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Objective: We used bioinformatics analysis to identify potential biomarker genes and their relationship with breast cancer (BC).
Materials and Methods: We used a weighted gene co-expression network analysis (WGCNA) to create a co-expression network
based on the top 25% genes in the GSE24124, GSE33926, and GSE86166 datasets obtained from the Gene Expression Omnibus. We
used the DAVID online platform to perform GO and KEGG pathway enrichment analyses and the Cytoscape CytoHubba plug-in to
screen the potential genes. Then, we related the genes to prognostic values in BC using the Oncomine, GEPIA, and Kaplan–Meier
Plotter databases. Findings were validated by immunohistochemical (IHC) staining in the Human Protein Atlas and the TCGA-BRCA
cohort. LinkedOmics identified the interactive expressions of hub genes. We used UALCAN to evaluate the methylation levels of these
hub genes. MethSurv and SurvivalMeth were used to assess the multilevel prognostic value. Finally, we assessed hub gene association
with immune cell infiltration using TIMER.
Results: The mRNA levels of MKI67, UBE2C, GTSE1, CCNA2, and MND1 were significantly upregulated in BC, whereas ESR1,
THSD4, TFF1, AGR2, and FOXA1 were significantly downregulated. The DNA methylation signature analysis showed a better
prognosis in the low-risk group. Further subgroup analyses revealed that MND1 might serve as an independent risk factor for
unfavorable BC prognosis. Additionally, MND1 expression levels positively correlate with the immune infiltration statuses of CD4+
T cells, CD8+ T cells, B cells, neutrophils, dendritic cells, and macrophages.
Conclusion: Our results indicate that the ten hub genes may be involved in BC’s carcinogenesis, development, or metastasis, and
MND1 may be a potential biomarker and therapeutic target for BC.
Keywords: breast neoplasms, immunohistochemistry, polymerase chain reaction, biomarker

Introduction
Breast cancer (BC) is the most commonly diagnosed cancer in women, and it is the main cause of cancer mortality in
women around the world.1 Although standard treatments for breast cancer, including surgery, radiotherapy, chemother-
apy, endocrine therapy, targeted therapy, and immunotherapy, have greatly improved during the last few decades.2,3

However, BC remains a serious clinical challenge. The outcomes of patients with different molecular BC subtypes are
very different. For example, the triple-negative breast cancer (TNBC) subtype usually has poorer progression-free
survival (PFS) and overall survival (OS) outcomes, and it has higher risks of recurrence and metastasis compared to
other molecular BC subtypes.3 There is no effective treatment for TNBC. However, prognostic biomarkers are a valuable
tool to develop treatments. For example, the expression level of human epidermal growth factor receptor 2 (HER2) is one
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of the most effective prognostic biomarkers for breast cancer, and anti-HER2 drugs, including trastuzumab and lapatinib,
are highly beneficial for BC patients with HER2 overexpression.4–7 To better treat BC, novel prognostic biomarkers with
high sensitivity and specificity and effective therapeutic targets need development.

Weighted gene co-expression network analysis (WGCNA) is now widely used to explore potential genes asso-
ciated with clinical characteristics of cancer progression, which include tumor grade, stage, and metastasis.
Furthermore, due to easy access to public databases, such as The Cancer Genome Atlas (TCGA) and the Gene
Expression Omnibus (GEO), bioinformatics analysis has become a popular tool to screen tumor target genes. For
example, Tang et al found that the hub genes RSAD2, HERC5, and CCL8 are potential prognostic biomarkers
for BC.8 Moreover, miR-124 regulates CDK6 via the Wnt signaling pathway in BC.9 This study analyzed BC
expression profile data from the GEO public database using WGCNA and identified BC-associated gene modules.
Five hub genes, namely MKI67, UBE2C, GTSE1, CCNA2, and MND1, were eventually selected from two modules.
By combining the IHC assays of the Human Protein Atlas and the TCGA-BRCA cohort, we confirmed the differential
expression of MND1 in BC tissues and its association with BC prognosis. Moreover, we investigated the molecular
mechanisms involving MND1 during carcinogenesis and the development of BC and the possible connection between
MND1 and tumor immune infiltration.

