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New tools for studying osteoarthritis genetics in zebrafish
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Objective: Increasing evidence points to a strong genetic component to osteoarthritis (OA) and that
certain changes that occur in osteoarthritic cartilage recapitulate the developmental process of endo-
chondral ossification. As zebrafish are a well validated model for genetic studies and developmental
biology, our objective was to establish the spatiotemporal expression pattern of a number of OA
susceptibility genes in the larval zebrafish providing a platform for functional studies into the role of
these genes in OA.
Design: We identified the zebrafish homologues for Mcf2l, Gdf5, PthrP/Pthlh, Col9a2, and Col10a1 from the
Ensembl genome browser. Labelled probes were generated for these genes and in situ hybridisations
were performed on wild type zebrafish larvae. In addition, we generated transgenic reporter lines by
modification of bacterial artificial chromosomes (BACs) containing full length promoters for col2a1 and
col10a1.
Results: For the first time, we show the spatiotemporal expression pattern of Mcf2l. Furthermore, we
show that all six putative OA genes are dynamically expressed during zebrafish larval development, and
that all are expressed in the developing skeletal system. Furthermore, we demonstrate that the trans-
genic reporters we have generated for col2a1 and col10a1 can be used to visualise chondrocyte hyper-
trophy in vivo.
Conclusion: In this study we describe the expression pattern of six OA susceptibility genes in zebrafish
larvae and the generation of two new transgenic lines marking chondrocytes at different stages of
maturation. Moreover, the tools used demonstrate the utility of the zebrafish model for functional
studies on genes identified as playing a role in OA.

� 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd.
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Introduction

Osteoarthritis (OA) is an increasingly common degenerative
joint condition, estimated to affect more than 100 million people
worldwide and more than 40% of people over 70 years of age20. OA
has a complex, multifactorial aetiology and treatment options
remain limited; however there is increasing evidence of a genetic
component to OA (reviewed by Cornelis et al2). It has been esti-
mated from a number of twin studies that the genetic contribution
to OA is between 39% and 60% in hip and knee OA, respectively3,4.
To date, however, while many genes have been shown to be
differentially expressed between osteoarthritic and healthy chon-
drocytes by RT-PCR and microarray analyses5,6,7 relatively few
.L. Hammond, Department of
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Hammond).

ternational. Published by Elsevier L
genes have been identified through association studies to have
reached genome wide significance; those that have include
Growth/Differentiation factor (GDF5), a cluster of six genes on 7q22
(comprising PRKAR2B, HPB1, COG5, GPR22 DUS4L and BCAP29)
and recently MCF2L8,9,10.

There is increasing evidence showing that there are significant
similarities between OA progression and the normal develop-
mental process of endochondral ossification, whereby a cartilage
template is progressively replaced by bone (reviewed by Pitsil-
lides and Beier11). Endochondral ossification occurs during
embryonic development and continues postnatally in the carti-
lage growth plates of long bones, which give the potential for
continued skeletal growth. In the cartilage growth plate, chon-
drocytes are organised into zones of progressive maturation
beginning with the metabolically inactive resting chondrocytes,
which become activated and proliferate; following proliferation
they enter a pre-hypertrophic and finally a hypertrophic state
td. Open access under the Elsevier OA license. 
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(reviewed by Mackie et al12). Hypertrophic chondrocytes, which
are regarded as terminally differentiated, remodel their matrix
through expression of proteases such as Matrix metalloprotein 13
(MMP13) and secretion of different collagens, in particular Type X
Collagen13.

Ectopic chondrocyte hypertrophy, marked by expression of
Type X Collagen, is seen as a hallmark of OA in humans and in
diverse animal models from mice to sheep (reviewed by van der
Kraan and van den Berg14). Genetic changes that stimulate chon-
drocyte hypertrophy lead to increased incidence of OA14 raising the
prospect that inhibition of chondrocyte entry to hypertrophy
might be a therapeutic target in OA. Moreover, these parallels
between endochondral ossification and OA raise the prospect that
developmental models could be used to study the processes that
lead to chondrocyte hypertrophy. Therefore, tools that allow
investigators to follow the differentiation state of chondrocytes
and the onset of hypertrophy in real time in vivowill be particularly
valuable.

