure as mitochondria 

stretch into their common tubular structure by adhering to cytoskeletal elements such as 

microtubules and actin filaments. When mitochondria fall off the cytoskeleton, they lose 

their tubular shape. Motility of an individual mitochondrion is also the strongest predictor 

of mitochondrial fusion.196 Remarkably, the highest probability for a successful meeting 

between two mitochondria to develop into a fusion event is when one mitochondrion is 

moving while the other is stationary. The lowest probability is when both mitochondria have 

been stationary, even if they are juxtaposed.177 On the other hand, fission is commonly 

followed with movement of the two daughter mitochondria so that they are not juxtaposed 

anymore (e.g., Kleele et al.185). The two fission products can therefore subsequently 

interact, possibly fuse, and thus share their content and more labile states with other units 

within the network. Both microtubules and actin filaments play a role in mitochondrial 

fission; for example, forcing the depolymerization of microtubules prevents the cytoplasmic 

redistribution of mitochondria in response to stress.197 Directional motility is facilitated 

by cytoskeletal elements, but non-directional Brownian movement also appears to be a 

contributor to mitochondrial motility.198

Motility is influenced by the sensing of environmental signals.199 The molecular sensors 

responsible for transducing metabolic and biochemical signals into motility implicate 

a complex of proteins that connect mitochondria to the motor machinery, the dynein 

and kinesin. Dynein and kinesin-1 walk the mitochondria on microtubules and thus 

any movement requires their attachment to the mitochondrial surface.200 The molecular 

complex connecting mitochondria to these motor proteins includes Miro and Milton, 

whose regulations have been well defined in neurons.201 When mitochondria enter an 

area with high calcium concentrations, Miro detaches from the motor proteins, resulting 

in the mitochondria falling off the cytoskeleton and becoming stationary; as a result, 

mitochondria stop their movement and accumulate in areas with increased calcium, where 

they can contribute to calcium buffering.202 Similarly, Milton (Trak1) is inactivated by 

GlucNAC when glucose concentrations increase, leading to a similar arrest of mitochondrial 

movement in neurons in response to hyperglycemia.203 In cultured cells, inter-mitochondrial 

tethering events similar to IMJs (without fusion) regulated by lysosomes204 occur ~10× 

more frequently than fusion/fission events, limiting mitochondrial motility and therefore 

regulating mitochondrial distribution within the cytoplasm.205 Overall, motility is a 

mechanism that dynamically redistributes mitochondria and together with fusion and fission 

determines the network structure of the intracellular mitochondrial collective.

Communication with other organelles

The MIPS engages in functional interactions with the ER lysosomes, peroxisomes, 

lipid droplets, and likely other organelles. This topic has been elegantly reviewed 

elsewhere.206,207 Mitochondrial metabolism is directly supported by surrounding organelles 
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that provide various substrates, lipid intermediates, and ionic signals that not only supply 

substrates, but also communicate information about the overall state of the cell. In particular, 

input from the nucleus provides hundreds of proteins that sustain and confer mitochondria 

with both their molecular sensory machinery and the machinery for fusion/fission dynamics 

and motility that influence their propensity to adopt certain network configurations.

Mitochondrial cortisol synthesis is exemplary of this inter-organelle inter-dependence, 

requiring the transfer of cholesterol from lipid droplets to mitochondria and its import 

across mitochondrial membranes, followed by shuttling of steroidogenic intermediates from 

mitochondria to the ER, and from the ER back to the mitochondrial matrix, where cortisol 

is finally synthesized.208 The synthesis of the mitochondrial IMM phospholipid cardiolipin 

similarly involves the shuttling of lipid intermediates between mitochondria and ER at 

mitochondria-associated membranes (MAMs) through the ERMES209 and ER-mitochondria 

complex (EMC).210 Punctual, localized, and pulsatile redox-based communication between 

mitochondria and the ER can also propagate signals from single mitochondria to the 

ER and other mitochondria.211 These examples illustrate the functional inter-dependence 

of mitochondria and other organelles, and the existence of conserved mechanisms for 

information exchange, propagating the state of the MIPS to other organelles, and vice versa.

Summary of mitochondrial signal integration—After describing the molecular 

machinery allowing mitochondria to sense and dynamically respond to intracellular and 

systemic inputs, here we have discussed the mechanisms allowing mitochondria to 

communicate and exchange information among each other and with other organelles. 

As the MIPS physically and functionally interacts as a mitochondrial collective with 

other organelles, it generates distributed representations of the biochemical and energetic 

conditions of the cells and organism. In turn, these capacities to sense and integrate 

information are adaptive, allowing mitochondria to tune and optimize their morpho-

functional states to changing intracellular and environmental conditions.

Note that soluble communication mechanisms undoubtedly complement more complete 

forms of mitochondrial communication involving the merging and more-or-less complete 

union of mitochondria through membrane fusion. If diffusible signaling and transient protein 

exchange are analogous to “kiss-and-run,” more stable physical mitochondrial contacts such 

as IMJs and nanotunnels may reflect “engage-and-hold,” whereas complete mitochondrial 

fusion is analogous to “marry-and-mix.” Thus, mitochondrial interactions can be relatively 

transient (ion efflux lasts a few milliseconds), selective (nanotunnels connect with only 

one acceptor mito), and reversible (inter-organellar tethers can dissociate). The nature of 

these interactions is consistent with other plasticity mechanisms in biology, such as those 

modulating synaptic function within neural networks, which similarly integrate inputs and 

compute information.212

However, the ultimate unit of evolution and adaptation is not the mitochondrial network or 

the individual cell. It is the cell collective that constitutes the organism. Therefore, the goal 

of mitochondrial sensing and integrating information must be to optimize adaptation and 

health of the organism itself. Biologically, this becomes possible if the information sensed 

and integrated by the MIPS is then communicated to the cell and to the rest of the organism. 
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This logic brings us to consider how mitochondrial inputs are converted and transmitted 

into meaningful cellular and organismal outputs or signals, through mitochondrial signaling 

(MIPS step 3 of 3).

MITOCHONDRIAL SIGNALING

Several well-established and emerging signaling pathways link mitochondrial behavior to 

gene expression within the cell nucleus. Moreover, beyond the cell, the MIPS releases 

signals in the systemic circulation, influencing metabolic processes in neighboring cells and 

distant target organs. Several elements of mitochondrial signaling have been extensively 

covered elsewhere, such as apoptotic signaling,213 ROS-mediated signaling,214,215 and 

metabolic intermediates.216 Here we only briefly cover these areas and expand the 

discussion of mitochondrial signaling to a broader spectrum of mitochondrial outputs that 

serve as intracellular and/or systemic outputs, including small metabolites, proteins, DNA, 

steroid hormones, and non-molecular signals including heat (Figure 6). We also discuss how 

the potency and specificity of signal transduction may be influenced by the sub-cellular 

localization of signaling mitochondria.

Apoptotic signaling—The first use of the term “mitochondrial signaling” appeared in 

1999 in relation to the release of the pro-apoptotic mitochondrial output Cyt c.217 Cyt c 
is a small heme protein normally residing in the IMS where it shuttles electrons between 

OxPhos complexes III and IV. However, in response to the convergence of specific inputs 

such as ROS, high [Ca2+], and low [ATP], especially among a fragmented and poorly 

connected mitochondrial network,218 mitochondria undergo permeability transition through 

PTP opening.219 PTP opening triggers the cytoplasmic release of Cyt c where it interacts 

with and activates pro-caspases,9 as well as other mediators of the intrinsic apoptotic 

pathway, including the apoptosis inducing factor (AIF) and the endonuclease EndoG that 

translocates to the nucleus and fragments the nuclear genome, and Smac/Diablo (reviewed 

in Wang and Youle220). In cancer cells, Cyt c released during non-lethal permeability 

transition (i.e., “flickering mode”) can also play non-apoptotic signaling roles involving the 

activation of the nuclear ATF4-dependent integrated stress responses (ISRs; see below).221 

