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Abstract

Ischemia-induced left ventricular (LV) wall thickening compromises the hemodynamic effec-

tiveness of cardiopulmonary resuscitation (CPR). However, accurate assessment of the

severity of ischemia-induced LV wall thickening during CPR is challenging. We investigated,

in a swine model, whether hemodynamic parameters, including end-tidal carbon dioxide

(ETCO2) level, are linearly associated with the severity of ischemia-induced LV wall thicken-

ing during CPR of consistent quality. We retrospectively analyzed 96 datasets for ETCO2

level, arterial pressure, LV wall thickness, and the percent of measured end-diastolic volume

(%EDV) relative to EDV at the onset of ventricular fibrillation from eight pigs. Animals under-

went advanced cardiovascular life support based on resuscitation guidelines. During CPR,

LV wall thickness progressively increased while %EDV progressively decreased. Systolic

and diastolic arterial pressure and ETCO2 level were significantly correlated with LV wall

thickness and %EDV. Linear mixed effect models revealed that, after adjustment for signifi-

cant covariates, systolic and diastolic arterial pressure were not associated with LV wall

thickness or %EDV. ETCO2 level had a significant linear relationship with %EDV (P =

0.004). However, it could explain only 28.2% of the total variance of %EDV in our model. In

conclusion, none of the hemodynamic parameters examined in this study appeared to pro-

vide sufficient information on the severity of ischemia-induced LV wall thickening.

Introduction

More than 50 years have passed since the introduction of modern cardiopulmonary resuscita-

tion (CPR) [1]. A tremendous number of studies have been performed to enhance understand-

ing of cardiac arrest and CPR. However, many aspects of cardiac arrest pathophysiology

remain to be determined.

CPR is performed to generate enough blood flow to sustain vital organs until restoration of

spontaneous circulation (ROSC). Several studies have reported that progressive left ventricular
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(LV) wall thickening occurs during CPR [2–6]. This ischemia-induced LV wall thickening

inevitably results in a reduction in the LV chamber volume [2,3]. Thus, the volume of blood

ejected by chest compression decreases as the ischemia-induced LV wall thickening progresses,

ultimately precluding successful resuscitation [2,3,7]. In experimental settings, echocardio-

graphic assessment with transesophageal or transmediastinal approaches has been used to

observe this phenomenon, by monitoring LV wall thickness and chamber volume [2–6]. How-

ever, the echocardiographic assessments using these approaches are usually impractical or

unavailable in clinical resuscitation settings. Transthoracic echocardiography is frequently

available in clinical resuscitation settings. However, acquisition of echocardiographic images

of adequate quality for the assessment of LV wall thickness and chamber volume requires con-

siderable time, as the results of echocardiographic measurements vary widely with relatively

minor changes in the transducer position. Thus, unlike the echocardiographic assessment with

transesophageal or transmediastinal approaches in experimental settings, the acquisition of

adequate quality images with transthoracic echocardiography during actual cardiac arrest

resuscitation is challenging without causing excessive interruptions to CPR. Furthermore,

information on patients’ pre-arrest cardiac dimensions should be considered in order to accu-

rately assess the severity of ischemia-induced LV wall thickening, as cardiac dimensions vary

widely among individuals [8]. However, this information is usually not available during actual

CPR, making the assessment of ischemia-induced LV wall thickening during CPR more

difficult.

Ischemia-induced LV wall thickening compromises the hemodynamic effectiveness of CPR

by reducing the stroke volume generated by chest compression [2,3]. Several studies have sug-

gested that hemodynamic parameters including arterial pressure and end-tidal carbon dioxide

(ETCO2) level, which are used as physiological monitoring parameters during clinical CPR

[9–11], correlate with blood flow generated during CPR [12–15]. Thus, these hemodynamic

parameters may reflect the severity of ischemia-induced LV wall thickening during CPR. How-

ever, to our knowledge, no studies have evaluated whether these hemodynamic parameters

can be used to estimate the severity of ischemia-induced LV wall thickening during CPR.