Zebrafish, along with another small teleost species medaka,
have long been used as model organisms for developmental
biology. They owe their popularity in part to the rapid external
development of their larvae, to their amenability to genetic
manipulation and also, importantly, to the translucency of the
larvae, which allows detailed observation of organogenesis in the
living fish. The zebrafish craniofacial skeleton is of comparable
complexity to that of terrestrial vertebrates, and contains bones of
both dermal and chondral origins, which form from neural crest-
derived cells relatively early in development15. Importantly both
the key regulators of skeletal development and the control of the
major signalling pathways are highly conserved betweenmammals
and teleosts16. As such, findings in fish are likely to be applicable to
mammalian osteogenesis. Therefore, to increase the utility of the
zebrafish model for functional in vivo studies into OA, we generated
a new transgenic col10a1 reporter line to enable monitoring of
chondrocyte hypertrophy in live fish in real time.

We describe, for the first time in any animal model, the
spatiotemporal expression of the OA associated gene mcf2l during
early development. Additionally we describe zebrafish expression
of parathyroid hormoneerelated protein (pthrp) and the mRNA
expression of three key collagens and gdf5 are shown. These tools
provide a platform fromwhich to probe the function of these genes
during cartilage development in vivo.
Materials and methods

Zebrafish husbandry

Zebrafish were maintained as described17. All experiments on
zebrafish were approved by the local ethics committee and the
Home Office (Project licence number 30/2863).
Skeletal staining

The protocol for bone and cartilage staining was as described
previously18.
Table I
Primers used for cDNA amplification

Gene name Forward primer sequence Reverse primer sequence

pthrpa/pthlha CGAACGCTGCAGGATTTTA AAGGTCAGCAGCACCTTGAT
mcf2la GAGAAAGCCCCGTCATACAG AATTAACCCTCACTAAAGGGAGTTTCTTC
col9a2 AGGTGCTACCGGAATGATTG GGATCCATTAACCCTCACTAACGGGAGG
In situ hybridization

As previously described19 In situ hybridisation probes previously
used were gdf520, col10a121.

Generation of new probes

Total RNA was extracted from zebrafish at 2 days post fertil-
ization (dpf), 5 dpf and adult fin using EZNA total RNA kit following
the manufacturer’s protocol. 1 mg RNA was taken and used as
a template to synthesize cDNA using promega MMLV-RT following
the manufacturer’s protocol. The cDNAs were pooled and 1 mg of
the pooled cDNA was used as the template for a 50 ml PCR reaction
using Roche Fidelity Taq (with conditions as per manufacturer’s
protocol) and a simple 35 cycle extension programme. Primers
sequences used for probe synthesis are shown in Table I. The PCR
product was cleaned with a PCR purification kit (E.Z.N.A) and 8 ml
was used for RNA Dig labelled probe transcription as previously
described22. To generate mcf2l, col9a2, and col1a2 probes we
amplified T3 polymerase tailed fragments from total cDNA and
used the cleaned PCR product as a template for probe synthesis. The
pthrp PCR product was cloned into pGEMT, digested with NdeI, and
transcribed with primer T7 for antisense probe synthesis. Probes
were synthesized as previous described22.

Transgenic lines

The Tg(Col2a1aBAC:mcherry) stable line was generated by
injection of the modified BAC construct previously described18,23

along with tol2 mRNA. Injected larvae were grown to sexual
maturity and the F2 generation was screened for evidence of
germline integration. The osterix reporter line Tg(OlSp7:mCherry)
zf131 has been previously described24.

Col10a1 transgenic line generation

The Tg(Col10a1BAC:mCitrine) transgenic line was generated
following previously published protocols25. The BAC modified was
DKEYP-115C4, the homology arm primers HA1 and HA2 were:

Forward primer: 50-CTACATCATCACTTATAACTGTTGGAATTCTGTT
TCAGATTTGACCTCAGACCATGGTGAGCAAGGGCGAGGAG-3’ and

Reverse primer: 50-GCAGCCGTCAAGGCCACCAGGAGAAGAAGAA
TGCTTACTACTCGTAGTTCTCAGAAGAACTCGTCAAGAAGGCG-‘3.