To prevent the assembly of pro-apoptotic molecular complexes at the OMM, mitochondria 

can also recruit anti-apoptotic proteins from the Bcl2 family. Functionally, PTP opening 

is closely linked to mitochondrial Ca2+ release and signaling, which is under the control 

of increasingly well-defined cristae-regulating mechanisms.222 Thus, the MIPS contains 

a number of powerful cellular life-or-death signals coordinately released based on their 

integrated representation of biochemical conditions both within mitochondria and the 

cytoplasm.223

Mitochondrial metabolite signaling—Mitochondria speak the language of the 

epigenome. It is likely that the endosymbiosis of mitochondria and the MIPS preceded 

the development of the histone code, such that current epigenetic nuclear mechanisms have 

developed to couple gene expression to the metabolic state of the cell in the context of 

mito-nuclear communication.224 As a result, the nuclear genome is densely wrapped with 

abundant histone proteins (mainly H2A, H2B, H3, and H4) that contain hydrophilic tails, 
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which are heavily post-translationally modified by the metabo-chemical perinuclear and 

nuclear environment.225

Most substrates or cofactors required by histone-modifying enzymes to alter histone 

structure and downstream gene expression are direct products of mitochondrial 

metabolism.226,227 These include metabolites from the TCA cycle216 and from one-

carbon metabolism.228 For example, the methylation of histones and DNA by histone 

methyltransferases (HMTs) and DNA methyltransferases (DMTs), respectively, requires 

S-adenosylmethionine (SAM) derived from serine metabolism as part of the folate cycle 

and one-carbon metabolism pathway.116,229 On the other hand, the reverse demethylation 

reaction requires the cofactor α-ketoglutarate (αKG), a TCA cycle metabolite. Several 

mitochondrial-derived metabolites are involved in PTMs of histones (and other proteins). 

These include lactate (i.e., lactylation),230 a metabolite derived from glycolysis that 

increases in concentration when mitochondrial OxPhos is impaired; dopamine (i.e., 

dopaminylation),231 whose catabolism via the OMM-bound monoamine oxidase involves 

the respiratory chain;232 β-hydroxybutyrate (i.e., β-hydroxybutyration),233 a ketone body 

synthesized in the mitochondrial matrix under low carbohydrate conditions; and many 

others.

Mitochondrial metabolites are epigenome-modifying MIPS outputs. mtDNA-depleted 

Rho0 cells were initially used to demonstrate that mitochondrial outputs alter nuclear 

DNA methylation.26 In a similar model comparing a series of human cell lines with 

varying mutation load (i.e., heteroplasmy) of the pathogenic mtDNA 3243A>G mutation, 

heteroplasmy ranging from 0% to 100% influenced in a dose-response manner DMT 

gene expression and global transcriptional signatures.23 In the same model, mtDNA 

heteroplasmy altered acetyl-CoA and αKG levels and yielded downstream changes in 

H4K16ac and H3K9me3 status.234 Acute mtDNA depletion in immortalized cells also 

triggered a physiologically meaningful decrease in the mitochondrial acetyl-CoA pool 

and downstream histone acetylation,235 illustrating the range of epigenomic effects of 

the MIPS. Finally, a longitudinal study in primary human fibroblasts tracking DNA 

methylation changes over several months showed that both genetic and pharmacological 

OxPhos defects caused conserved, age-related hyper- and hypomethylation at thousands of 

genomic locations encoding developmental programs and cell-cell signaling components.236 

A publicly available multi-omic, longitudinal dataset is available to explore the influence 

of bioenergetic perturbations on the epigenome and transcriptome of aging human 

fibroblasts.237 Together, these findings illustrate some mechanisms whereby intrinsic 

mtDNA-related and OxPhos inputs are transduced into epigenome-remodeling outputs.

However, one point that remains largely unclear is how MIPS-induced molecular and 

epigenetic modifications are temporally, spatially, and molecularly targeted, as well as 

their functional consequences on gene expression and cellular phenotypes.226 Furthermore, 

this scientific challenge is compounded by the existence of multiple active TCA cycle 

enzymes directly in the nucleus.238 The presence of mitochondrial enzymes in the nucleus, 

mostly documented to date in cancer cell lines, suggests that at least in some cell types, 

mitochondria may not be the only source of chromatin-modifying metabolites.
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In recent years, other mitochondrial metabolites and molecular features have emerged 

as broad-acting intracellular signals. For example, the levels of TCA cycle metabolites 

succinate and fumarate are regulated by electron flux through the OxPhos system and more 

directly by the enzymes fumarate hydratase and succinate dehydrogenase (comprehensively 

reviewed in Martinez-Reyes and Chandel216). These metabolites are released in the 

cytoplasm, where they regulate signaling pathways involved in hypoxia sensing, immune 

activation, inflammation, and oncogenic transformation. TCA cycle metabolites also are 

enzymatically converted to metabolic derivatives such as itaconate and 2-hydroxyglutarate, 

among others. Itaconate is produced from the TCA cycle metabolite aconitate by aconitate 

decarboxylase and then acts either on intra-mitochondrial enzymes, for example by 

inhibiting succinate dehydrogenase,239 or on transcription factors in the cytoplasm/nucleus, 

for example by inhibiting NF-κB signaling.240 Two isomers of 2-hydroxyglutarate (2-HG) 

are produced from αKG by the mitochondrial or cytoplasmic malate dehydrogenases 

(MDH2, MDH1, respectively) in an NADH-dependent manner, and also promoted by acidic 

pH.241 In the nucleus, 2-HG then inhibits the demethylation of histone tails and DNA by 

the teneleven translocation hydroxylases (TET1–3) and plays important roles in cell fate 

transitions that affect oncogenesis242 and immune activation.243 Besides soluble metabolites, 

larger mitochondrial lipids also play important signaling roles.244 For example, the IMM 

lipid cardiolipin participates in a variety of cell signaling events, translocating to the OMM 

during stress and serving as a signaling platform relevant to mitophagy, apoptotic signaling, 

and other functions.245

In addition to TCA cycle flux, NADH/NAD+ ratio, and pH, the presence of carrier proteins 

on the IMM can influence MIPS metabolite signaling. For example, in mesenchymal stem 

cells age-related changes in the citrate carrier expression regulate the cytoplasmic export 

of acetyl-CoA to drive histone acetylation levels, increase chromatin accessibility, and 

influence stem cell differentiation.246 Thus, the nature and strength of mitochondrial outputs 

are likely regulated not only by rapidly changing fluxes through specific intra-mitochondrial 

metabolic pathways, but also by the relatively stable, albeit malleable, composition and 

abundance of IMM carriers and transporters.

Beyond the cell, metabolites also act in a cell-non-autonomous manner. A well-studied 

example is succinate, an obligatory mitochondrial TCA cycle intermediate that accumulates 

in equilibrium with the coenzyme Q redox state influenced by oxygen tension, ΔpH+Δψm, 

and ATP demand.247 Succinate has been reported to signal extracellularly and perhaps 

systemically through at least one cell surface GPCR, the succinate receptor 1 (SUCNR1), 

on immune and other cell types to regulate inflammatory processes.248 On target immune 

(and possibly other) cell types, succinate may also be imported via the monocarboxylate 

transporter 1 (MCT1), where it acts intracellularly to inhibit TCA cycle activity and signal 

transduction pathways inhibiting interferon secretion.249 Thus, metabolite outputs from the 

MIPS collectively have broad-acting cell-autonomous and cell-non-autonomous effects on 

the epigenome, nuclear gene expression, and cell behavior.

One other mitochondrial metabolite is worth special mention for its well-known role in 

circadian biology: melatonin (N-acetyl-t-methoxytryptamine). Melatonin is an evolutionarily 

ancient bacterial molecule preceding endosymbiosis that has strong antioxidant properties 
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(reviewed in Reiter et al.92). Mitochondria not only contain the MT1 melatonin GPCR, 

but also synthesize melatonin from the amino acid L-tryptophan (with serotonin as an 

intermediate) via two enzymatic reactions catalyzed by enzymes in the mitochondrial 

matrix (arylalkylamine N-acetyltransferase [AANAT] and acetyl serotonin methyltransferase 

[ASMT]).87 Like other mitochondrial metabolites, systemic melatonin concentration 

exhibits strong diurnal variation (almost undetectable during the day, peaking at night; e.g., 

Paul et al.250). It modulates sleep/wake cycles in some animals,251 and its oral consumption 

in humans may modulate sleep onset.252 Thus, mitochondria-derived melatonin potentially 

acts locally in an “automitocrine” and cell-autonomous manner, in a paracrine manner 

between cells/neurons, as well as systemically via the bloodstream,253 illustrating the broad 

reach of MIPS-derived metabolites/hormones in mammalian physiology.