In the present study, we investigated, in a swine model of out-of-hospital cardiac arrest,

whether hemodynamic parameters, including arterial pressure and ETCO2 level, are linearly

associated with the severity of ischemia-induced LV wall thickening during CPR of consistent

quality, and therefore can be utilized as a tool to estimate the severity of ischemia-induced LV

wall thickening during advanced cardiovascular life support (ACLS) performed according to

resuscitation guidelines. We hypothesized that arterial pressure and ETCO2 level would be lin-

early associated with the severity of ischemia-induced LV wall thickening during CPR.

Materials and methods

We retrospectively analyzed data derived from a previous study investigating the effects of pra-

lidoxime administered during CPR on ischemia-induced LV wall thickening in 16 Yorkshire/

Landrace cross pigs weighing 25.2 ± 2.9 kg. Several studies indicated that 2,3-butanedione

monoxime attenuated ischemia-induced LV wall thickening [5,6]. Both pralidoxime and

2,3-butanedione monoxime belong to the same oxime family and share several common

mechanisms of action. Thus, in the previous study, we hypothesized that pralidoxime would

also reverse ischemia-induced LV wall thickening in a similar manner to 2,3-butanedione

monoxime. However, unlike 2,3-butanedione monoxime, pralidoxime had no effect on ische-

mia-induced LV wall thickening, but significantly improved aortic pressure and coronary per-

fusion pressure (CPP) in the study. In the present study, data from eight animals that received

only standard ACLS in the study were included. Animal care and experiments were in accord
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with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. The

experimental protocol was approved by the Animal Care and Use Committee of Chonnam

National University (CNU IACUC-H-2017-18).

Animal preparation

Animal preparation techniques have been described in detail previously [5,6]. Animals were

orally intubated following intramuscular injection of ketamine (20 mg/kg) and xylazine (2.2

mg/kg). Thereafter, animals were mechanically ventilated with a tidal volume of 10 ml/kg and

a respiratory rate adjusted to achieve normocapnia. The following procedures were performed

under general anesthesia using 70%:30% N2O:O2 and 0.5%–2% sevoflurane. A 7 F double-

lumen catheter was inserted via the left femoral artery for arterial pressure monitoring and

blood sampling, and a 7 F introducer sheath was inserted via the right external jugular vein for

right atrial pressure monitoring and right ventricular pacing wire insertion. To obtain echo-

cardiographic images of adequate quality for the assessment of LV wall thickness and chamber

volume during CPR, a skin incision was made immediately below the xiphoid process and a

pocket extending 4–5 cm was made under the sternum. A transesophageal echocardiography

probe (UST-5293-5; Hitachi Aloka Medical Ltd., Tokyo, Japan) was precordially inserted via

the pocket and the best obtainable long-axis view of the LV was sought using the probe manip-

ulation [5,6]. In our previous studies, in which transthoracic or transesophageal approach was

used for echocardiographic imaging during CPR, chest compressions precluded acquisition of

echocardiographic images of adequate quality. However, this method enabled acquisition of

adequate quality images without interruption of chest compression. An ETCO2 sample line

(B40 Patient Monitor; GE Healthcare, Chalfont St. Giles, UK) was attached to the rostral end

of the endotracheal tube.

Experimental protocol

The experimental timeline is shown in Fig 1. Ventricular fibrillation (VF) was induced by

delivering an electrical current (60 Hz and 30 mA alternating current) via a right ventricular

pacing wire and mechanical ventilation was discontinued. After 14 minutes of untreated VF,

cycles of 30 chest compressions followed by two ventilations with ambient air were provided

to simulate basic life support (BLS). After eight minutes of simulated BLS, ACLS was started

based on recent resuscitation guidelines [11]. Chest compressions were delivered at a rate of

100/min and a depth of 20% of the anterior-posterior diameter of the chest using a mechanical

Fig 1. Experimental timeline. Lightning marks indicate the onset of a 10-second pause in chest compressions for rhythm analysis and a 150-J shock, if indicated.