The primers for amplification of the tol2 sites and for confir-
mation of integration have been previously published25. The stable
col10a1:citrine reporter line was generated by injection of the
modified BAC construct containing citrine under the control of the
col10a1 promoter. Larvae showing strong mosaic transgene
expression were grown to maturity and their offspring screened to
identify germline carriers.

Antibody labelling

Larvae were incubated with the following primary antibodies:
anti-DSred clontech 1/200, anti-col2 II-II6B3 (D.S.H.B.) 1/200, anti-
GFP (Abcam) 1/200 and anti-digoxigenin-rhodamine (Roche) 1/
Ensembl gene ID Transcription

ENSDARG00000031737 T7
CCTCCCTCATCCT ENSDARG00000075859 T3 (t3 pol site in reverse primer)
TCCAGGTCGTCCTG ENSDARG00000024492 T3 (t3 pol site in reverse primer)
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200) overnight at 4�C and then incubated with fluorescent conju-
gated secondaries (Dylight 488, and 550 1/500) for 3 h at RT, as
previously described18. Larvae were viewed on a Leica SP5 confocal.

Cryosectionning

For cryosectionning larvae were fixed, incubated in 20% sucrose
overnight, snap frozen in OCT and 20 mM sections cut on a Leica
cryostat at �20�C. Sections were rehydrated in PBS and viewed on
a compound microscope.

Phylogenetic analyses

Phylogenetic analyses were performed using the ‘Phylogenetic
Tree’ web resource available from the Computation Biochemistry
Research group at the Swiss Federal Institute of Technology (http://
www.cbrg.ethz.ch/services/PhylogeneticTree)26. Sequences were
input and analysis was run as in distance mode with the results
displayed as an unrooted tree in the case of the mcf2l analysis and
as a rooted tree for the pthlp analyses.

Results

Mcf2l expression

The MCF2L locus has recently been identified as having
a genome wide association with human hip/knee8. We identified
two possible zebrafish homologues of Mcf2l (mcf2l) on LG1 and LG9
using BLAST searches. To establish which is the closest orthologue
of mammalianMcf2l we performed synteny analysis using Ensembl
and generated a phylogenetic tree [Fig. 1(A)]; through these anal-
yses we established that the mcf2l gene located on LG1 (which we
denotemcf2la) is the closest orthologue of mammalian Mcf2l while
the gene on LG9 likely arose through the ancestral genome dupli-
cation event in fish27 and is more distantly related to the mcf2l
cluster. To establish the spatiotemporal expression of mcf2la we
generated sense and antisense in situ probes. While the sense probe
showed no expression [Fig. 1(G)], mcf2la was dynamically
expressed during zebrafish development [Fig. 1(CeF00)]. At early
stages mcf2la is expressed in the yolk syncytial layer [Fig. 1(B)]. At
18 somites (18 hpf), the strongest expression was seen in the
Kupffer’s vesicle [labelled kv in Fig. 1(C)]. Weaker expression was
also seen throughout the brain, in the eye and in muscle pioneers
from the 18 somite stage to 24 hpf [Fig. 1(DeD00)]. At 72 hpf, strong
expressionwas observed in the ventral jaw elements and gut, along
with expression in the brain and neural tube [Fig. 1(E)]. Dissection
of the jaw elements revealed that mcf2la was expressed in cells
surrounding the branchial arch cartilages, which include the peri-
chondral cells, but may also include other cells found in close
proximity [Fig. 1(E0eF00)]).

Pthlh/Pthrp expression

Expression of PTHrP/PTHLH has been shown to be increased at
the protein level in cartilage from patients with OA28, although the
level of the Pthrp at the transcript level has been shown to be
decreased in surgically induced OA in the rat29. We identified two
possible zebrafish homologues of PTHLH; to establish which is the
closest homologue we generated a phylogenetic tree [Fig. 2(A)] and
established that the homologue which we denote as pthlha is more
closely related to other vertebrate Pthlh genes than the gene which
we denote pthlhb. In zebrafish pthlha was expressed at 72 hpf in
the pectoral fins and in the cartilages that form the ventral jaw
[Fig. 2(B)]. At 120 hpf, pthlha expression could be seen in the
operculum [Fig. 2(C, C0)], and by this stage jaw cartilage expression
of pthlh was mainly restricted to the 5th branchial arch (a carti-
laginous structure which is subsequently mineralised) at the
position where the teeth will later form. Additionally, strong
expression was seen in the mesonephros pronephros [Fig. 2(C)].