Together, mitochondria-derived metabolic outputs represent complementary signals that 

integrate and transduce the bioenergetic state of the MIPS into signals intelligible to 

core cellular signal transduction machinery that orchestrate a broad array of cellular and 

organismal behaviors.

Mitochondrial ROS signaling—ROS are diffusible molecules, particularly hydrogen 

peroxide (H2O2) produced from the dismutation of superoxide anion (O2
• −) by the matrix 

and IMS antioxidant systems. Mitochondrial ROS originate predominately from OxPhos 

complexes I and III254 and travel to the cytoplasm and nucleus where they trigger redox-

sensitive gene-regulatory processes.197,255 Mitochondrial ROS signaling215 and guidelines 

for their measurements256 have previously been reviewed in detail, so here we mainly focus 

on recent developments in this area.

Mitochondrial ROS regulate various internal mitochondrial states and systemic signaling. 

For example, in brown adipose tissue mitochondrial ROS production post-translationally 

modifies UCP1 at Cys253 to increase uncoupling and enable thermoregulation, whereas 

pharmacological depletion of mitochondrial ROS with MitoQ prevented IMM uncoupling 

and heat production.257 In the mitochondrial matrix of heme-synthesizing mitochondria in 

adipocytes, H2O2 oxidizes bilirubin to form biliverdin, which is exported from mitochondria 

by the ATP binding cassette (ABC) transporter ABCB10.258 And in secretory pancreatic 

beta cells, glucose-stimulated insulin secretion is similarly driven by H2O2 accumulation,259 

illustrating how mitochondrial ROS signals within the mitochondrion and intracellularly to 

trigger the release of systemic endocrine signals such as insulin.

Likely owing to the central role of oxygen in the evolution of aerobic creatures, 

mitochondria-derived ROS have broad effects on nuclear transcriptional regulation. In 

cultured cells, elevated ROS production secondary to respiratory chain dysfunction, or 

mimicked with the addition of the mitochondria-targeted redox cycling agent paraquat 

(MitoPQ), was sufficient to activate proteins of the mitogen-activated protein kinase 

(MAPK), including JNK signaling, which induces a secondary signal, namely nuclear 

chromatin release into the cytoplasm.260 Similarly, eliciting high levels of temporally 

controlled ROS specifically in mitochondria using a chemoptogenetic tool elevated 

nuclear hydrogen peroxide levels and induced telomere damage.261 In mice, silencing 

the mitochondrial matrix antioxidant enzyme manganese superoxide dismutase (MnSOD) 
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during development showed that mitochondria-derived ROS activated the cytoplasmic/

nuclear Nrf2 and PPARγ/PGC-1α pathway, leading to lasting adaptive hormetic responses 

that persist in adult animals.262 Similar results were obtained in mice treated with low-

dose rotenone (a complex I inhibitor that increases mitochondrial ROS emission) during 

embryonic and post-natal development, which altered nuclear DNA methylation and 

modified coat color.263 In aging human fibroblasts, mitochondrial signaling via ROS is also 

necessary and sufficient to activate the Nf-kB pathway and senescence features, including 

the senescence-associated secretory profile (SASP).264 In fact, experimentally depleting 

mitochondria from human fibroblasts by using a Parkin-overexpression/FCCP treatment 

prevented the acquisition of senescence characteristics,265 providing compelling evidence 

that MIPS signaling—including but likely not limited to ROS—is required to trigger 

complex cellular states like senescence. Moreover, the SASP can propagate senescence 

phenotypes to neighboring bystander cells both in vitro264 and in vivo,266 illustrating one 

of many pathways whereby mitochondrial signaling propagates systemically in a cell-non-

autonomous manner to influence organismal behavior and lifespan.17,267

Besides mito-nuclear signaling, ROS production by individual mitochondria also locally 

contributes to communication with the ER.211 Even in distant neural arborizations, far 

from the nucleated cell body, mitochondrial ROS contribute to local synaptic activity.268 

In response to plasma membrane photodamage, mitochondria at the site of injury were 

also shown to respond in a DRP1-dependent manner by increasing repair-promoting 

ROS production.269 Thus, the site-specific roles of mitochondrial ROS across sub-cellular 

locations illustrate the significance and potential specificity of localized ROS outputs from 

the MIPS as drivers of gene regulation and cellular functions.

Mitochondria synthesize sex and stress hormones—One of the most powerful 

types of mammalian hormones are steroid molecules, broadly categorized into three major 

classes: (1) the sex-defining testosterone, estrogens, and progestins produced in the gonads; 

(2) the stress hormones that promote stress adaptation via metabolic and salt balance 

regulation including glucocorticoids and mineralocorticoids produced in the adrenal glands; 

and (3) neurosteroids produced in the nervous system.270,271 Their release is regulated by 

trophic pituitary hormones from the brain (adrenocorticotropic hormone, ACTH; follicular 

stimulatory hormone, FSH; and luteineizing, LH) mediated by GPCR-coupled cyclic AMP-

protein kinase A (cAMP-PKA) or Ca2+-PKC signaling in steroid-producing cells.208 In 

steroidogenic tissues, the rate-limiting step to synthesize all steroid hormones takes place 

within mitochondria.

Mitochondria produce steroid hormones from cholesterol, the initial substrate to all 

steroids. The import of cholesterol through the OMM and IMM requires microtubule 

and microfilament dynamics as well as protein synthesis272 and is accomplished by the 

steroidogenic acute regulatory protein (StAR, from the STARD1 gene) in the OMM.273 

Whereas mitochondrial import of StAR through the TIM/TOMM translocator complex 

leads to its proteolytic degradation, stabilization of StAR at the OMM,274 in association 

with Tom22 and VDAC2,275,276 delivers cholesterol to the matrix-facing IMM side chain 

cleavage enzyme cytochrome P450 (CYP450scc) protein. CYP450scc then catalyzes the 

rate-limiting reaction for steroidogenesis, which convert cholesterol into pregnanolone, the 
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common precursor to all steroid hormones.33 Pregnanolone synthesized in the matrix is 

then exported to the ER where other enzymes sequentially catalyze its transformation 

into progesterone and other steroid intermediates.208 In steroidogenic mitochondria from 

the adrenal cortex zona fasciculata cells, the downstream steroid intermediate returns to 

the mitochondrial matrix, possibly through the MAM, where the terminal reaction is 

catalyzed by the mitochondrial matrix enzyme 11β-hydroxylase (11βH, also “mitochondrial 

cytochrome P450 11B1” encoded by CYP11B1 in humans) that produces cortisol.277 

Mitochondrial synthesis of systemically acting steroids occurs rapidly within minutes, 

and its synthesis arrest is equally rapid.208 The rapid, redox-sensitive, protein import-

dependent regulation of this process illustrates how multiple intrinsic factors can influence 

mitochondrial steroidogenic outputs.

The evolutionary basis for positioning steroidogenesis in mitochondria remains uncertain 

but may have involved the uniquely reducing conditions of the mitochondrial matrix.278 

The conversion of cholesterol to pregnanolone by P450scc requires the reductive 

action of 3 high-energy NADPH molecules. As a result, the loss of the matrix-facing 

NADPH-generating enzyme nicotinamide nucleotide transhydrogenase (NNT) inhibits 

steroidogenesis, causing hypocortisolemia in mice and humans.279 Developmentally, steroid 

hormones drive energetically expensive transcriptional and physiological programs that 

must incur substantial cellular energetic costs in target tissues. As a result, it is possible 

that to optimize fitness, these hormones should only be produced in proportion with the 

energetic capacity of target tissues. Assuming that the function of mitochondria is partially 

harmonized across both source steroidogenic and target catabolic energy-consuming tissues, 

we postulate that the mitochondrial localization of steroidogenesis enzymes may reflect the 

product of system-level adaptation aiming to couple mitochondrial bioenergetic capacity and 

steroid hormone signaling across the organism.

Mitochondrial genome signaling: Intracellularly—The circular mtDNA is typically 

contained in the mitochondrial matrix, insulated from the cytoplasm by two membranes. 

