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Salivary gland carcinomas (SGCs) are 
highly heterogeneous histopathologi
cal entities that arise in either the ma
jor or minor salivary glands. Although 
uncommon, these tumours exhibit 
considerable aggressiveness, unpre
dictable progression, and significant 
mortality. The fifth edition of the World 
Health Organisation classification 
of head and neck tumours distinguish
es between 24 salivary gland malig
nancies. This may lead to difficulties 
in terms of diagnostic accuracy and 
suitable therapeutic selection. Muco
epidermoid carcinoma occurs most 
frequently and is characterised by 
gradual disease progression. Although 
salivary duct carcinoma, myoepithelial 
carcinoma, and carcinoma ex pleomor
phic adenoma are rarely detected, they 
contribute to poor patient outcomes. 
Currently, attempts have been made 
to establish molecular characterisation 
of SGCs to improve differential diag
nosis and create targeted treatments. 
This study aimed to summarise current 
knowledge regarding genetic varia
tions in the most common salivary 
gland malignancies.
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Introduction

Malignancies of the salivary glands are rare and account for approximate-
ly 5–8.5% of all head and neck cancers (HNC) [1–3]. Their occurrence is rare, 
with an annual incidence of 0.69 cases per 100,000 [4, 5]; however, the mor-
tality rate is 40% [1]. Moreover, an increase of approximately 50% in both 
morbidity and mortality is predicted in the near future [6]. Salivary gland 
cancers (SGCs) are characterised by miscellaneous disease courses and 
clinical behaviours that contribute to unfavourable patient outcomes [2]. 
Among SGCs, more than 20 histopathological varieties have been classified 
by the World Health Organisation. Mucoepidermoid carcinoma (MEC) is 
the most common type of cancer, followed by acinic cell carcinoma (AcCC), 
adenoid cystic carcinoma (AdCC), carcinoma ex-pleomorphic adenoma  
(Ca ex PA), and adenocarcinoma (AC) [2, 7, 8]. The number of histopathologi-
cal features interfering with benign lesions might also contribute to misdiag-
nosis and inappropriate management [9–11]. The incidence of these tumours 
is greater in males, and the risk of development increases with age. Former 
exposure to radiotherapy is also a well-known risk factor [3, 12–15]. A history 
of other cancers, including HNC, and occupational hazards are also associated 
with SGC incidence [3, 13]. In contrast to HNC risk factors, neither alcohol 
consumption nor tobacco use increases the risk of salivary gland malignan-
cies [12, 13]. Numerous other causative factors have been proposed; how-
ever, studies are limited, and the results are inconclusive. Suspicious lesions, 
especially those with rapid growth, associated painful swelling, facial nerve 
palsy, or ulceration, indicate malignancy and should be investigated by im-
aging methods, preferably multiparametric magnetic resonance imaging.

Preoperative fine-needle aspiration enables the differentiation between 
benign and malignant tumours as well [2, 3, 16]. Radical surgical excision is 
the standard management option. Owing to tumour advancement and histo-
pathological features, patients must receive further adjuvant radiotherapy or 
chemoradiotherapy [5, 16]. Park et al. reported disease recurrence in more than 
50% of SGCs, despite radical primary treatment [17]. Distant metastases (DMs) 
occur in 10–40% of cases, frequently in the lungs (more than 50%), bones (40%), 
and liver (20%). Metastasis development is related not only to tumour type and 
stage but also to genetic alterations in tumour cells. These factors are therefore 
responsible for poor patient outcomes despite radical treatment [18–20]. 

Currently, the value of genetic analysis with next-generation sequenc-
ing (NGS) is particularly highlighted in SGCs. This will not only improve 
the knowledge about the molecular background of the pathologies but also 
enable the introduction of targeted therapies, especially for recurrent dis-
eases, advanced stages, and drug-resistant cases [16, 21–24]. Additionally, 
it might be a pivotal tool in differential diagnosis, especially in ambiguous 
cases [25]. A summary of the clinical characteristics of SGCs with respect to 
incidence, histological subtype, predominant location, and survival is pre-
sented in Table 1. The most common genetic rearrangements in SGCs are 
listed in Table 2. The purpose of this paper was to review genetic variations, 
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including novel findings, in the most known histopatho-
logical types of SGCs.