https://doi.org/10.1371/journal.pone.0208140.g001
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chest compression device (Life-Stat; Michigan Instruments, Grand Rapids, MI, USA). Asyn-

chronous positive-pressure ventilations were provided with high-flow oxygen (14 l/min) at a

rate of 10/min using a volume-marked bag devised by Cho et al. [16]. In order to deliver a con-

stant volume of approximately 250 ml, the investigator ventilating the animals placed his

thumb and middle finger on designated positions on the surface of the bag, and squeezed the

bag, touching the middle finger to the thumb slightly. Cho et al. reported that this method

delivered the desired tidal volume with regularity and precision [16]. The investigator was

blinded to the arterial pressure and ETCO2 level. During ACLS, epinephrine (0.02 mg/kg) was

administered every three minutes, and defibrillation using a single biphasic 150-J electric

shock was attempted at two-minute intervals, if indicated. If ROSC was not achieved within 12

minutes of ACLS, resuscitation efforts were discontinued. All animals included in the present

study failed to achieve ROSC, and thus an additional procedure for euthanasia was not

applied.

Measurements

Arterial pressure was continuously monitored (CS/3 CCM;Datex-Ohmeda, Helsinki, Finland)

and transferred to a personal computer using S/5 Collect software (Datex-Ohmeda, Helsinki,

Finland). Systolic arterial pressure was defined as the peak arterial pressure during the chest

compression phase, while diastolic arterial pressure was defined as the lowest inflection point

at the beginning of the next compression-induced pressure upstroke. CPP was calculated by

subtracting the right atrial end-diastolic pressure from time-coincident diastolic arterial pres-

sure. Arterial pressure and CPP were calculated by averaging pressures from five consecutive

compressions at two-minute intervals during BLS and at one-minute intervals during ACLS.

Cumulative CPP during BLS was calculated as the sum of CPP values obtained during BLS.

ETCO2 values were determined every one minute by averaging the ETCO2 values for the pre-

ceding 30-second interval. Echocardiograms were obtained by an experienced investigator five

minutes before induction of VF, immediately after initiation of VF, and in one-minute inter-

vals during ACLS. LV wall thickness and end-diastolic volume (EDV) during CPR were mea-

sured at the frame showing maximal chamber dimension of the LV following release of chest

compression. LV wall thickness was measured in the lateral wall at the mid-ventricular level.

EDV and ejection fraction were calculated using Simpson’s method. EDV, which was the pri-

mary outcome measurement of the present study, was expressed as a percent of measured

EDV relative to EDV at the onset of VF (%EDV), to correct for its substantial inter-animal

variation.

Statistical analysis

Data were analyzed using the R language version 3.3.3 (R Foundation for Statistical Comput-

ing, Vienna, Austria) and T&F program version 2.2 (YooJin BioSoft, Goyang, Korea). Contin-

uous variables were tested for normality through the Kolmogorov–Smirnov test. Normally

distributed variables were expressed as mean ± standard deviation; non-normally distributed

variables were reported as medians with interquartile ranges. Correlation between repeatedly

measured variables was assessed with the rmcorr package [17]. Multiple linear mixed effect

models were generated in order to evaluate the independent effects of each hemodynamic

parameter on the response variables including LV wall thickness and %EDV. Baseline vari-

ables and cumulative CPP during BLS were independently analyzed regarding the signifi-

cance of their effectiveness in explaining the response variables, and significant variables

(P value cutoff = 0.05) were further used for covariate adjustment in the mixed effect mod-

els. Variables showing serious multicollinearity were removed from the model. Time and
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each hemodynamic parameter were used as fixed effect covariates with the random effect

of intercept for subjects. A random slope was not used due to the significant correlation

between random intercept and slope. Semi-partial R-squared values of the fixed effects were

computed for hemodynamic parameters and time using the r2glmm package [18]. A two-

tailed significance level of 0.05 was used for statistical significance.