However, the enclosure of mtDNA within the mitochondrial IMM and OMM is naturally 

disrupted under certain physiological conditions. This includes mtDNA instability caused by 

the partial loss of the mtDNA-associated protein TFAM, which triggers mtDNA-dependent 

antiviral gene expression programs in the nucleus.22 mtDNA release is a relevant signaling 

mechanism because both the cytoplasm and the extracellular surface of immune and non-

immune cells harbor DNA sensors that recognize mtDNA fragments as a damage-associated 

molecular pattern (DAMP).280 DNA (viral, bacterial, and mtDNA) is sensed by multiple 

innate immune receptors including cGAS (cyclic GMP-AMP synthase), TLR9 (toll-like 

receptor 9), and the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) and 

AIM2 (absent in melanoma) inflammasomes. Sensing of mtDNA triggers signaling cascades 

that either converge on cytokine- and interferon-producing transcription factors including 

IRF3/7, MAPK, and NF-κB or engage Caspase-1 for processing and secretion of IL-1b and 

IL-18.281 The cytosolic release of mitochondrial double-stranded RNA (mt-dsRNA) can also 

act as a DAMP and is detected by the RIG-I-like (RLR) receptors RIG-I and MDA5. Once 

engaged, these sensors translocate to mitochondria and activate the mitochondrial antiviral 
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signaling protein (MAVS), which assembles as filaments on the mitochondrial surface282 in 

a membrane potential-dependent manner to act as an antiviral signaling platform.283,284

Current thinking around innate immune signaling suggests that the mitochondrial network 

is both a source of stimulatory ligands and acts as the major signaling hub for the 

four major pattern recognition receptor families (TLRs, NOD, RLRs, and cytosolic DNA 

sensors [CDSs]).285 Most of the effects of both exogenous (bacterial, viral) nucleic acids 

and endogenous mtDNA/mtRNA signaling are likely mediated via these pathways. As an 

example of mitochondrial signal transduction, when mitochondria in human fibroblasts 

and cancer cells detect the genotoxic agent doxorubicin, mtDNA damage (sensing) 

eventually leads to the cytoplasmic release of mtDNA fragments (signaling), which trigger 

nuclear DNA repair mechanisms in the nucleus and cGAS-STING-dependent activation of 

interferon-stimulated gene (ISG) expression.147

Regarding the mechanism(s) responsible for facilitating mtDNA extrusion into the 

cytoplasm, two molecular pathways have been described. One mechanism tested in mouse 

embryonic fibroblasts and mice with lupus-like disease involves VDAC oligomerization in 

the OMM, stabilized by short mtDNA fragments, forming a large-scale pore that enables 

the cytoplasmic extrusion of 100- to 400-bp-long mtDNA fragments.286 Similarly, in bone 

marrow-derived macrophages 500- to 650-bp-long mtDNA fragments are cleaved from 

the circular genome by the mitochondrial protein flap-structure-specific endonuclease 1 

(FEN1) and released in a VDAC-dependent manner into the cytoplasm where it activates 

the inflammasome and cGAS-STING signaling.287 The other described mechanism of 

cytoplasmic mtDNA extrusion consists of BAX/BAK-mediated pore formation in the OMM, 

followed by herniation of the IMM at the surface of mitochondria during apoptosis.288 

Under conditions of genotoxic stress, BAX/BAK-mediated herniation also appears to release 

ds-mtRNAs to activate ISGs in the nucleus.289,290 A third non-specific mechanism may 

involve the rupture of mitochondrial membranes, possibly secondary to swelling, which, for 

example, may occur in skeletal muscle of patients with primary mtDNA mutations.291

Another, more permanent way in which the mitochondrial genome can carry information to 

the nucleus is via the translocation of mtDNA segments to the nucleus followed by their 

insertion within the coding sequence as nuclear mtDNA insertions (NUMTs, pronounced 

“nu-mites”).292 This process, termed “numptogenesis,” has traditionally been understood as 

horizontal gene transfer, having occurred multiple times during the evolution of single-celled 

and multicellular organisms.293 As a result, multiple germline NUMTs are shared across 

individuals. In the case of mitochondria, mtDNA gene transfer is also likely to explain how 

the majority of the genes from the original proteobacterium’s genome have migrated to the 

nucleus such that >98% of the mitochondrial proteome is now encoded in the nucleus.294

But the transfer of mtDNA sequences to the nucleus may also occur over a cell’s 

lifespan. In yeast, mitochondria lacking the mitochondrial protease Yme1 (yeast mtDNA 

escape 1), a member of the AAA family of ATPase that degrades IMS/IMM proteins to 

regulate mitochondrial cristae dynamics,295 produce 77-fold more mito-nuclear transfer of 

NUMTs along with a 50% reduction in lifespan.296 Similarly, in cancerous mammalian 

cells, mitochondria without the human homolog YME1L1 generate ~4-fold more NUMTs, 
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recapitulating the abnormally elevated number of NUMTs in ovarian tumors297 and other 

cancer types.298 Numptogenesis may also occur at a steady rate over days to weeks in 

healthy replicating primary human fibroblasts in vitro, and over a person’s lifespan in brain 

tissue (unpublished data). Whether the effects of NUMTs on nuclear genome instability and 

cellular aging is a bona fide, regulated form of MIPS signaling remains to be established.

Mitochondrial genome signaling as extracellular, cell-free mtDNA—mtDNA 

copies are often well in excess of the number of copies required to transcriptionally sustain 

OxPhos.299 An emerging notion suggested by Shadel et al. is that the mtDNA molecules 

do not only supply RNA and OxPhos subunits but in fact exist as sentinels of genotoxic 

stress and other insults.147 This suggests that the hundreds of mtDNA genomes in each cell 

may represent a pool of signaling molecules—in the same way the neurotransmitters are 

produced and stored in presynaptic boutons, awaiting release.

Beyond mtDNA detected in the cytoplasm and nucleus, a substantial amount of circulating 

cell-free mtDNA (cf-mtDNA; as well as nuclear DNA, cf-nDNA) is released extracellularly, 

detectable in various biofluids from healthy individuals (reviewed in Trumpff et al.300). In 

blood (serum or plasma, which contain different cf-mtDNA levels301) and cerebrospinal 

fluid, cf-mtDNA is elevated in some although not all individuals with primary OxPhos 

defects,302–304 during pregnancy,305 after physiological stress such as exercise,306 minutes 

after acute psychological stress,306,307 and hours to days after intensely stressful life 

events,308 highlighting the dynamic release of cf-mtDNA. In saliva, cf-mtDNA also 

increases several-fold during the morning sleep-wake transition.309 Notably, in critically 

ill individuals cf-mtDNA levels are also dramatically elevated, and cf-mtDNA abundance 

(copies per mL) is a strong predictor of mortality,310 highlighting the potential physiological 

significance of cf-mtDNA in humans.

Because the majority of the initial work on cf-mtDNA was conducted in the context 

of sepsis and inflammatory disorders, and given that the molecular features of the 

mitochondrial genome and associated proteins are bacterial in origin, the pro-inflammatory 

aspects of cf-mtDNA signaling have been emphasized.311 The role of mitochondrial 

signaling in the control of inflammation has been expertly reviewed elsewhere285 and leaves 

little doubt that intracellularly, cf-mtDNA is immunogenic.

However, in relation to extracellular cf-mtDNA in biofluids, emerging evidence suggests 

that (1) the majority of blood and saliva circulating cf-mtDNA in human plasma may not be 

naked (required to be accessible to DNA receptors) but rather contained within sedimentable 

cargo, possibly as circulating whole mitochondria,309,312,313 and (2) cf-mtDNA is abundant 

in healthy individuals who do not show signs of systemic inflammation. Therefore, a 

critical re-appraisal of the evidence reveals that by itself, circulating cf-mtDNA in its 

physiological forms in human blood is unlikely pro-inflammatory.300 Cf-mtDNA levels 

in blood, cerebrospinal fluid,314 and saliva309 also do not consistently correlate with 

inflammatory markers. The physiological role of cf-mtDNA in general remains unclear. 

Technically, how mtDNA fragments are physiologically released from the matrix to the 

cytoplasm, into the extracellular space, and into biofluids also remains to be established.
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Together, these findings highlight the influence of mtDNA signaling beyond autocrine/

cytoplasmic mito-nuclear signaling. Emerging work in multiple biofluids implicates 

paracrine (cell-to-cell) and potential endocrine (systemic) roles of cf-mtDNA signaling 

among the repertoire of signaling mechanisms available to transduce information from the 

MIPS to the organism.