A comprehensive literature search was performed in 
the PubMed database. We analysed the full texts of the ar-

ticles published in English in the period 1984–2024. The ex-
clusion criteria were as follows: languages other than 
English, only abstracts available, papers concerning HNC 
holistically without specific analysis of SGCs, and analysis 

Table 2. The most frequent genetic alterations in salivary gland carcinomas

Histopathological type Fusions Other genetic changes References

Mucoepidermoid carcinoma (MEC) CRTC1-MAML2,  
56–88%

TP53, 21–42%
CDKN2A, 42–56%

CDKN2B, 31%
BAP1, < 21%

PIK3CA, 17–21%
HRAS, < 14%

Saade et al. [31]
Kang et al. [34]

Seethala et al. [35]
Zerdan et al. [47]
Wang et al. [48]
Morita et al. [49]

Acinic cell carcinoma (AcCC) SCPP gene cluster – NR4A3, 
> 80%

CDKN2A/B
high percentage in high-grade 
tumours and metastases cases

ATM, 7–14%
PTEN, 10–12%

Haller et al. [75]
Dogan et al.[78]
Ross et al. [69]

Adenoid cystic carcinoma (AdCC) MYB-NFIB,  
60–80%

MYBL1-NFIB, 
MYBL1-YTHDF3

NOTCH signalling pathway, ~ 40% 
(NOTCH1, 26%)  

R/M primary tumours, ~ 13 
(NOTCH1, 8.5)
KDM6A, ~ 15
BCOR, 13–17

ARID1A, 7–14

Wagner et al. [61]
Ho et al. [59]
Lee et al. [66]

Ross et al. [69]
Wang et al. [68]

Adenocarcinoma (AC)

Polymorphous adenocarcinoma (PAC) PRKD1 hotspot mutation, 
50–73%

Andreasen et al. [108]
Weinreb et al. [107]

Cribriform adenocarcinoma (CA) PRKD1-3 fusions, > 80% Weinreb et al. [115]

Microsecretory adenocarcinoma 
(MiAC)

MEF2C-SS18, ~ 90% Skálová et al. [39]

Basal cell adenocarcinoma (BCAC) CYLD mutation, 
29%

Rito et al. [190]

Mucinous adenocarcinoma (MAC) AKT1 E17K mutation, 100%
TP53 mutation, 88%

Rito et al. [190]
Rooper et al. [191]

Salivary duct carcinoma (SDC) TP53, 39–60%
HRAS, 11–49%

ERBB2, 10–100%
NF1, 7–20%

PIK3CA, 19–47%
PTEN, 6–13.5%

AR overexpression

Dalin et al. [126]
Ku et al. [140]

Kohsaka et al. [136]
Dogan et al. [127]
Mueller et al. [123]

Myoepithelial carcinoma (MECA)
de novo
MECA ex PA

TGFBR3-PLAG1, 25%
FGFR1-PLAG1, 29%

Various copy number 
alternations 

Dalin et al. [88]

Epithelial-myoepithelial carcinoma 
(EMC)

HRAS, 27–87%
PIK3CA, 22–40%
AKT1, 6.5–20%

Urano et al. [146]
Grünewald et al. [148]

Chiosea et al. [149]
Nakaguro et al. [150]

Secretory carcinoma (SC) ETV6-NTRK3, > 95% Baněčková et al. [192]

Carcinoma ex-pleomorphic adenoma 
(CA ex PA)

PLAG1/HMGA2 
rearrangements

TP53, 55–100%
ERBB2, 39–57%
PIK3CA, 8–42%
HRAS, 4–23%

Stenman et al. [72]
Dalin et al. [88]

Chiosea et al. [128]
Grünewald et al. [141]

Dogan et al. [127]
Kohsaka et al. [136]

Clear cell carcinoma (CCC) EWSR1-ATF1, > 90% Antonescu et al. [170]

Intraductal carcinoma (IC) RET rearrangements, ~ 45%
NCOA4-RET (mainly in 
intercalated subtype)

MYO18A-ALK

HRAS
PIK3CA

High percentage
(only in apocrine subtype)

Skálová et al. [179]
Weinreb et al. [180]

Hsieh et al. [182]
Majewska et al. [183]
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of malignant transformation of benign lesions, e.g. pleo-
morphic adenoma.