Results

Pre-arrest baseline measurements of included animals were within normal limits (Table 1). All

animals underwent the 12 minute-ACLS period without achieving ROSC. Thus, a total of 96

sets of ETCO2 level, arterial pressure, LV wall thickness, and %EDV data were collected (12

times with one-minute intervals in eight animals) and included in the analyses. Fig 2 shows LV

wall thickness, %EDV, systolic arterial pressure, diastolic arterial pressure, and ETCO2 level

during CPR. During CPR, LV wall thickness progressively increased while %EDV progres-

sively decreased. S1 Movie shows representative echocardiograms showing the progression of

ischemia-induced LV wall thickening. Each repeatedly measured response variable, including

LV wall thickness and %EDV, were significantly correlated with each hemodynamic parame-

ter, including systolic and diastolic arterial pressure, and ETCO2 level (Table 2). Tables 3 and 4

show the fixed effects of time and each hemodynamic parameter on LV wall thickness and %

EDV in linear mixed effect models, respectively. In the linear mixed effect models, the relation-

ships between hemodynamic parameters and response variables were not significant after

adjustment for significant covariates, except for the relationship between ETCO2 level and %

EDV. There was a significant linear association between ETCO2 level and %EDV (P = 0.004).

Throughout our models, time was the most significant factor associated with the response

Table 1. Pre-arrest baseline measurements and coronary perfusion pressure during basic life support.

Weight (kg) 24.1 (23.7–24.9)

Baseline systolic arterial pressure (mmHg) 116 (108–123)

Baseline diastolic arterial pressure (mmHg) 80 (67–85)

Baseline mean arterial pressure (mmHg) 93 (84–100)

Baseline systolic right atrial pressure (mmHg) 14 (12–15)

Baseline diastolic right atrial pressure (mmHg) 9 (8–10)

Baseline mean right atrial pressure (mmHg) 12 (10–13)

Baseline heart rate (beats/min) 92 (79–97)

Baseline ETCO2 (mmHg) 34.5 (32.3–35.8)

Baseline pH 7.498 (7.462–7.543)

Baseline PaCO2 (mmHg) 35.4 (31.8–39.3)

Baseline PaO2 (mmHg) 151.7 (142.7–157.1)

Baseline base excess (mmol/l) 4.4 (1.7–5.8)

Baseline HCO3
- (mmol/l) 26.6 (25.5–29.1)

Baseline SaO2 (%) 99.6 (99.0–99.9)

Baseline troponin (ng/ml) 0.206 (0.188–0.244)

Baseline lactate (mmol/l) 1.3 (0.7–1.8)

Baseline left ventricular ejection fraction (%) 50.3 (45.1–54.2)

Cumulative CPP during BLS (mmHg) 16.6 (11.0–19.8)

Data are presented as medians with interquartile ranges. ETCO2, end-tidal carbon dioxide; PaCO2, partial pressure of

carbon dioxide; PaO2, partial pressure of oxygen, HCO3
-, bicarbonate, SaO2, oxygen saturation; CPP, coronary

perfusion pressure; BLS, basic life support.

https://doi.org/10.1371/journal.pone.0208140.t001
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variables. For example, in the model including time and ETCO2, time explained 66.6% of the

total variance of %EDV when adjusted for significant covariates (semi-partial R2 = 0.666; 95%

confidence interval [CI], 0.571–0.750; P< 0.001), while ETCO2 level explained only 28.2% of

the total variance of %EDV (semi-partial R2 = 0.282; 95% CI = 0.149–0.428, P = 0.004). The

results were also similar in the model including all three hemodynamic parameters (Tables 5

and 6).

Discussion

To our knowledge, this is the first study to assess hemodynamic parameters as potential tools

to estimate the severity of ischemia-induced LV wall thickening during CPR. Our results indi-

cated that systolic arterial pressure and diastolic arterial pressure were not associated with the

Fig 2. LV wall thickness (A), %EDV (B), systolic arterial pressure (C), diastolic arterial pressure (D), and ETCO2 level (E) during cardiopulmonary

resuscitation. Data are presented as the median and interquartile ranges. LV, left ventricular; EDV, end-diastolic volume; ETCO2, end-tidal carbon dioxide.

https://doi.org/10.1371/journal.pone.0208140.g002

Table 2. Correlations between repeatedly measured variables.