Non-apoptotic nuclear-encoded proteins sequestered in mitochondria—A 

different class of mitochondrial outputs includes a group of nuclear-encoded proteins that 

are normally imported and degraded by functional energized mitochondria but fail to 

be imported when mitochondria are de-energized (i.e., depolarized). In non-mammalian 

systems and cultured cells, stress conditions that induce mitochondrial depolarization 

inhibit protein uptake and cause their accumulation in the cytoplasm where they act 

as transcription factors.27 Based on initial studies using unfolded protein stress in the 

mitochondrial matrix,315 this response was coined the mitochondrial unfolded protein 

response (mtUPR). The mtUPR involves close physical contact and functional interactions 

between mitochondria and the ER.316

Known pathways involving nuclear-encoded proteins include ATFS-1 (activating 

transcription factor associated with stress-1, in C. elegans),19 GPS2 (G-protein pathway 

suppressor 2, in mammalian cells),20 and DELE1 (DAP3-binding cell death enhancer 1, 

in mammalian cells).317,318 In an OMA1 protease-dependent manner, the mitochondrial 

network acts as an active sink that normally shunts these proteins and prevents 

their interactions with nuclear transcription factors including EIF2α.317,318 Via these 

proteins, mitochondrial depolarization promotes ATF4 and ATF5 expression, the master 

regulators of the mtUPR.319,320 Interestingly, inhibiting mitochondrial translation interferes 

with cytoplasmic translation and triggers ATF4/ATF5-dependent signaling, marking the 

interconnectedness of intra-mitochondrial and cytoplasmic protein homeostasis.321 The 

ATF4/ATF5 transcription factors overlap with those of the mitochondrial ISR (ISRmt) well 

defined in mammals. However, in cultured human cells at least, different mitochondrial 

perturbations selectively induce the mtUPR and ISRmt in a relatively mutually exclusive 

manner.322 This result suggests that the mtUPR and ISRmt stress response pathways have 

either evolved separately or diverged in their specificity, highlighting the existence of at least 

two well-defined nuclear transcriptional programs induced by MIPS signaling in mammals.

Systemic mitochondrial signaling via the nucleus—MIPS signaling induces nuclear 

programs that remodel catabolic and anabolic biosynthetic pathways within the cell, and also 

shapes metabolism systemically. In mammalian models, intrinsic mtDNA transcriptional 

and translational defects,16,115,323 inhibition of autophagy,324 IMM uncoupling,325 and 

both pharmacological and genetic OxPhos defects236,326 are transduced to the nucleus via 

mechanisms that at least in part involve mitochondria-derived signals inducing the ATF4- 

and ATF5-regulated ISRmt. In cultured human cells, loss of hundreds of nuclear-encoded 

mitochondrial genes, although not all, selectively triggers the ISRmt.322

In animals, the ISRmt produces two main nuclear-encoded systemic signals: fibroblast 

growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15)—two proteins 

with overlapping but distinct systemic metabolic effects.327 In mouse models with 
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molecular alterations in skeletal muscle mitochondria, the muscle-derived FGF21 protein 

travels to distant tissues where it is necessary for some tissue-specific effects such as 

white adipose tissue browning328 and glucose uptake and mitochondrial biogenesis in 

the dorsal hippocampus.18 However, FGF21 is dispensable for other systemic effects 

such as glucose tolerance, insulin resistance, anorexia, and weight regulation.328–330 

The other well-studied metabokine GDF15 is most highly expressed in secretory tissues 

(syncytiotrophoblasts, epithelial cells, and glandular cells; https://www.proteinatlas.org/) and 

has wide-ranging systemic effects linking mitochondrial OxPhos dysfunction, metabolism, 

and inflammation.331 Mitochondrial translation defects (Crif1KO) in skeletal muscle329 

or in adipocytes,332 or chronic skeletal muscle mitochondrial uncoupling (uncoupling 

protein 1 [UCP1] overexpression),333 induce both FGF21 and GDF15 secretion from the 

affected tissues, where GDF15 is required to increase systemic energy expenditure and other 

behavioral and physiological recalibrations.

Consistent with the functional interplay of the MIPS and the organism, ISRmt signaling 

occurs at least in part via a periphery-to-brain signaling axis. Mice and humans express 

the receptor for GDF15 GFRAL most highly in brain tissue (e.g., Mullican et al.334), but 

GFRAL may be expressed in many tissues at low levels (https://www.proteinatlas.org/) and 

is stress inducible in other cell types including macrophages.335 Therefore, GDF15-GFRAL 

signaling provides a mechanism whereby mitochondrial outputs from peripheral tissues use 

the brain—an organismal integration center—to transduce the functional state of a tissue’s 

mitochondria to regulate systemic metabolism.336,337 Adding to this systemic signaling 

picture, in mice GDF15 signaling upregulates hypothalamic corticotropin-releasing hormone 

(CRH)338 and activates the downstream HPA axis and secretion of corticosterone, a 

mitochondria-derived hormone released in response to psychosocial stress.339 Consistent 

with the production of metabokines in response to intra-mitochondrial defects converging 

on OxPhos capacity, FGF21 and GDF15 are circulating biomarkers of subgroups of 

mitochondrial diseases in adults and children.113,304,340–342

Thus, the secreted nuclear-encoded metabokines FGF21 and GDF15 convey information 

about the state of the MIPS in one tissue/organ to the whole organism. However, the 

contributions of these stress-induced, nuclear-encoded mitochondrial signaling outputs to the 

maintenance of human health or to disease progression remain only partially explored.

Mitochondria-derived peptides—The discovery of alternative open reading frames 

(ORFs) within the mtDNA sequence led to the identification of MDPs released within 

the cell systemic circulation (for a comprehensive review, see Reynolds et al.343). Eight 

MDPs have been reported: Humanin, a 24-amino-acid peptide encoded within the 16S 

rRNA gene initially discovered to have neuroprotective effects in neuronal cultures344 and 

subsequently linked to longevity across invertebrates, small mammals, and humans;345 6 

small humanin-like peptides (SHLP1–6) that functionally overlap with humanin;346 and 

MOTS-c (mitochondrial ORF within the twelve S rRNA type-c), a 16-amino-acid peptide 

initially identified to promote insulin sensitivity and prevent age-related insulin resistance in 

mice.347 When the mtDNA is selectively depleted with chronic ethidium bromide treatment, 

or mtDNA transcription is selectively inhibited with actinonin, the expression of MDPs is 
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lost, confirming their origin in the mitochondrial genome.347 However, where MPDs are 

transcribed and translated (mitochondrial matrix or cytoplasm) remains uncertain.

Functionally, once in the cytoplasm, MOTS-c translocates to the nucleus in an AMP-

activated protein kinase (AMPK)-dependent manner, where it regulates stress-induced 

gene expression and promotes cell survival.21 In mice, MOTS-c and Humanin are also 

found in blood and act in a cell-non-autonomous manner to apparently regulate systemic 

metabolism.348 In humans, like other mitochondrial outputs, MOTS-c349 and Humanin350 

levels increase dynamically in skeletal muscle and in circulation upon exercise. Thus, in 

addition to nDNA-encoded metabokine proteins FGF21 and GDF15, mitochondria release 

mtDNA-encoded peptides that act as both intracellular and systemic signaling mediators. 

The range of physiological functions for MDPs is only beginning to be uncovered, but 

MOTS-c may increase running capacity (i.e., endurance) in mice and improve resilience 

to metabolic starvation in cultured myotubes.349 Other mitochondrial resident proteins, 

including heat shock protein 60 (HSP60)351 and TFAM,352,353 have been identified in blood, 

suggesting that several canonical mitochondrial proteins are released systemically by the 

MIPS where they have metabolic, inflammatory, or other systemic signaling roles.

Mitochondrial heat signaling and thermodynamic gradients

Temperature is a powerful effector of biological change. Without heat, biological processes 

do not proceed. For instance, growth and degradation are greatly reduced at 4◦C, whereas 

optimal temperatures accelerate enzyme kinetics, membrane fluidity, and organismal 

development.354 Therefore, the diffusion of heat and the ensuing changes in biochemical 

activities represent a form of signaling, where information about the state of an organelle 

is transferred from one sub-cellular compartment to another. Because—according to the 

second law of thermodynamics—the flow of heat always proceeds from warmer to colder 

locations, the flow of information also must preferentially (although not exclusively) occur 

from warmer to colder structures.