The search was performed with the following key-
words: “salivary gland carcinoma”, “genetic alterations’’, 
“molecular abnormalities”, “NGS”, “targeted therapy”, 
“precision therapy”, “mucoepidermoid carcinoma”, “acinic 
cell carcinoma”, “adenoid cystic carcinoma”, “carcinoma 
ex-pleomorphic adenoma”, “Ca ex PA”, “adenocarcinoma’’, 
“salivary duct carcinoma”, “myoepithelial carcinoma”,  
“epithelial-myoepithelial carcinoma”, “secretory carcino-
ma”, “polymorphous adenocarcinoma”, “cribriform ade-
nocarcinoma”, “microsecretory adenocarcinoma”, “basal 
cell adenocarcinoma’’, “mucinous adenocarcinoma”, 
“clear cell carcinoma”, and “intraductal carcinoma”.

The results of the search are presented in relation to 
the histopathological types of SGCs.

Mucoepidermoid carcinoma

Mucoepidermoid carcinoma is the predominant salivary 
gland neoplasm and is detected in more than 30% of all 
salivary malignancies [26]. Generally, it is characte rised 
by gradual growth, rare recurrence, and favourable pa-
tient outcomes. However, this type of cancer can be high-
ly heterogeneous and can present as low-, intermediate-, 
or high-grade cancer, with the latter being associated with 
poor outcomes. Additionally, the mean age at diagnosis is 
lower than that of other subtypes and ranges from 45 to 
49 years [2, 26–29].

Chromosomal translocation t(11;19)(q14-21; p12-13) is 
unique for MEC and results in CREB regulator transcrip-
tional coactivator (CRTC1) (also known as MECT1)-master-
mind-like transcriptional coactivator 2 (MAML2) oncogene 
fusion. It has been detected in more than 80% of patients 
with this cancer subtype. This alteration leads to cell pro-
liferation and survival through autocrine amphiregulin 
(AREG)/epidermal growth factor receptor (EGFR) signal-
ling [30–35]. Chen et al. revealed that aberrantly activated 
AREG-EGFR signalling in CRTC1-MAML2-positive MEC cells 
made them highly sensitive to EGFR inhibition, suggesting 
benefit from EGFR-targeted therapies, e.g. cetuximab [36]. 
However, the results of further studies were unsatisfac-
tory, and Ni et al. proposed simultaneous therapy with 
erlotinib-EGFR inhibitors and Notch inhibitors as more 
effective [32]. Since MAML2 is involved in NOTCH signal-
ling pathway activation [33, 37, 38], this drug combina-
tion becomes more target specific. The other transloca-
tion, t(11;19)(q21;q26), results in a CRTC3-MAML2 fusion 
product that is detected in 6% of cases [30, 39, 40]. An-
other rare change is the translocation t(6;22)(p21;q12), 
which promotes ESWR1‒POU5F1 fusion [40]. Previously, 
the CRTC1-MAML2 fusion product was considered a pos-
itive prognostic factor [41–43]. However, further research 
did not reveal significant differences in survival between 
patients with and without the translocation [31, 44, 45]. In 
contrast, Anzick et al. revealed that adverse outcomes in 
patients with translocations might be related to other ge-
netic alterations, such as CDKN2A deletion [46]. How ever, 
copy number variations (CNVs) and somatic mutations  
associated with this alteration have not been frequently 