Materials and Methods
Dataset Collection and Processing
Supplementary Figure 1 illustrates the study’s workflow. Hsieh et al, Chang et al, and Cheng et al provided the
GSE24124, GSE33926, GSE86166 gene expression profile datasets we retrieved and analyzed these data with the
GEO (https://www.ncbi.nlm.nih.gov/geo).10 The gene expression data based on 20, 51, and 366 BC samples were
generated using the GPL887 (Agilent-012097 Human 1A Microarray V2 G4110B, Feature Number version),
GPL7264 (Agilent-012097 Human 1A Microarray V2 G4110B Probe Name version), and GPL15048 (Rosetta/Merck
Human RSTA Custom Affymetrix 2.0 microarray HuRSTA_2a520709.CDF) platforms, respectively. The datasets used
in this study were normalized by batch, and the top 25% of variant genes were selected to build weighted co-expression
networks.

The gene expression dates (WorkflowType: HTSeqFPKM) for 1096 BC samples and 119 normal breast samples were
downloaded from the TCGA database (http://cancergenome.nih.gov/). The relationship between MND1 and the prog-
nosis of BC patients was evaluated using clinical data.

The genes that were differentially expressed (DEGs) between tumor and normal samples were visualized using the
R package.11 Here, we define a fold-change that is correlated with significant DEGs as a |log2 fold-change| with
a threshold >1.5 and false discovery rate (FDR) < 0.05.12

Weighted Gene Co-Expression Network Construction
We constructed a scale-free gene co-expression network using the “WGCNA” x in the R software environment.13 To
ensure the network structure’s stability, we removed cases with incomplete clinical information. We also transformed the
gene expression profile matrix by x. The similarity between genes “m” and “n” was defined as Smn = |cor(m, n)|.
A weighted adjacency matrix was constructed by the power function, amn = power (Smn, β) = |Smn|β. The “soft
thresholding” parameter highlighted similarities between genes, while poor correlations were penalized. The WGCNA
package’s “pickSoftThreshold” x was used to find an acceptable - value for a scale-free network. The resulting adjacency
matrix was transformed to a topological overlap matrix and used to determine dissimilarity values (1-TOM).14

Topological overlap assesses the biological similarity between two genes based on their expression patterns.
A dissimilarity-based cluster analysis was then performed to build a hierarchically clustered tree, with each leaf in the
branch representing a gene and each branch representing a gene module. Gene modules were extracted via the complex
tree cut approach, with the minimum size cutoff set to 30 and the deep break parameter set to 2. With a height cutoff of
0.25, only extremely related modules were grouped together.
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Identification of Modules with Clinical Significance
We used two approaches to screen modules linked to specific clinical features of BC. First, principal component analysis
was used to generate the module eigengene (ME), which captures the bulk of the module’s knowledge. Second, Pearson’s
correlation coefficients were used to calculate the ME and different clinical characteristics’ correlations. Modules that
were highly clustered (P < 0.05) were eliminated. Clinically relevant modules were identified by examining the
associations between gene significance and module membership. Using these two approaches, we could select the
most strongly associated modules with BC phenotypes for further study.

Function and Pathway Enrichment Analysis
To better understand the biological processes involved in the main modules, we used the Database for Annotation, Visualization,
and Integrated Discovery (DAVID) to conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment studies (https://david.ncifcrf.gov).15 A P value of <0.05 indicated significant enrichment.