Gdf5 expression

GDF5 variants have been demonstrated to show association
with human OA10,30. In mouse, Gdf5 becomes restricted to joints
and is required for correct joint specification31. In zebrafish, gdf5
expression has been previously described in pharyngeal arch
cartilages up to 96 hpf20. Gdf5 is also expressed in the developing
fin joints through larval and early adult life32. At 96 and 120 hpf we
saw expression restricted to the jaw joints that form between the
Meckel’s cartilage and palatoquadrate and the tip of the ceratohyal
[Fig. 2(EeE00)], suggesting that it has a conserved function in the
specification of joints in zebrafish.

Collagen expression

We here describe the expression of three collagen types
involved in skeletal development (col2a1, col9a1, and col10a1), and
we have generated and analysed two transgenic reporter lines
(col10a1 and col2a1) in vivo. These specific collagens were chosen
on the basis that all are expressed in chondrocytes at specific stages
of maturation during endochondral ossification12.

Mutations in COL9A2 have been linked by numerous groups to
autosomally dominant multiple epiphyseal dysplasia (MED),
a disease which manifests from childhood with axial limb defor-
mities, joint pain and gait abnormalities and predisposes sufferers
to early onset OA33. In zebrafish, col9a2 was expressed strongly in
the otic capsule of the ear at 72 hpf, and was more weakly detected
in the jaw cartilage elements [Fig. 2(GeG0)]. At 120 hpf, col9a2
transcripts were present throughout cartilagenous structures of the
ventral jaw and remained strongly expressed in the otic capsule
[Fig. 2(FeF’, HeH0)].

Col10a1 expression is a hallmark of chondrocyte hypertrophy in
mammals34. In zebrafish, at 72 hpf, col10a1 was expressed in the
cleithrum, operculum, and parasphenoid, bone elements that form
through intramembranous ossification [Fig. 2(IeI0)]. At 120 hpf,
col10a1 was still strongly expressed in dermal bone elements, but
could, at this stage of development, also be detected in chondral
bone elements such as the centre of the ceratohyal [Fig. 2(JeJ0)].

The col10a1 transgenic reporter line allows visualisation of
chondrocyte hypertrophy in living fish

The col10a1BAC:citrine transgene recapitulated the expression of
themRNAexpression seen by in situ hybridisation [Compare Fig. 3(A)
with Fig. 2(IeI0)] and can be used to track expression of the gene in
live fish by fluorescencemicroscopy (Fig. 3 A, B, D0eD00 and E0eE00). At
72 hpf expression could be seen in the operculum and cleithrum
[Fig. 3(AeA0)] and colocalises with expression of an osteoblast
reporter Tg(Ola.Sp7:NLS-GFP)zf132 [Fig. 3(A0) [inset shows the
operculum24], thus confirming as previously reported that col10a1 is
expressed in osteoblasts as well as in chondrocytes during zebra-
fish21, and gar35development. At later stages of development, (shown
here at 14 dpf), col10a1 was expressed throughout the vertebral
column [Fig. 3(B)], including the neural and hemal arches [Fig. 3(B)].
Col2a1:mCherry was expressed in all chondrocytes during early
skeletal development [Fig. 3(CeE)], while at later stages col10a1
becomes expressed in a subset of chondrocytes as they maturate to
hypertrophy [Fig. 3(DeE) and data not shown]. As shown in Fig. 3(D00

and E00), in a double transgenic line Tg(col10a1BAC:mcitrine)hu7050;
Tg(col2a1aBAC:mCherry)hu5900 it was easy to distinguish the less

http://www.cbrg.ethz.ch/services/PhylogeneticTree
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Fig. 1. Mcf2la is dynamically expressed during zebrafish development A phylogenetic tree to show that mcf2la clusters with mcf2l orthologues from vertebrate species, while
mcf2lb is more derived. zf ¼ zebrafish, ol ¼ oryzias latipes {medaka}, bt ¼ bos Taurus {cow}, hs ¼ homo sapien {human}, mm ¼mus musculus {mouse}, xl ¼ xenopus laevis {clawed
frog}. BeF00 whole mount in situ hybridisation expression for mcf2la, BeE show whole mount images, while D0 , D00 , FeF00 show cryosections. 12G. Sense control formcf2la. Anterior is
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mature non-hypertrophic chondrocytes from the chondrocytes
entering hypertrophy (which appear yellow in overlays and are
located within the cartilage element).