Variables Correlation coefficient 95% CI P
LV wall thickness

ETCO2 -0.55 -0.681 –-0.383 <0.001

Systolic arterial pressure -0.476 -0.624 –-0.295 <0.001

Diastolic arterial pressure -0.477 -0.625 –-0.297 <0.001

%EDV

ETCO2 0.303 0.098–0.483 0.004

Systolic arterial pressure 0.405 0.212–0.567 <0.001

Diastolic arterial pressure 0.437 0.250–0.593 <0.001

CI, confidence interval; LV, left ventricular; ETCO2, end-tidal carbon dioxide; EDV, end-diastolic volume.

https://doi.org/10.1371/journal.pone.0208140.t002
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severity of ischemia-induced LV wall thickening. Although ETCO2 level had a significant lin-

ear association with the %EDV, its ability to explain the variance of %EDV was very limited.

Ischemia-induced LV wall thickening during CPR has previously been regarded as a mani-

festation of myocardial ischemic contracture [2–6]. However, a recent study suggests that the

ischemia-induced LV wall thickening that occurs early during CPR, as observed in the present

study, is different from that from myocardial ischemic contracture [19]. Myocardial ischemic

contracture typically occurs in a more delayed fashion, and its onset is associated with deple-

tion of myocardial adenosine triphosphate to less than 10% of normal baseline levels [20,21].

Ayoub et al. reported that LV wall thickening during CPR occurred with myocardial adenosine

triphosphate levels of approximately 55% of pre-arrest baseline levels after 13 minutes of VF in

a pig model of cardiac arrest [19]. Although the myocardial adenosine triphosphate level was

not measured in our study, the LV wall thickening in the present study was likely a different

phenomenon from myocardial ischemic contracture given its timing of onset. Several studies

Table 3. Fixed effects of time and hemodynamic parameters on LV wall thickness in mixed effect models.

Coefficient SE P Semi-partial R2 95% CI

Time 0.514 0.044 <0.001 0.581 0.469–0.684

ETCO2 (mmHg) -0.069 0.043 0.110 0.109 0.021–0.244

Time� 0.543 0.042 <0.001 0.635 0.534–0.726

ETCO2 (mmHg)� -0.018 0.034 0.605 0.006 0–0.075

Time 0.546 0.045 <0.001 0.590 0.479–0.691

Systolic arterial pressure (mmHg) -0.004 0.014 0.782 0.002 0–0.060

Time� 0.554 0.043 <0.001 0.633 0.530–0.724

Systolic arterial pressure (mmHg)� 0.001 0.012 0.937 0 0–0.052

Time 0.525 0.045 <0.001 0.565 0.449–0.671

Diastolic arterial pressure (mmHg) -0.049 0.042 0.248 0.023 0–0.115

Time� 0.536 0.045 <0.001 0.585 0.473–0.687

Diastolic arterial pressure (mmHg)� -0.030 0.042 0.469 0.006 0–0.073

� Baseline variables used to adjust the mixed effect model included heart rate, SaO2, and troponin. SE, standard error; CI, confidence interval; ETCO2, end-tidal carbon

dioxide.

https://doi.org/10.1371/journal.pone.0208140.t003

Table 4. Fixed effects of time and hemodynamic parameters on %EDV in mixed effect models.

Coefficient SE P Semi-partial R2 95% CI

Time -5.512 0.402 <0.001 0.654 0.557–0.741

ETCO2 (mmHg) -1.239 0.399 0.003 0.318 0.182–0.461

Time� -5.448 0.395 <0.001 0.666 0.571–0.750

ETCO2 (mmHg)� -1.122 0.372 0.004 0.282 0.149–0.428

Time -5.032 0.424 <0.001 0.578 0.465–0.681

Systolic arterial pressure (mmHg) -0.114 0.129 0.378 0.019 0–0.108

Time� -4.967 0.419 <0.001 0.591 0.480–0.691

Systolic arterial pressure (mmHg)� -0.077 0.124 0.533 0.009 0–0.084

Time -4.719 0.421 <0.001 0.536 0.415–0.647

Diastolic arterial pressure (mmHg) 0.198 0.395 0.617 0.004 0–0.069

Time� -4.713 0.420 <0.001 0.545 0.426–0.655

Diastolic arterial pressure (mmHg)� 0.210 0.391 0.592 0.004 0–0.068

� Baseline troponin level was used to adjust the mixed effect model. SE, standard error; CI, confidence interval; ETCO2, end-tidal carbon dioxide.