Identification and Validation of Hub Genes in Pivotal Modules
We identified hub genes using the CytoHubba plug-in of Cytoscape 3.5.1.16 The candidate genes were selected from the
top ten nodes with the highest degree ranking. The Kaplan–Meier plot (http://kmplot.com) was then used to assess the
association between hub gene expression and BC prognosis.17 GEPIA (http://gepia.cancerpku.cn/) was used to evaluate
the differential expression levels of x.18 We used the Oncomine database (https://www.oncomine.org/) to analyze the
differential expression of x between cancer and normal tissue.19 The expression of each hub gene was validated in the
Human Protein Atlas (http://www.proteinatlas.org). Differences in x were considered statistically significant at P < 0.05.
30 tissues examples were collected from Suzhou Municipal Hospital including 15 BC and 15 breast normal tissues. All
patients signed informed consent before the experiment. The Ethics Committee of Suzhou Municipal Hospital reviewed
and approved this study. Total RNA were extracted from cells with RNeasy Mini Kit (Cat.74101, Qiagen, Germany) in
accordance with the manufacturer’s instruction. The relative mRNA levels of MKI67, UBE2C, GTSE1, CCNA2 and
MND2 were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) method. The PCR
process was carried out with ABI PRISM 7500 real-time PCR system (Applied Biosystems, Carlsbad, CA, USA). The
2−ΔΔCt statistic was used to calculate the expression levels of genes. The primer sequences used as follows: MKI67: F:
5-ACGCCTGGTTACTATCAAAAGG-3 R: 5-CAGACCCATTTACTTGTGTTGGA-3; UBE2C: F: 5-GACCTGA
GGTATAAGCTCTCGC-3 R: 5-TTACCCTGGGTGTCCACGTT-3; GTSE1: F: 5-CAGGGGACGTGAACATGGATG-3
R: 5-ATGTCCAAAGGGTCCGAAGAA-3; CCNA2: F: 5-CGCTGGCGGTACTGAAGTC-3 R: 5-GAGGAA
CGGTGACATGCTCAT-3; MND1: F: 5-TGTGAGAGGATCGGAACTTCT-3 R: 5-CACATCGGCCAATTTTAGC
TTTC-3;

LinkedOmics Database Analysis
The LinkedOmics function module (http://www.linkedomics.org/login.php) was used to analyze GO categories and
KEGG pathways through gene set enrichment analysis.20 The rank criterion was based on a FDR of <0.05. A total of
500 simulations were performed.

Expression and Methylation Analysis
UALCAN (http://ualcan.path.uab.edu/) was used to access the hub genes expression and methylation.21 We used
MethSurv (https://biit.cs.ut.ee/methsurv/) to evaluate the prognostic significance of different CpG methylation patterns
of hub genes.22 SurvivalMeth (http://bio-bigdata.hrbmu.edu.cn/survivalmeth/) was used to access the effect of DNA
methylation of hub genes signature on BC prognosis.23–25
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TIMER Analysis
The Spearman correlations between hub gene expression and immune infiltration abundance were determined using the
“Gene” module and the TIMER database (https://cistrome.shinyapps.io/timer/). The “Survival” module determined the
relationships between clinical outcomes and immune cell infiltration or hub gene expression.26

Potential Drugs Screening
Connectivity Map tools (https://clue.io/) was used to analyze the mechanism of actions and potential drugs.27–29 Top
upregulated and downregulated hub genes was input. “ComplexHeatmap” package in R was used to visualized the results.

Statistical Analysis
All statistical analyses used SPSS software (version 24; SPSS Inc., Chicago, IL, USA). Chi-squared and Fisher’s exact
tests, Wilcox test, Kaplan–Meier method, and the Cox proportional regression model analyzed differences in the
expression of hub genes. And Two-side P values < 0.05 were considered significant.

Results
Gene Screening
The gene expression profile dataset containing 417 BC and 20 normal breast samples was downloaded from the GEO
database (Supplement of batch correction was shown in Supplementary Figure 2). The expression matrix files and
clinical data (.txt format) were obtained and sorted from the TCGA database before WGCNA analysis. The “edgeR”
package in R Studio was used to process the data, resulting in a total of 484 differentially expressed genes (DEGs) for
further WGCNA analysis (Supplementary Figure 3).