analysed in MEC. Zerdan et al. performed NGS analysis 
of 118 MEC tumours and reported CDKN2A abnormalities 
in 53% of the cohort. Other frequent changes included 
those in TP53 (41%), CDKN2B (31%), BAP1 (19%), PIK3CA 
(17%), TERT (15%), and HRAS (14,5%) [47]. Similar observa-
tions regarding the most common variations were report-
ed by Wang et al. [48]. In contrast, the analysis of com-
parable sample sizes by Morita et al. revealed that HRAS 
mutations are rarely detected [49]. On the other hand, 
Kang et al. reported whole-exome sequencing results for 
18 MEC tumours, and the second most frequent variation 
after TP53 was the POU6F2 gene (17%) [34]. In addition, 
alterations in BRCA2 and ERBB2 are quite common in MEC 
(17% and 13%, respectively) [30]. Although NF1 alterations 
are not frequently detected, Kato et al. reported NF1 and 
TP53 commutation [47, 50]. However, the significance 
of these findings remains unclear. Further studies are 
needed to obtain a more in-depth molecular inquiry into 
MEC molecular pathogenesis, especially in cases with poor 
outcomes.

Adenoid cystic carcinoma

Adenoid cystic carcinoma frequently arises in the sub-
mandibular or minor salivary glands. Its occurrence in 
the parotid gland is rare. Although AdCC is known as a his-
topathological type with indolent growth, it tends to recur, 
with perineural invasion and DM, especially to the lungs 
[51–54]. Cases of relapse and metastasis (R/M) are fre-
quently incurable because of a lack of effective systemic 
therapies, despite ongoing clinical trials. Therefore, there 
is an urgent need to verify the possibility of using targeted 
treatment.

The activating neurogenic locus notch homologue pro-
tein 1 (NOTCH1) mutation and v-myb avian myeloblastosis 
viral oncogene homologue (MYB) overexpression are relat-
ed to AdCC development, progression, perineural invasion, 
and even chemoresistance, which predisposes patients to 
unfavourable outcomes [30, 55–58]. In contrast, Ho et al. 
did not find a correlation between mutational MYBs and 
either R/M or survival [59]. In approximately 80% of cas-
es, MYB alternations present as the t(6;9)(q22-23;p23-24) 
translocation, which involves the MYB proto-oncogene 
and the nuclear factor 1B gene (NFIB) transcription factor, 
leading to overexpression of the fusion product and wors-
ening the prognosis [30, 60, 61]. MYB NFIB translocation is 
associated with high MYB expression. This translocation 
disrupts the MYB 3′ UTR, a microRNA regulatory site re-
sponsible for downregulating MYB. The existence of addi-
tional mechanisms for MYB overexpression in AdCC was 
investigated, revealing alternate rearrangements that 
translocate super-enhancers in the NFIB and TGFBR3 loci 
to the MYB locus. The MYB protein binds these super- 
enhancers, which in turn physically interact with the MYB 
promoter, drive its overexpression, and establish a positive 
feedback loop [62].

To emphasise the importance of MYB gene activity, it 
coordinates the upregulation of pivotal targetable genes 
involved in several functions related to carcinogenesis, 
such as apoptosis (API5, BCL2, BIRC3, HSPA8, and SET), 
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cell cycle control (CCNB1, CDC2, and MAD1L1), cell growth 
and angiogenesis (MYC, KIT, VEGFA, FGF2, and CD53), and 
cell adhesion (CD34) [63, 64]. Notably, in 35% of MYB-NFIB  
fusion-negative tumours, MYBL1 alterations were identi-
fied [65]. Interestingly, MYB/MYBL1 rearrangements were 
not very common in R/M AdCCs (22%). In contrast, NOTCH 
signalling pathway alterations were noted in approximate-
ly 40% of R/M cases (with NOTCH1 mutations observed in 
26% of these), while only 13% of primary tumours demon-
strate increased signalling in the pathway (NOTCH1 muta-
tions in 8.5%) [59, 66].