https://doi.org/10.1371/journal.pone.0208140.t004
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have suggested that LV wall thickening that occurs early during CPR, in contrast to ischemic

contracture which is known as an irreversible state, can be an object of treatment and that

therapeutic interventions reversing this phenomenon facilitate successful resuscitation by

improving the hemodynamic effectiveness of CPR [4–6,22]. Lee et al. reported that 2,3-butane-

dione monoxime attenuated ischemia-induced LV wall thickening and improved resuscitabil-

ity in a pig model of cardiac arrest [6]. Ayoub et al. reported in a pig model of cardiac arrest

that cariporide, a selective sodium-hydrogen exchanger isoform-1 inhibitor, attenuated ische-

mia-induced LV wall thickening, maintained CPP above a threshold level that renders ROSC

likely, and improved resuscitability [4].

ETCO2 is a simple, noninvasive, and easily-applicable parameter that correlates closely with

the blood flow generated during CPR [12,13]. Therefore, we initially hypothesized that ETCO2

level would be able to track changes in the %EDV caused by ischemia-induced LV wall thick-

ening, under conditions of consistent chest compression and ventilation. Consistent with our

hypothesis, ETCO2 level had a significant linear relationship with %EDV. However, although

CPR was conducted under consistent compression and ventilation settings in the present

study, the correlation coefficient and semi-partial R-squared values were not high enough to

be clinically useful. The animals were subjected to the same duration of untreated VF in the

present study. A previous study reported that the severity of ischemia-induced LV wall thick-

ening was proportional to no-flow time (period from the onset of cardiac arrest to the start of

CPR) [2]. The use of the same duration of untreated VF in the present study might have

resulted in reduced variability in the severity of ischemia-induced LV wall thickening, and this

reduced variability might have attenuated the correlation between ETCO2 level and %EDV.

On the other hand, the low correlation coefficient and semi-partial R-squared values may indi-

cate that other factors, besides cardiac output, affected the level of ETCO2 in the present study.

Morimoto et al. observed ETCO2 level while maintaining a constant cardiac output during

open-chest CPR in nine mongrel dogs, and reported that the ETCO2 level changed, despite

constant cardiac output, probably due to changes in several factors, including alveolar dead

Table 5. Fixed effects of time, systolic arterial pressure, diastolic arterial pressure, and ETCO2 level on LV wall thickness in mixed effect model including all these

hemodynamic parameters.

Coefficient SE P Semi-partial R2 95% CI

Time 0.530 0.047 <0.001 0.588 0.476–0.689

ETCO2 (mmHg) -0.022 0.031 0.498 0.012 0–0.092

Systolic arterial pressure (mmHg) 0.008 0.014 0.561 0.007 0–0.076

Diastolic arterial pressure (mmHg) -0.045 0.048 0.351 0.009 0–0.084

Baseline variables used to adjust the mixed effect model included heart rate, SaO2, and troponin. SE, standard error; CI, confidence interval; ETCO2, end-tidal carbon

dioxide.

https://doi.org/10.1371/journal.pone.0208140.t005

Table 6. Fixed effects of time, systolic arterial pressure, diastolic arterial pressure, and ETCO2 level on %EDV in mixed effect model including all these hemody-

namic parameters.

Coefficient SE P Semi-partial R2 95% CI

Time -5.342 0.444 <0.001 0.621 0.516–0.715

ETCO2 (mmHg) -1.167 0.415 0.007 0.284 0.150–0.429

Systolic arterial pressure (mmHg) 0.039 0.158 0.803 0.002 0–0.059

Diastolic arterial pressure (mmHg) 0.108 0.452 0.811 0.001 0–0.055

Baseline troponin level was used to adjust the mixed effect model. SE, standard error; CI, confidence interval; ETCO2, end-tidal carbon dioxide.

https://doi.org/10.1371/journal.pone.0208140.t006
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space and pulmonary vascular tone [23]. In the present study, the quality of CPR, which is an

important determinant of ETCO2 level during CPR [24], was consistent throughout the pro-

cess, which is similar to CPR using a mechanical CPR device. However, in clinical resuscitation

settings, where manual chest compressions and ventilations are provided, it may be difficult to

maintain consistent quality of CPR. The variation in CPR quality, frequently encountered dur-

ing manual CPR, would further limit the clinical utility of ETCO2 level in estimating the sever-

ity of ischemia-induced LV wall thickening.