Construction of the Co-Expression Network Using WGCNA
The selected genes were clustered hierarchically using the “FlashClust” package in R. Based on the results, 51 outlier
samples were omitted, and 366 samples were used to construct the co-expression network (Figure 1A and B). Scale
independence and mean connectedness were calculated with soft thresholding settings (β) ranging from 1 to 20. The
degree of independence was more than 0.8, when the value of β reached 6, and the associated mean connectivity was near
to zero, implying that the network complies with the scale-free network distribution criteria. As a result, the co-
expression network was built with a value of 6 (Figure 1C). The dynamic tree cut approach was used to identify and
merge gene modules that were close in proximity, resulting in a total of seven gene modules illustrated in Figure 1D (the
gray module includes genes that were not co-expressed with other genes). Correlations among the seven modules were
analyzed and plotted in the heat map shown in Figure 1E.

Modules with Clinical Significance
Figure 1E shows the gene modules significantly correlated to certain clinical features. The blue module is negatively
correlated to ER (estrogen receptor) and PR (progesterone receptor) positively correlated to grade. The brown module
positively correlated to ER and PR, and negatively correlated to grade. Furthermore, GS (gene significance) and MM
(Module membership) are significantly correlated within the blue module (cor = 0.37, P = 6.3e-06; cor = 0.62, P = 2.4e-
16; cor = 0.83, P = 4.6e-37), indicating that this module is closely related to BC (Figure 1F–H). In addition, GS and MM
in the brown module are also significantly correlated (cor = 0.88, P = 4.8e-22; cor = 0.88, P = 4.8e-22; cor = 0.74,
P = 1.9e-12), indicating that the brown module is also closely related to BC (Figure 1I–K). These results are supported by
the clustering heat maps of ER, PR, and grade (Figure 1L–N).

Screening of Hub Genes in Key Modules and Functional Enrichment Analysis of Genes
We used Cytoscape to calculate each node’s degree in modules X and Y, and the top five nodes were selected as
candidate genes. Figure 2A shows the blue module network. The hub nodes are: Marker of Proliferation Ki-67 (MKI67),
Ubiquitin Conjugating Enzyme E2C (UBE2C), G2, and S-Phase Expressed 1 (GTSE1), Cyclin A2 (CCNA2), and
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Meiotic Nuclear Divisions 1 (MND1). The brown module network (Figure 2B) shows the hub nodes Estrogen Receptor 1
(ESR1), Thrombospondin Type 1 Domain Containing 4 (THSD4), Trefoil Factor 1 (TFF1), Anterior Gradient 2 (AGR2),
and Forkhead Box A1 (FOXA1).

GO enrichment analysis on the blue module indicates its involvement in cell cycle, cell division, cell cycle phase
transition, regulation of chrome segregation, PID Plk1 pathway, and cyclin-dependent protein serine/threonine regulation
kinase activity, and positive regulation of the cell cycle process (Figure 2C). Similarly, the pathways involved in the brown
module include evolution-dependent gene expression, response to iron ion, regulation of fibroblast promotion, cellular amino
acid biosynthetic process, post-translational modification, synthesis of GPI-anchored proteins, etc (Figure 2D).
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NML
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Figure 1 Co-expression network constructed with WGCNA (weighted gene co-expression network analysis). (A) No outlier samples were identified based on hierarchical
cluster analysis. (B) Hierarchical clustering of the top 25% variant genes in the GSE24124, GSE33926, and GSE86166 dataset and associated clinical information. Color
intensity indicates a positive correlation with ER (estrogen receptor), PR (progesterone receptor), Her2, and the grade, status, and stage of tumors. (C) Determination of
the optimal soft thresholding value (β) of the sample. (D) Dendrogram of the top 25% variant genes clustered based on dissimilarity values (1-TOM), where TOM is the
topological overlap matrix. The upper panel shows the gene dendrogram, and the lower panel shows seven gene modules displayed in different colors, including the gray
module. (E) Heat map of the correlation between modules and clinical features. The number above each cell represents the correlation between the module and the feature,
and the number below each cell represents the corresponding P value. Red and green represent positive and negative correlations, respectively. The scatter plots show the
correlations between the blue modular gene and ER (F), PR (G), and grade (H); the correlations between the brown modular gene and ER (I), PR (J), and grade (K); and the
correlations between each module and ER (L), PR (M), and grade (N).
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Expression and Clinical Significance of the Hub Genes
The ten candidate genes identified above were analyzed using the KM Plotter online tool. Their expressions were
significantly upregulated in BC tissues compared with normal tissues (P < 0.05, Figure 3A). And as shown in Figure 3B,
overexpression of MKI67, UBE2C, GTSE1, CCNA2, and MND1 in the blue module significantly correlated with the
poor OS of breast cancer (P < 0.05).