Among the cell and the organism, mitochondria are the warmest compartment and the 

major heat source. Body temperature in endotherms is primarily derived from respiratory 

chain activity.355 Exemplary of this phenomenon, mitochondria in brown adipocytes express 

high levels of UCP1 that increases proton leak across the IMM, accelerating upstream 

heat-producing biochemical reactions in a Ca2+-dependent manner.356 Using temperature-

sensitive fluorescent probes, initial studies found that the warmest cellular compartments 

in cultured cells were the nucleus (which is surrounded by perinuclear mitochondria) and 

mitochondria.357 Uncoupling of OxPhos with the uncoupler FCCP increases mitochondrial 

matrix temperature by 6◦C–9◦C, as would be expected from relieving the electrochemical 

energy gradient across the IMM and subsequent cascading acceleration of biochemical 

reactions upstream from the OxPhos system.358 Accordingly, the biochemical activity of 

mammalian mitochondrial respiratory chain enzymes was found to be maximal around 

50◦C.359 Consistent with this finding, refined live-cell imaging with mitochondria-targeted 

temperature-sensitive probe showed that mitochondria function at internal temperatures 

around 50◦C, well above the core body temperature of 37◦C,359 suggesting that the 

MIPS radiates heat-based signals into the cell. Thus, the temperature gradient between 
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mitochondria (warmest compartment) and other sub-cellular structures likely provides 

mitochondria with a thermodynamically privileged position in signal transduction.

Sub-cellular mitochondrial localization—The sub-cellular positioning of cellular 

structures influences their functions and ability to signal to other organelles. Within the 

cytoplasm, the MIPS is topologically positioned at the interface between the naturally 

inert nuclear genome and the dynamic extracellular environment. In many cell types, 

mitochondria directly contact or hover only hundreds of nanometers away from the 

nucleus. At the nuclear surface, diffusible mitochondrial signals can travel through nuclear 

pores to reach the nucleoprotein complex of the chromatin.360 To travel 1 μm—from the 

mitochondrial IMS to the chromatin—the theoretical isotropic diffusion time for a small 

40 kDa protein is 0.02 s,361 whereas small metabolites like ATP362 or amino acids363 

travel ~20–100 times faster, closing the 1 μm gap in less than 1 ms. Physical proximity, 

particularly at high temperature, favors rapid communication.

The position of the mitochondrial network within the cytoplasm can influence signaling 

behavior. In response to stressors such as hypoxia in cultured endothelial cells, mitochondria 

redistribute and cluster around the nucleus within <3 h where they promote a pro-oxidant 

intranuclear state.197 Inhibiting mitochondrial motility with the microtubule depolymerizing 

agent nocodazole or dynein knockdown effectively prevents perinuclear clustering.197 

In this case, the reduced physical proximity appeared to decrease the potency of mito-

nuclear signaling, hindering HIF-1α binding to the nDNA hypoxia response element 

nucleotide sequence. The formation of physical contact sites between mitochondria and the 

nuclear envelope by the OMM-based translocator protein (TSPO) also enables cholesterol 

redistribution to the nucleus and initiates pro-survival nuclear transcriptional programs that 

are blunted without mito-nuclear proximity,255 highlighting the influence of proximity and 

physical interactions in mito-nuclear signaling.

Mitochondrial positioning also shapes cell behavior away from the nucleus. In developing 

neurons, mitochondrial positioning at specific locations along axons determines the location 

of branch points.364 In ganglion cell dendrites of the retina, mitochondria positioning at 

terminal branch points and presynaptic sites also stabilizes mature dendritic structures.365 In 

neurons, both within presynaptic boutons31 and at specific locations near dendritic synapses, 

mitochondria contribute both to local ATP synthesis and Ca2+ handling, locally influencing 

neurotransmitter release and, as a direct result, cell-cell communication.366 Thus, the 

regulated topological positioning of mitochondria within the cell can minimize diffusion 

distances and likely optimize the potency and/or nature of MIPS outputs, illustrating how 

mitochondrial positioning guides signaling and various cellular functions.

Summary of mitochondrial signaling—In addition to their elaborate sensing (step 1) 

and networking (step 2) capabilities, mitochondria also possess a wide array of signaling 

(step 3) mechanisms that transduce mitochondrial states to the cell and organism. The nature 

of these signals includes ions, metabolites, chemical species (e.g., ROS), DNA, and proteins. 

These outputs carry—possibly with a fairly high degree of specificity based on their 

circumstantial combinations—information about various aspects of mitochondrial biology 

to the cell nucleus and other organelles. At specific sub-cellular locations and in specific 
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cell types, adaptive mitochondrial signals are transformed into transcriptional, cellular, 

and humoral physiological responses that inform and influence organismal functions. 

Less specific factors, including temperature and physical distances, may modulate the 

potency of these signals. Emerging evidence also suggest that systemic MIPS outputs may 

include mitochondria-derived vesicles (MDVs),367 extracellular vesicles with mitochondrial 

cargo,368,369 and even whole mitochondria313 that travel from source cells/tissues to 

functionally impact distant target organ systems. Finally, the description of overlapping 

molecular connections between mitochondria and target nuclear genetic programs, such as 

the mtUPR and ISRmt, emphasizes the evolved sensitivity of the mammalian genome to 

MIPS outputs. Notably, several mitochondrial outputs reach the bloodstream, the biofluid 

that metabolically connects all cells and organs, giving systemic organismal access to MIPS 

signaling.

TISSUE SPECIFICITY IN MITOCHONDRIAL FUNCTIONS AND BEHAVIORS

Although we have so far considered mitochondria as a more-or-less uniform family 

of organelles, mitochondria are not all created equal. From their shared origin in the 

oocyte,370 mitochondria undergo profound specialization as different cell types and 

tissues mature during embryonic development. This gives rise to somatic mitochondria 

that differ in their protein composition371,372 and functions (respiratory properties, ROS 

production, PTP sensitivity, β-oxidation capacity).373 These develop-mentally acquired 

characteristics represent tissue-specific mitochondrial phenotypes. Analogous to functionally 

and molecularly distinct cell types, there are functionally and molecularly distinct 

mitochondrial types, or “mitotypes.”374

Different tissues and cell types contain markedly different mitotypes that likely influence 

MIPS signal transduction. For example, cardiomyocyte mitotypes in the heart are optimized 

for ATP synthesis, adrenal cortex mitotypes specialize for steroidogenesis, and liver 

mitotypes specialize for ketogenesis, serine metabolism, and anaplerosis. Even within 

a given organ, neighboring cell types can acquire distinct mitotypes. For example, 

mitochondria from adjacent oxidative versus glycolytic skeletal muscle fiber types acquire 

vastly different proteomes that match their functional specialization.375 Likewise, circulating 

human immune cell subtypes (B cells, naive or activated T cells, monocytes, neutrophils, 

etc.) exhibit markedly different OxPhos profiles and mtDNA copies per cell.374 And in 

the mouse brain, mitochondria exhibit regional376 as well cell-type-specific functional 

and molecular diversity.372 These divergent cell-type-specific mitochondrial features, 

along with cell-specific metabolic requirements, may explain why in mice spongiform 

neurodegeneration is caused by the loss of mtDNA specifically in astrocytes but not 

in neurons, for example.377 In mitochondrial disease, large intracellular and cell-to-

cell heterogeneity in mitochondrial phenotypes also develops as mutant mitochondria 

proliferate,378 such that adjacent muscle fibers can show different stages or even opposite 

responses to OxPhos defects.379

Diverse mitotypes also populate different sub-cellular compartments within individual 

cells.201 In neurons, the cell body (i.e., soma) and synaptic boutons have remarkably 

different mitochondrial proteomes.380 Similarly, muscle fibers contain two mitotype sub-
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populations (subsarcolemmal [SS] and inter-myofibfillar [IMF]) with quantitatively distinct 

proteomes.381 Adipocytes also are populated by at least two main mitotypes: mitochondria 

proximal to lipid droplets (i.e., peridroplet, or PDMs) and mitochondria not in immediate 

contact with lipid droplets.382 These two adipocyte-specific mitotypes exhibit distinct 

bioenergetic, proteomic, and fusion dynamics. Thus, the organism is composed of a wide 

spectrum of molecularly and functionally specialized mitotypes.

Relevance of mitochondrial functional specialization to sensing, integration, 
and signaling—Mitochondrial sensing (MIPS step 1): in multicellular organisms, 

individual cell types express a narrow set of cell-type-specific receptors and are therefore 

sensitive to a narrow set of inputs. For example, the sensory organs in animals exhibit 

specific sensitivities to a narrow set of inputs: the eyes sense light but do not perceive 

sound nor taste, and neither the inner ear nor the tongue respond to light. Each set of 

neurons within sense organs specifically responds to select inputs. Similarly, the expression 

levels of dozens of mitochondrial genes and proteins35,383 including mitochondrial 

sensory components—transporters, receptors, enzymes—are relatively specialized across 

both mouse and human tissues (A.S. Monzel, personal communication). The functional 

specialization of mitotypes across tissues and cell types may thus produce unique 

mitochondrial sensory systems tailored for specific inputs in different cell types.