Transgenic reporter fish faithfully recapitulate the endogenous
expression of col2a1a and col10a1

We generated a stable transgenic line marking chondrocytes by
injection of the col2a1a:BAC mCherry construct previously
described18. In this line (also described in23 mCherry labels all
chondrocytes at early stages of development. To demonstrate that
mCherry expression marks cells which express col2a1a we used
immunohistochemistry to detect themCherry protein and to detect
the Collagen II protein. As expected the cells which express
col2a1a:mCherry are surrounded bymatrix containing the Collagen
II protein [Fig. 3(F, F0)]. To demonstrate that the col10a1 transgenic
line recapitulates the expression of endogenous col10a1 mRNA we
performed an in situ for col10a1, in 5 dpf larvae, which we detected
with an anti-digoxigenin-rhodamine secondary antibody and
immune labelled for GFP/citrine which we detected with 488-
conjugated secondary antibody [Fig. 3(G)]. The overlay of the two
antibodies demonstrates that all regions in which col10a1 mRNA is
present show co-expression of citrine [Fig. 3(GeG00)].

Discussion

Osteoarthritis associated genes are dynamically expressed during
zebrafish development

In this study, we describe the spatiotemporal expression of the
OA associated gene mcf2l during early development. Mcf2l (previ-
ously identified as Ost and Dbs) is a guanine nucleotide exchange
factor, which in purified form, catalyses nucleotide exchange on
RhoA and Cdc4236. In 5-week-old rat brain sections, Ost/Mcf2l
expression was seen in neurons and a-tanycytes36. However, to
date, the developmental expression of Mcf2l is unknown. Func-
tionally, Mcf2l has been shown to stimulate migration of breast
carcinoma cells and of Schwann cells37,38. Furthermore, Mcf2l has
been identified, through genome-wide association (GWA) studies,
to have a significant association with OA. However, with only
limited expression and functional data, it is currently unclear how
the genetic variants contribute to OA, although the fact that it plays
a role in Schwann cell migration has lead to predictions that it could
be involved in the pain response to OA38,39.

We demonstrate that mcf2l is dynamically expressed in a range
of cell types during development, including Kupffer’s vesicle. We
also observe diffuse expression of mcf2l in the brain throughout
development, consistent with the strong expression seen in the
brain in rat36. Importantly, we have also observed expression of
mcf2l in the developing jaw cartilages, which suggests that mcf2l
has a function in cartilage development, offering another potential
explanation for how MCF2L could play a role in OA.

Additionally, we have characterised the expression pattern of
pthrp in zebrafish. PTHrP has been shown to regulate the entry of
chondrocytes into hypertrophy, and application of PTHrP can block
the ability of RUNX2 to induce expression of hypertrophic markers
such as COL10A1 in culture40. Here, we show that pthrp is
dynamically expressed during zebrafish development. Pthrp is only
transiently expressed in cartilage elements, becoming restricted to
the 5th branchial arch, adjacent to where the first tooth will attach
to the left, with the exception of BeC where anterior is up. Ages are as follows 12s (B) 18s
Arrows in bottom panels point to chondrocytes (labelled c) or to cells surrounding the
mp ¼ muscle pioneers, cb ¼ cerebellum, hbv ¼ hindbrain vesicle, c ¼ chondrocytes, op ¼ op
cells), ep ¼ ethmoid plate, bh ¼ basohyal, gc ¼ ganglion cell layer, ac¼amacrine cells.
to the arch at 120 hpf41. PthrP is required for tooth eruption in
mice42, suggesting a likely conservation of function between tele-
osts and tetrapods. We also observed strong expression of pthrp in
the developing mesonephros. No significant overlap in expression
is seen with the zebrafish parathyroid hormones pth1 and pth2,
whose expression is limited to the lateral line and sense organs43.
Gdf5, in zebrafish, becomes restricted to the site of joints in the
developing cartilage as is the case in mice31. Additionally, a number
of other genes implicated in human OA such as FRZB/sfrp344 and
ASPN45 show expression patterns that hint at conserved functions
in zebrafish46 (data available on zfin.org).
Collagens