The different expression levels in BC and normal breast tissues of the four genes in the brown module were validated
using the GEPIA database. In BC tissues, ESR1, THSD4, TFF1, AGR2, and FOXA1 were significantly upregulated (P <
0.05, Supplementary Figure 4A). Survival analysis showed that ESR1, THSD4, and TFF1 significantly correlated

A B

DC

Figure 2 Gene co-expression networks of the blue (A) and brown (B) modules visualized by Cytoscape. Yellow nodes represent hub genes. Blue and brown nodes
represent non-hub genes in the respective modules. Nodes in the networks represent genes in the module. Edges between the nodes indicate that the two genes are co-
expressed. GO (gene ontology) enrichment analyses of the blue (C) and brown (D) modules.
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A
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D
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B

Figure 3 Survival analysis and differential expression of hub genes in blue modules. (A) Differential expression of hub genes analyzed using the GEPIA database. Box plots
show mRNA expression of hub genes in breast cancer (red plot) and the corresponding normal tissues (gray plot). “*” represents P < 0.05. (B) Survival analysis of the hub
genes in breast cancer (Kaplan–Meier plot). (C) Relationship analysis between the expression of hub genes and stage of breast cancer. (D) Differential expression of hub
genes analyzed using the Oncomine database. Differential expression of hub genes in different tumors. The intensity of the color (red or blue) indicates positive correlation
with the degree of significance of upregulation or downregulation, respectively. (E) Expression of CCNA2, MKI67, MND1, and UBE2C in breast cancer and normal breast
tissues validated in the Human Protein Atlas.
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with BC prognosis (P < 0.05), while AGR2 was only marginally correlated with BC prognosis (P = 0.01). Moreover, high
expression levels of ESR1, THSD4, TFF1 and AGR2 are related to better BC prognosis compared to those in patients
with low-expression levels of these genes (Supplementary Figure 4B). Thus, high expression levels of these genes may
inhibit BC development.

We chose the blue gene module due to its cancer-promoting function to conduct follow-up research. Analysis of the
association between tumor stage and hub gene expression showed a significant relationship (P < 0.05) (Figure 3C). Using
the Oncomine database, we analyzed the expression levels of hub genes in different types of cancer and found that
MKI67, UBE2C, GTSE1, CCNA2, and MND1 were upregulated in most cancers, although they were also down-
regulated in a few types of cancers (Figure 3D). In the human protein atlas database, the hub gene was upregulated in BC
tissues (Figure 3E).

Expression Validation of the Five Hub Genes by qRT-PCR
15 normal breast samples and 15 BC samples were collected. As shown in Figure 4A–E, MKI67, UBE2C, GTSE1,
CCNA2, and MND1 expression levels in BC samples were significantly higher compared with normal breast samples.
(P < 0.01).

Prognostic Value of Single CpG of Hub Genes in BC
MethSurv was used to investigate the prognosis value of DNA methylation of these five hub genes. The heat map of
DNA methylation results is displayed in Supplementary Figure 5. We observed that five CpGs of UBE2C, five CpGs of
CCNA2, two CpGs of GTSE1, one CpGs of MKI67 and six CpGs of MND1 were significantly associated with prognosis
in breast cancer patients (Table 1).