Unlike ETCO2 level, neither the systolic nor the diastolic arterial pressure was associated

with the %EDV in the present study. This may be due to the fact that, in contrast to ETCO2

level, arterial pressure depends not only on cardiac output, but more critically on vascular

tone. Another possible explanation for this finding is related to the mechanism of blood flow

during CPR. There are two main theories explaining the mechanism of blood flow during

CPR: the cardiac pump theory and the thoracic pump theory [25–28]. The cardiac pump the-

ory postulates that direct cardiac compression is responsible for the forward blood flow during

CPR, while the thoracic pump theory postulates that changes in intrathoracic pressure induced

by external chest compressions produce forward blood flow and arterial pressure fluctuations.

In the thoracic pump theory, the heart acts as a passive conduit rather than a pump. The ische-

mia-induced LV wall thickening would theoretically compromise the cardiac pump, but it

would not affect the thoracic pump mechanism. Thus, this finding, as well as the low semi-par-

tial R-squared values of ETCO2 level, may be attributed to the existence of the thoracic pump

mechanism.

None of the hemodynamic parameters examined in the present study appeared to provide

sufficient information on the severity of ischemia-induced LV wall thickening. In addition,

time was the most significant factor associated with the severity of ischemia-induced LV wall

thickening in the present study. This finding is in agreement with previous observations that

ischemia-induced LV wall thickening is a time-dependent progressive process, rather than an

all-or-nothing process [2,5,6]. Our results, together with these previous studies, suggest that

elapsed time since the onset of cardiac arrest, rather than the hemodynamic parameters during

CPR, may be useful in estimating the severity of ischemia-induced LV wall thickening. How-

ever, our study could not specify the elapsed time since the onset of cardiac arrest when the

ischemia-induced LV wall thickening became severe enough to hamper successful resuscita-

tion, and thus the therapeutic interventions reversing this phenomenon became beneficial.

Further studies are required to address this issue.

Our study has several important limitations. First, data were acquired from young healthy

pigs. Thus, caution is required with regard to direct extrapolation to humans. Second, our

study analyzed serial hemodynamic and echocardiographic data acquired from a relatively

small number of animals. Although power analysis revealed a power of 85.9% (95% CI, 83.6–

88.0) to detect the effect of ETCO2 level on %EDV at α = 0.05, further studies including a

larger number of animals are required to confirm our findings. Third, all animals included in

the present study could not achieve ROSC. Previous studies have suggested that the hemody-

namic parameters, as well as the severity of ischemia-induced LV wall thickening, differ signif-

icantly between subjects with and without ROSC [7,12,14,29]. Thus, the relationship between

hemodynamic parameters and severity of ischemia-induced LV wall thickening may also differ

between subjects with and without ROSC. Fourth, the present study was conducted in a well-

controlled experimental setting. Studies indicate that a number of subject and resuscitation

factors, including arrest etiology and initial cardiac rhythm, influence the ETCO2 level [30,31].

Thus, variation in these factors, which is routinely encountered in clinical resuscitation set-

tings, may result in different outcomes. Fifth, echocardiograms were conducted by a single

investigator. Although the investigator had substantial experience of the echocardiographic
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technique used in the present study, observer-dependent bias might have occurred. Sixth, we

could not identify factors related to the severity of ischemia-induced LV wall thickening.

Conclusions

In conclusion, the present study, which investigated whether hemodynamic parameters can be

used to estimate the severity of ischemia-induced LV wall thickening during CPR of consistent

quality, showed that systolic and diastolic arterial pressure were not associated with the sever-

ity of ischemia-induced LV wall thickening. While ETCO2 level had a significant linear rela-

tionship with the severity of ischemia-induced LV wall thickening, it explained only a small

proportion of the variance of its severity.
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