Various collagens have been implicated in OA susceptibility and
pathogenesis; mutations in col1a1 are associated with osteogenesis
imperfecta both in the zebrafish and in humans47,48,49. Only weak
association has been seen between COL1A1 and OA through
GWAS56, but other studies report increased levels of COL1A1 in
osteoblasts from OA51, suggesting a shift towards an osteophytic
phenotype. Type II Collagen breakdown fragments are frequently
used as a biomarker for OA, while synthesis of the pro collagen gene
COL2A1 has been shown to be increased in many models of OA (see
for example review by Garvican et al52). COL9A2 has been linked
through candidate gene association studies to OA of the hip53.
Ectopic chondrocyte hypertrophy is seen as a hallmark of OA14, and
Col10a1 expression is the best characterised marker of hypertro-
phic chondrocytes54. We show here that all four collagen genes
show dynamic expression in the developing skeleton of the
zebrafish and that in zebrafish, as in mammals, col10a1 can be used
as a marker of hypertrophic chondrocytes in addition to marking
zebrafish osteoblasts.
Zebrafish as a model for OA

There are many existing animal models established for the
study of OA ranging from small rodents to large mammals such as
sheep1. One might think, therefore, that there is little point in
adding another model to the list. Zebrafish, although their skel-
eton is subject to different loading due to their aqueous environ-
ment, do have a number of key advantages for studies of OA
genetics that may complement those in existing animal models.
One example is that, due to their translucency during larval
development, organogenesis, even deep tissues such as the skel-
eton can be viewed microscopically in vivo. In the case of trans-
genic reporter lines, such as the ones described in this manuscript,
detailed observations on the location and behaviour of the cells
expressing the genes in live fish can be made, something which is
not possible in the existing animal models, for which the depth
and mineralisation of the joints limits the options for imaging.
Already a number of zebrafish cartilage skeletal mutants have
been demonstrated to share pathology with human disease; these
include the heparin sulphate proteoglycan mutants such as
ext2/dak and papst/pic which model the human osteosarcoma
condition Multiple Hereditary Exostoses (HME)50,55,56,57. The
ongoing generation of an increasing number of transgenic lines
marking bone via promoters such as osterix24,58,59 and osteo-
calcin60 or cartilage by col2a128 and col10a1 (described here) as
well as reporter lines demonstrate activity of major signalling
(C), 24 hpf (DeD00), 72 hpf (EeF00). Arrows in top panel indicate the muscle pioneers.
cartilage elements (sc).., ba ¼ branchial arches kv ¼ Kupffer’svesicle, jj ¼ jaw joint,
erculum, pq ¼ palatoquadrate, sc ¼ surrounding cells (which include the perichondrial