Validation of MND1 in the TCGA Database
MND1 expression data and related clinical information were downloaded from the TCGA-BRCA database. As shown in
Figure 5A–F, higher expression of MND1 in luminal A, triple negative and the whole BC has close association with
worse OS and PFS. The expression of MND1 in luminal A, luminal B, HER2 overexpression, and triple negative BC
tissue was significantly higher than that in normal tissue. We considered the median value of MND1 expression as the
threshold, thus the upper 50% was the high expression group, and the lower 50% was the low-expression group of
MND1 (Figure 5G). Univariate Cox analysis showed that high expression of MND1, age, and tumor stage are
independent risk factors for the prognosis of BC patients, with hazard ratio values of 1.128, 1.035, and 1.626,
respectively (all P < 0.05; Figure 5H). Similarly, multivariate Cox analysis showed that high expression of MND1,
age, and M stage are independent risk factors for BC patients’ prognoses, with hazard ratio values of 1.213, 1.019, and
1.640 (all P < 0.05; Figure 5I).

Methylation Analysis
Methylation level in BC and normal tissues was investigated (Figure 6A–J). Almost all of the ten hub genes have the
significant hypermethylation. SurvivalMeth was used to analyze the prognostic value of ten signature (Figure 6K–M). An
optimal cutoff (prognostic index = −26.057) was calculated and all BC cases were divided into high/low risk groups.
Significant expression patterns of all ten hub genes were found between the low- and high-risk groups (Figure 6K). The
heat map showed that DNA methylation level (Figure 6L), and the high-risk group demonstrated a worse OS compared
with the low-risk group (P=0.012) (Figure 6M).

Correlation Analysis of MND1 Expression and Immune Infiltration Status
To explore the potential correlation between MND1 and the immune microenvironment of BC, we evaluated the
relationship between MND1 expression and immune infiltration level in the TCGA-BRCA cohort using the TIMER
database. The expression of MND1 was positively correlated with the infiltration level of B cells, CD8 + T cells, CD4 +
T cells, macrophages, neutrophils, and dendritic cells in patients with BC (r = 0.255, P = 3.35e-16; r = 0.172, P < 0.05) =
30e-08; r = 0.769, P = 5.58e-10; r = −0.319, P = 7.14e-25; r = 0.266, P = 1.38e-17; r = 0.308, P = 2.84e-23, respectively)
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(Figure 7A). MND1 is also upregulated in a variety of cancers besides BC, including lung adenocarcinoma, colon
adenocarcinoma, and head and neck squamous cell carcinoma (Figure 7B).

Potential Mechanism of Action of Small Molecules Screening
CMap mode-of-action analysis of the 42 compounds revealed 35 mechanisms of action shared by the above compounds
(Figure 8).

Discussion
We screened for potential biomarkers associated with BC’s progression and prognosis using the GSE24124, GSE33926,
and GSE86166 gene expression profiles from the GEO database. These profiles include 417 BC and 20 normal breast
samples. Using WGCNA, we constructed a co-expression network of 484 of the most variable genes, resulting in the
identification of seven independent modules. We then used the DAVID database to perform enrichment analyses on two
selected modules. In the blue module, we found mainly genes involved in the cell cycle, cell division, cell cycle phase
transition, regulation of chrome segregation, PID Plk1 pathway, and cyclin-dependent protein serine/threonine regulation
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Figure 4 (A–E) Validation of the expression levels of the five genes between the normal breast samples (n = 15) and breast cancer samples (n = 15) by polymerase chain
reaction analysis. All the data are presented as mean SD. Significant differences are defined by *p < 0.05, and ***p < 0.001.
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kinase activity, and positive regulation of the cell cycle process. In the brown module, we found genes involved in
biological processes, such as evolution-dependent gene expression, response to iron ion, regulation of fibroblast
promotion, cellular amino acid biosynthetic process, post-translational modification, synthesis of GPI-anchored proteins,
etc. Cell cycle-related biological functions are involved in developing many tumors, including BC, while the PID Plk1
pathway is associated with tumor cell proliferation and recurrence. Therefore, these modules may influence the
development of BC by regulating the above biological processes and pathways.