Mitochondrial signal integration (MIPS step 2): several aspects of mitochondrial 

morphology, dynamics, and motility vary between tissues and cell types.201 In human 

and mouse skeletal muscle, SS/perinuclear mitotypes are spheroids whereas IMF mitotypes 

that intersperse sarcomeres have a branched, elongated morphology.170 In neurons, despite 

sharing a continuous cytoplasm, somatic mitochondria form a partially connected network 

surround the cell nucleus, elongated branched dendritic mitochondria extend for tens of 

microns, whereas axonal and synaptic mitochondria are mostly punctate.384 In relation to 

motility, skeletal muscle mitochondria are remarkably stationary180 compared to neuron 

axonal and dendritic mitochondria that exhibit greater motility.385 From first principles, 

these profound differences in the morphology, topology, and dynamic properties of the 

MIPS predict that mitochondrial information transfer, integration, and computation differ 

between tissues and cell types. Although currently technically challenging, improving 

imaging (e.g., Wolf et al.386) and experimental (e.g., Berry et al.387) technologies combining 

spatial and temporal resolution should eventually allow us to map and empirically 

manipulate information flow through mitochondrial networks.

Mitochondrial signaling (MIPS step 3): tissue-specific mitotypes influence both the nature 

and magnitude of MIPS outputs and cellular responses. For example, susceptibility to 

PTP opening, Ca2+ buffering capacity, and ROS emission characteristics differ remarkably 

between glycolytic and oxidative skeletal muscle mitotypes.373 This has implications for 

inter-organelle crosstalk. The ISRmt response also is induced cell-specifically; proliferating 

myoblasts and myotubes exhibit different ISRmt responses to the same mitochondrial 

perturbations.326 In the mouse brain, progressive mtDNA depletion in Twinkle-KO 

astrocytes but not neurons induces the ISRmt.377,388 Mitochondrial activation of the 

ISRmt and its interaction with other pathways, such as the mTORC1, is also tissue-

specific.115,379,388,389 Thus, MIPS signaling as well as the cellular responses to MIPS 
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signals both differ between cell types and tissues. Our current understanding of how 

mitotypes from different tissues differentially signal intracellularly and systemically is in 

its infancy.

OUTSTANDING QUESTIONS

To understand how mitochondria contribute to organismal health and disease, several 

important challenges remain. As reviewed above, the MIPS performs several functions 

that ensure rapid cellular and systemic responses commensurate with the energetic and 

biochemical state of the organism. As a result, mitochondria contribute to healthy cellular 

and physiological adaptation. Clinically, it is clear that mitochondrial diseases involve 

primary genetic defects affecting molecular processes other than the OxPhos machinery 

(i.e., not all mitochondrial diseases are disorders of ATP deficiency).390 Certain tissues and 

organs also specifically become affected, whereas others are relatively spared.391 How do 

non-energetic mitochondrial functions influence health and disease?

The three-step mitochondrial signal transduction framework described here raises several 

questions, some of which are listed below. Providing answers to these and other emerging 

questions would advance our understanding of the instructive role that the mitochondria 

play in human health. Because tissue-specific mitochondrial phenotypes (i.e., mitotypes) are 

the integrators of cell, tissue, and organismal metabolic inputs, and because MIPS outputs 

modulate not only a large fraction of the human genome but also complex animal behaviors, 

the following questions broadly concern the biological and biomedical sciences.

• Are defects in the sensing, integration, and signaling functions of the MIPS 

sufficient to perturb physiological adaptation in the organism, leading to 

disease? Communication between cells is essential to maintaining organismal 

integrity, and perturbing communication alone is sufficient to cause health 

disorders.392,393 For example, impaired mitochondrial fusion (and/or inter-

organellar interactions) causes human disease.394,395 Is impaired mitochondrial 

signal transduction—in the absence of OxPhos defects—a cause of metabolic 

and other types of health disorders?

• How are specific mitochondrial functional impairments communicated to the 

cell? Different molecular defects converging on downstream OxPhos deficiency 

can cause different gene-regulatory signals,322 cellular responses,23 and disease 

manifestations.140 In general, critical biological processes tend to exhibit 

redundancy (several effectors exist to sense or communicate the same inputs), 

which, coupled to a diversity of downstream interacting genetic programs (e.g., 

innate immunity, ISRmt, mtUPR), affords a diversity of potential cellular and 

organismal responses. Are MIPS output signals, or combinations thereof, cell- or 

tissue-specific? What determines the exact transcriptional responses they elicit?

• How generalizable or species-specific are mitochondrial signal transduction 

mechanisms? Biological mechanisms and therapeutic processes in rodents and 

invertebrates often align only partially with humans,396,397 and important 

differences also exist between mouse strains,398 for example. Furthermore, 

different cell types harboring distinct mitotypes may exhibit different responses 

Picard and Shirihai Page 31

Cell Metab. Author manuscript; available in PMC 2022 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to metabolic stressors.379 Systematic exploration of human health and disease 

states, as well as experimental models for specific molecular features that 

mimic as closely as possible human physiology or pathology, will increase the 

likelihood that our findings in model systems will be of biologic, diagnostic, or 

therapeutic value in humans.

• Did the role of mitochondria as an information processing system contribute 

to the evolutionary turning point of endosymbiosis? Argument accounting 

for the role of mitochondria as a harbinger of multicellular, complex life 

includes the protection from oxygen399 and a rise in energy supply,400 although 

these possibilities have been challenged.401 Communication and information 

exchange via optimized biological structures—epitomized at the scale of the 

organism by the nervous system360—afforded an unprecedented acceleration and 

complexification of social behaviors among animals. This raises the possibility 

that the acquired ability of cells to sense their environment, efficiently transduce 

information, and communicate with each other via the MIPS may have been a 

decisive factor in the evolution and diversification of multicellular life.

SUMMARY

The past decades of mitochondrial research have produced remarkable advances in our 

knowledge of how mitochondria function and behave within the cell. More recently, 

accumulating evidence revealed how mitochondria communicate extensively with other 

organelles, between cells, and even across organ systems. Integrating these notions under a 

common framework suggests that a central role of mitochondria is to transduce information, 

functioning as a distributed information processing system. The most advanced known 

form of signal transduction occurs in the brain, which efficiently integrates sensory 

inputs to develop precise internal representations of the outside world, and secondarily 

deploys optimal organismal responses and behaviors that promote adaptation and survival. 

We propose that mitochondria perform a similar, albeit more primitive, form of signal 

transduction. The MIPS integrates the constant flow of molecular and non-molecular 

inputs about the energetic and metabolic states of the system, and secondarily deploys 

in collaboration with the nucleus an array of outputs that guide cellular and organismal 

adaptation (Figure 7).

The mitochondrial signal transduction framework highlights how mitochondria 

simultaneously contribute central roles to energy transformation and biosynthesis, as well 

as to signal transduction. This framework also helps to situate our increasingly precise, 

mechanistic, and reductionistic investigations of mitochondrial features, activities, functions, 

and behaviors within the context of the organism and its environment. The view of 

mitochondria as a distributed information processing system—or as a “portal” positioned 

at the interface of the outside environment and the inner world of the cell’s (epi)genome—

integrates all historical domains of mitochondrial biology. As a result, the mitochondrial 

signal transduction framework emphasizes the need for knowledge integration across sub-

fields of mitochondrial science. This also highlights the many ways in which multiple 

domains of mitochondrial biology beyond energetics may be linked to organismal health.
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Improving human health is the shared goal of the biomedical community. This collective 

effort involves building increasingly accurate theories, models, and testable hypotheses 

about the processes that not only falter in advanced stages of diseases, but also those that 

enable optimal adaptation so that health is achieved. Health is the ability to deploy optimal 

responses to challenges.55 Organismal health emerges from the functional interconnections 

and crosstalk between cellular and physiological systems, behaviors, and psychosocial states 

that regulate biology, and vice versa.402–405 As we begin to map the basis of health beyond 

the absence of disease,393,406 it appears crucial to mechanistically decipher two prominent 

forces related to mitochondria. The first is energy, which brings otherwise inert genes to 

life and powers the functions of cells and organs. The second is communication or signal 

transduction, which connects and thus turns parts into wholes. Signal transduction turns 

cells into cell collectives and binds organs together as an organism. The organism—not the 

cell—is the ultimate evolutionary unit upon which selection pressures act and where health 

manifests.