http://zfin.org


Fig. 2. mRNA expression of pthlha, gdf5, col9a2 and col10a1 A phylogenetic tree to demonstrate that pthlha segregates with the vertebrate Pthlh genes h.s.¼homo sapiens,
m.m.¼mus musculus, zf¼zebrafish, x.l.¼xenopus laevis, o.l.¼oryzias latipes, b.t.¼bos taurus. In situ hybridisation expression of (BeD0) pthlha, (EeE00)gdf5, (FeH0) Col9a2 and (IeJ0)
Col10a1 B, G, H, I and J show lateral views; B0 , C0 ,G0 ,H, I00 and J0 ventral views. DeF00 are cryosections. All images are orientated with anterior to left. B,B0 , G, G0 , I and I0 are 72 hpf, E is
96 hpf, CeD0 , E0eF0, H, H0 , J and J0 are 120 hpf. Ba ¼ branchial arches, cl ¼ cleithrum, m ¼ maxilla, ch ¼ ceratohyal, op ¼ operculum, ps ¼ parasphenoid, pn ¼ pronephros, 5ba ¼ 5th
branchial arch, mc ¼ Meckel’s cartilage, pf¼pectoral fin.
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Fig. 3. Col10a1, osterix and col2a1 transgenic reporter expression expression of tg(col10a1BAC:citrine) A, A0 B, C, E0 , E00 , F0 and F00, tg(col2a1BAC:mcherry) C, D, D00 , E0 and E00 and
Tg(OlSp7:mCherry)zf131 A0(A) Col10a1BAC:citrine reporter expression in live zebrafish at 72 hpf, (A,A0), 120 hpf (DeE00) and 14 dpf (B). B is of the vertebral column at the level of the
cloaca. (F and F0) 96 hpf col2a1BAC:mCherry transgenic larvae fixed and labelled with anti-mCherry to detect transgene activity in green and with IIeII3B3 antibody (DSHB) which
detects type II collagen protein in red, green labelled cells with transgene activity are surrounded by matrix positive for collagen 2 protein. G) Fluorescent in situ for col10a1 mRNA
detected with anti-digoxigenin rhodamine. G0) anti-GFP/citrine staining and G00 shows the overlay of G and G0 , showing that all regions that stain for col10a1mRNA are also positive
for the fluorescent transgenic protein. A, A0 , DeD00 F and GeG00 are lateral views and EeE00 and F0 are ventral. All are projections of confocal stacks, all presented with anterior facing
left. cl ¼ cleithrum, m ¼ maxilla, ch ¼ ceratohyal, op ¼ operculum, mc ¼ Meckel’s cartilage, 5ba ¼ 5th branchial arch and teeth, hs ¼ hyosymplectic, br ¼ branchiosteal rays,
na ¼ neural arches, ha ¼ haemal arches.
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pathways (reviewed in Hammond andMoro23) will further benefit
fish skeletal research.

It has previously been shown that all five of the genes in the OA
susceptibility locus on 7q22 are expressed in zebrafish, and two of
these, cog5 and dus4l show expression in cartilage at 5 dpf9.
Therefore, taken together with the published expression of
frzb/sfrp361, asporin (direct data submission to zfin.org), and the
expression patterns detailed in this manuscript, candidate OA
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genes identified through GWAS have homologues in zebrafish, and
most have been shown to be expressed in the skeletal tissues at
various stages of development. The expression of these ‘OA’ genes
in zebrafish can be seen in the developing skeletal system and it is
likely that they will have conserved functions during skeleto-
genesis with their mammalian homologues. An advantage of
studying the function of OA genes in zebrafish is the relative ease of
genetic manipulation in the zebrafish, such as morpholinos for
transient knockdown of protein translation67 and transgenic
approaches for overexpression of genes of interest, either globally
or under the control of a promoter of interest. There have also been
recent advances in the ability to rapidly generate stable mutant
lines63,64,65 with zinc finger nucleases (ZFNs) or transcription
activator-like effector nucleases (TALENs); together these tech-
niques allow the functions of genes to be dissected in vivo. This is
essential, as functional analyses demonstrating that zebrafish can
develop pathologies relevant to OA will be required to establish
zebrafish as a model for OA.

Amajor stumbling block in themanagement of OA is the paucity
of pharmaceutical therapies. The development of zebrafish tools
relevant to the study of OA raises the prospect of using zebrafish for
compound screens; the protocols for such screens are well
described in zebrafish62,66. These have the potential to identify
novel modifiers of cartilage and bone phenotypes; streamlining the
path into drug discovery programmes to test for compounds with
therapeutic properties in OA and related diseases. As expression of
type XCollagen is one of the hallmarks of chondrocyte hypertrophy,
double transgenic lines of zebrafish carrying reporters for both type
II Collagen tg(col2a1BAC:mCherry)hu5900 and Type X Collagen
tg(col10a1BAC:citrine)hu7050, as described here, could be used in
drug screens to identify compounds that can block the onset of
chondrocyte hypertrophy and thus potentially to prevent OA
progression.

In summary, we have described the developmental expression
of a number of genes with relevance to OA in the zebrafish and we
describe a new transgenic reporter line for Type X collagen, which
can be used to study chondrocyte hypertrophy in live fish. This can
be used as a platform for further research into the functions of the
OA genes described here in the developing skeleton and may have
uses in large scale screening programmes.
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