The five genes with the highest degree of x in the blue and brown modules were selected using the CytoHubba plug-in in
x. Further analysis demonstrated that the expression levels of MKI67, UBE2C, GTSE1, CCNA2, and MND1 in blue
modules were negatively associated with prognosis and were significantly upregulated in BC. Thus, these five genes may
promote the development of BC. Meanwhile, ESR1, THSD4, and TFF1 in brown modules were positively correlated with
favorable patient prognosis and were significantly downregulated in BC. High levels of expression of these genes may thus
serve as a tumor suppressor. The five hub genes (MKI67, UBE2C, GTSE1, CCNA2, and MND1), that likely affect BC
development were selected for further analysis.MKI67 is also known as Antigen Ki-67, and it is a well-known cell cycle-
related protein. Ki-67/MKI67 has both therapeutic and prognostic value in various cancers, including breast,30 cervical,31

colorectal,32 and gastric33 cancers. Ki67 has been designated a therapeutic target for cancer therapy due to its important cell
proliferation role. Recently, Zhang et al achieved favorable outcomes after using a novel siRNA to inhibit the proliferation
and induce the apoptosis of 786-O human renal carcinoma cells.34 In another study, replicative adenovirus vectors
combined with Ki67 contributed to the destruction of melanoma cells.35 Thus, the application of Ki67-targeted cancer
therapy is expected to treat BC. UBE2C, a member of the E2 ubiquitin conjugating enzyme family, is involved in mitotic
cyclin B degradation, and it promotes the transition from the M to the G1 phase of the cell cycle.36 Dastsooz et al showed
that UBE2C is upregulated in all 27 different types of cancer, a finding that agrees with our results showing increased
somatic expression of UBE2C in BC.37 Moreover, Qin et al found that UBE2C upregulation is associated with poor
prognosis in BC.38 Rawat et al demonstrated that inhibiting UBE2C sensitizes BC cells to radiation, doxorubicin, and
hormone-blocking agents.39 Therefore, UBE2C is a potential therapeutic target for the enhancement of radiation and
chemo-sensitization treatments against BC. CCNA2, also known as CyclinA2, belongs to the highly conserved cyclin

Table 1 The Prognostic Value of CpG in the Upregulated Five Hub Genes by MethSurv
(P<0.05)

Gene-CpG HR LR Test P value

UBE2C-TSS1500-N_Shore-cg00242976 0.538 0.008

UBE2C-1stExon; 5ʹUTR; Body-S_Shore-cg02405476 0.649 0.038

UBE2C-5ʹUTR; 1stExon; Body-S_Shore-cg03969725 1.596 0.021
UBE2C-5ʹUTR; TSS1500; stExon-Island-cg23265604 1.614 0.036

UBE2C-1stExon; 5ʹUTR; TSS200; Body-cg13853156 0.399 0.000

CCNA2-TSS200-Island-cg01854459 0.520 0.002
CCNA2-TSS200-Island-cg20391652 0.530 0.003

CCNA2-TSS200-Island-cg22219489 1.692 0.008
CCNA2-1stExon; 5ʹUTR-Island-cg10002561 0.637 0.027

CCNA2-TSS1500-S_Shore-cg18913527 0.621 0.042

GTSE1-Body-S_Shelf-cg10084251 1.662 0.018
GTSE1-3ʹUTR-S_Shore-cg21542574 0.658 0.048

MKI67-TSS1500-Island-cg26235537 0.603 0.012

MND1-Body-Island-cg13825058 0.636 0.028
MND1-Body-Island-cg18350702 0.662 0.037

MND1-Body-S_Shore-cg06303282 1.751 0.005

MND1-Body-S_Shore-cg14104036 1.650 0.011
MND1-TSS1500-N_Shore-cg13326581 1.631 0.014

MND1-TSS1500-N_Shore-cg14320796 1.633 0.014
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family and is found in almost all human body tissues.40 Results of several studies have shown that CCNA2 is overexpressed
in various malignancies and may be involved in the processes of epithelial-mesenchymal transitions (EMT) and
metastasis.41,42 Gao et al showed that CCNA2 might serve as a biomarker for the prognosis of ER+ BC and monitor the
efficacy of tamoxifen.43 In another study, cyclinA2 proteins were suppressed by aspirin and salicylic acid in multiple cancer
cell lines, indicating that they may serve as a novel target and mechanism of chemoresistance.44 Previous studies have
demonstrated that GTSE1, an x that is upregulated in dozens of cancers, plays an essential role in cell cycle regulation and is
involved in chemoresistance, chromosome instability (CIN), and metastasis.45–47 BC patients with high GTSE1 levels
always have poor OS and are unlikely to survive disease-free, indicating that GTSE1 overexpression correlates with
unfavorable outcomes.46 The silencing of GTSE1 results in cancer cell death by increasing its sensitivity to paclitaxel and
cisplatin.48 Thus, GTSE1 can be considered a new target for the treatment of cancers, including BC. MND1, along with
HOP2, is part of a highly conserved heterodimeric protein complex that plays important roles in binding DNA and
stimulating the recombinase activities of RAD51 and DMC1, which are indispensable for meiotic recombination.49–51