Therefore, articulating the role of multifaceted mitochondria in signal transduction across 

the organism can help us achieve our shared goal of improving human health in three 

main ways: (1) by broadening and prioritizing the health-relevant mitochondrial biology 

questions to test, (2) by selecting the ideal human study design or animal model systems in 

which to address them, and (3) by connecting more effectively new molecular, cellular, and 

physiological discoveries in mitochondrial biology to human health.
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Figure 1. Modern historical landmarks in mitochondrial research illustrate the need for an 
integrative view of this multifaceted organelle
Proportion of biomedical publications by organelle, corrected for total published articles 

across biomedicine. Selected discoveries that challenged prior views about mitochondria are 

noted, as well as some historical landmarks for context. Figure adapted from Picard et al.390 

with data retrieved from https://pubmed.ncbi.nlm.nih.gov/ on February 12, 2022.

Picard and Shirihai Page 58

Cell Metab. Author manuscript; available in PMC 2022 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pubmed.ncbi.nlm.nih.gov/


Figure 2. Three-step model of mitochondrial signal transduction
As the mitochondrial information processing system (MIPS), mitochondria are input 

integrators and output generators. Within the cytoplasm, mitochondria are topologically 

positioned at the interface between incoming signals from the outside extracellular space 

and the inside compartment of the nucleus where the (epi) genome is stored. In a 

three-step process, mitochondria receive, integrate, and generate signals that contribute to 

cellular and organismal adaptation. All mitochondria have the potential to perform sensing, 

integration, and signaling steps. Here the contributions to signal transduction are color-coded 

and matched to specific topologies for illustrative purposes. ER, endoplasmic reticulum; 

LD, lipid droplet; Per, peroxisome; mtDNA, mitochondrial DNA; NO, nitric oxide; ΔGp, 

phosphorylation potential.
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Figure 3. The hallmarks of mitochondrial signal transduction
Depicted is the mitochondrial repertoire of mechanisms and substrates through which 

mitochondria receive, integrate, and transmit intracellular and systemic signals.
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Figure 4. MIPS step 1: Sensing
As in excitable cells where a broad variety of chemical inputs (e.g., neurotransmitters) 

converge onto membrane potential variations, extrinsic and intrinsic MIPS inputs trigger 

molecular changes that converge into morpho-functional mitochondrial states. Mitochondria 

sense extrinsic and intrinsic information through four main classes of mechanisms.

(A) Canonical DNA-binding “nuclear” receptors for steroid hormones including 

glucocorticoids (GC), estrogen (ER), and androgen (AR) exist in mitochondria or can 

translocate upon ligand binding.

(B) G protein-coupled receptors (GPCRs) embedded within mitochondrial membranes 

including the angiotensin (AT1R and AT2R), the cannabinoid (mtCB1), melatonin (MT1), 

and purine (Py2Rs) receptors, and possibly others (e.g., GPR35).

(C) Metabolite and ion carriers/transporters such as the ADP/ATP carrier protein (AAC, also 

adenine nucleotide translocator [ANT]) and the SLC25 family of transporters. Also shown 

are some gases and ions that either freely diffuse through the IMM or whose import/export is 

mediated by other carriers/transporters.
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(D) Acquired sequence variation in the mtDNA sequence, including mutations and deletions 

that cause functional changes within the OxPhos system. The top path shows nucleotide 

availability/imbalance, and the bottom path shows exogenous toxins that can interfere with 

electron transport chain function and secondarily cause mtDNA instability.

AAC/ANT, ADP/ATP carrier or adenine nucleotide translocator; AT2Rs, angiotensin 

receptors; AR, androgen receptor; ERβ, estrogen receptor beta; GR, glucocorticoid receptor; 

GRE, glucocorticoid response element (used here as an example for other gene regulatory 

elements); IMS, intermembrane space; MCU, mitochondrial calcium uniporter; mtCB1, 

mitochondrial cannabinoid receptor; MT1, melatonin 1 receptor; mtDNA, mitochondrial 

DNA; NO, nitric oxide; O2, molecular oxygen; OxPhos, oxidative phosphorylation; P2YRs, 

purine receptors; ROS, reactive oxygen species; SLC25s, solute carriers family 25; T3, 

triiodothyronine; ΔpH+Δψm, mitochondrial proton motive force.
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Figure 5. MIPS step 2: Signal integration
The physical and functional binding of multiple energized units (mitochondria) into sparsely 

connected networks naturally gives rise to signal integration.

(A) Mechanisms of mitochondrial network remodeling and inter-organellar communication 

(mito-mito, mito-other organelles) among the MIPS.

(B) Conceptual representation of the organism’s organ network and of the brain, where 

information from one group of units (e.g., neurons) is transmitted to other units, giving rise 

to computational agents. Information processing is not a private property of brains; it is a 

generalizable property of all life forms.

(C) Four examples of network properties that may be used to define the organization of 

mitochondrial collectives processing biochemical, metabolic, endocrine, and other inputs 

into coherent outputs.
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Figure 6. MIPS step 3: Signaling
Mitochondria synthesize and release signals evolved to influence cellular and organismal 

functions. Mitochondrial signals arise from various mitochondrial compartments and 

reach the cytoplasm, nucleus, and other organelles, where they induce cell-autonomous 

responses. These responses are transmitted to the systemic circulation either directly 

as mitochondria-derived metabolites and mitokines, or indirectly through transcriptional 

regulation of nuclear genes encoding metabokines or other hormone-like mediators. Mito-

nuclear signaling is a form of signal amplification and integration. The MIPS converts 

metabolic signals into extracellular proteinaceous, secreted factors, allowing mitochondria 

to signal their state well beyond the confine of the cell in which they reside. AcCoA, 

acetyl coenzyme A; AIF, apoptosis inducible factor; ATFS1, activating transcription factor 

associated with stress-1; cf-mtDNA, cell-free mitochondrial DNA; Cholest, cholesterol; Cyt 
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c, cytochrome c; DELE1, DAP3-binding cell death enhancer 1; ER, endoplasmic reticulum; 

FGF21, fibroblast growth factor 21; GDF15, growth differentiation factor 15; GPS2, G-

protein pathway suppressor 2; HSP60, heat shock protein 60; ISRmt, integrated stress 

response; MAVS, mitochondrial antiviral signaling; MDVs, mitochondria-derived vesicles; 

MPDs, mitochondria-derived peptides; NLRP3, NLR family pyrin domain containing 3; 

Numts, nuclear mitochondrial DNA segments; Preg, pregnenolone; P450ssc, side chain 

cleavage enzyme cytochrome P450; RLRs, RIG-I-like receptors; StAR, steroidogenic 

acute regulatory protein; UPRmito, mitochondrial unfolded protein response; 11βH, 11β-

hydroxylase (mitochondrial cytochrome P450 11B1).
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Figure 7. Core MIPS components for mitochondrial signal transduction
(A) All mitochondria contain the machinery and capacity to sense, integrate, and signal 

information. Based on evidence reviewed above, mitochondria emerge as “the processor of 

the cell.”

(B) Electron micrograph of a cultured cell (human 143B) with mitochondria (blue, green, 

and red) and nucleus (yellow) highlighted; dotted red lines indicate cell-cell boundaries. The 

functions of the MIPS are determined by intrinsic properties of individual mitochondria and 

surrounding organelles, constantly shaped by the dynamic remodeling of organelle networks 

over minutes to hours. Topologically, the MIPS sits at the interface of the extracellular space 

harboring endocrine, metabolic, and biochemical signals, and of the (epi)genome in the 

nucleus.

(C) The mito-nuclear unit enhances and amplifies the effects of mitochondrial outputs, 

tapping into a rich variety of evolved nuclear DNA-encoded (epi)genetic stress response 

pathways that communicate local mitochondrial states to the organism. This includes the 

signaling of peripherally derived metabokines on the brain.

(D) The framework of mitochondrial signaling from organelle to organism. In multicellular 

animals, the MIPS is a core regulatory element acting both subcellularly and systemically to 

optimize adaptation and organismal health.
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