Figure 6 Methylation analysis in BC with UALCAN and SurvivalMeth online tool. (A–J) Methylation level of ten hub genes in BC cases. (K) The methylation level of CpGs in
the high- and low-risk group. (L) The heatmap of CpG methylation level. (M) The Kaplan–Meier curve of OS. Significant differences are defined by “*”: P < 0.05.
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While evidence for the association betweenMND1 and cancers is sparse, Wu et al found that this gene is included in a panel
of four genes (MND1, FOXM1, CDC6, and POLE2) that are significantly associated with low survival against squamous
cell lung cancer.52 Another study demonstrated that mRNA patterns combining AKT3, PTTG1, MND1, and CENPF can
potentially serve as a strong biomarker for monitoring the growth and metastasis of ovarian cancer.53 A recent study
conducted by Dastsooz et al showed that the expression ofMND1 is associated with BC prognosis.37 However, no study has
yet explored the biological functions of MND1 and how its role in tumors. As a result, we selected MND1 as a major hub
gene for further investigation, analyzing its expression in BC as well as its relationship to clinical features and prognosis.

MND1 expression is both positive and significantly greater in the BC group than in the normal breast groups,
according to IHC staining results. The Cox multivariate regression model based on the TCGA-BRCA cohort demon-
strated that high MND1 expression, metastasis, and age are independent risk factors affecting BC’s prognosis. MND1
upregulation may play an important role in BC, and MND1 could serve as a useful biomarker for screening early BC and
assessing the prognosis of BC patients.

The presence of immune cells in tumors is closely related to a patient’s clinical prognosis. Immune cell infiltration is
the movement of immunological cells from the bloodstream to tumor tissue, which is a part of cancer’s immune escape
strategy. Anti-cancer medicines also target immune cell infiltration.54 TIMER analysis showed the expression of MND1
is positively correlated with the infiltration level of B cells, CD8 + T cells, CD4 + T cells, macrophages, neutrophils, and
dendritic cells in BC patients. Immune cell infiltration deficiency or malfunctioning in malignancies can lead to immune
escape and increase tumor development. Novel treatments targeting tumor immune escape, notably inhibitory receptors
involved in T cell activity control, have been proposed.55 However, further experimental verification is needed to
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Figure 7 Association between MND1 expression and immune signature (TIMER). (A) Relationship between MND1 expression and infiltration levels of six subsets of
immune cells (B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils, and dendritic cells) in BRCA. (B) Expression of MND1 in different types of cancers showing
the comparison between tumor and corresponding normal tissues. “**” and “***” represent P < 0.01 and P < 0.001, respectively.
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identify reliable BC immunotherapy targets and understand the relationship between MND1 and immune infiltrating
cells and the effect of MND1 on the BC immune system. MND1 is upregulated in a variety of cancers besides BC;
specifically, it is upregulated in lung adenocarcinoma, colon adenocarcinoma, and head and neck squamous cell
carcinoma.

Conclusions
Bioinformatics analysis based on the construction of a co-expression network by WGCNA has identified five BC hub
genes: MKI67, UBE2C, GTSE1, CCNA2, and MND1. These genes may participate in BC and impact BC prognosis.
Moreover, we speculate that MND1, via immune-related biological processes and pathways, may act as a tumor
suppressor gene in BC development. Determining the clinical value of our findings and the molecular mechanisms
involved will require further exploration in future studies.
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