Notably, Ho et al. also reported frequent alterations in 
R/M AdCC among genes involved in chromatin remodel-
ling: KDM6A, KMT2C/MLL3, ARID1A, ARID1B, BCOR, MLL2/
KMT2D, and CREBBP, with increased frequency compared 
with primary tumours. TERT promoter mutations were 
found in > 10% of the R/M patients. Interestingly, NOTCH1 
and MYB/MYBL1 fusions are practically undetectable in 
these lesions [59]. In parallel, Stephens et al., in addition 
to significant MYB activation, reported SPEN gene alter-
ations (negative NOTCH signalling regulators) in more 
than 20% of the study cohort [67]. Similar findings regard-
ing NOTCH1, KDM6A, ARID1A, BCOR, CREEB, and TERT have 
been previously reported. Less frequently detected alter-
ations were in MLL2, RUNX1, PTEN, BAP1, PIK3CA, CDK-
N2A, ACTB, MGA, CTNNB1, FOXD1, IGFR1, MUC5B, OBSCN, 
PIK3R1, SPHKAP, TTN FGFR2, and BRAF [68, 69]. In contrast, 
TP53 mutations are rarely found in AdCCs, including R/M 
cases. Compared with tumours with favourable outcomes, 
recurrent and metastatic tumours harbour notably greater 
loads of mutations. Thus, the options of targeted thera-
pies are quite extensive for verifying their efficiency in ad-
vanced stages  [56, 70, 71].

Acinic cell carcinoma

The characteristics of AcCC are generally similar to 
those of MEC. However, some cases of aggressive meta-
static AcCC have been reported recently [72–74]. Current 
knowledge regarding the molecular alterations in AcCC 
has not yet been properly established.

Haller et al. detected rearrangement t(4;9)(q13;q31), 
which results in secretory Ca-binding phosphoprotein 
(SCPP) gene cluster (STATH,  HTN1,  HTN3,  ODAM,  FDCSP, 
and MUC7) and nuclear receptor subfamily 4 group A 
member 3 (NR4A3) fusion in most tumours of the ana-
lysed cohort (more than 80%). The former translocation is 
unique to AcCC and allows for differentiation of AcCC from 
mammary analogue secretory carcinoma (MASC), parti-
cularly in cases with high-grade transformation. Moreover, 
the resulting fusion gene acts as an oncogenic driver, with 
the NR4A3 transcription factor being upregulated due to 
the translocation of active enhancers from the SCPP gene 
cluster (which is highly expressed in salivary glands) to 
the region upstream of NR4A3 [75, 76]. The second most 
common fusion involves the histatin 3 and Myb/SANT-like 
DNA-binding domain containing 3 genes (HTN3-MSANTD3) 
(t(4;9)(q13.3;q31.1)), which have been described in a few 
cases (4–8%) [75–77]. According to the authors, the former 
translocation is exceptional for AcCC and provides an ef-

fective differential diagnosis of MASC, especially in cases 
with high-grade transformation. Moreover, NR4A3 might 
be considered an oncogenic driver through enhancer hi-
jacking, whereby NR4A3 is upregulated [75, 77]. In a recent 
study, Ross et al. reported CDKN2A and CDKN2B alterations 
in 76% and 45% of patients with relapses or metastases, 
respectively [69]. Simultaneously, Dogan et al. performed 
a genetic analysis and reported that the CDKN2A/B gene 
changed solely in high-grade tumours (58% of this group), 
whereas in the disease course with distant metastasis, 
these rearrangements were found in nearly 90% of the pa-
tients [78], confirming them as a negative prognostic factor. 
Notably, for tumours with identified negative markers, there 
are targetable treatment options based on CDK4/6 inhibi-
tors, immunotherapy, or DNA methyltransferase inhibitors 
[79, 80]. Moreover, in advanced AcCC, other genetic chang-
es have also been observed [78]. The most common rear-
rangements were related to ATM (7–14%), PTEN (10–12%), 
FBXW7, and TP53 rearrangements, whereas alterations in 
BRAF, NF1, HRAS, NOTCH1, TERT, ARID2, BIRC3, MTAP, and 
FAT1 were less common [69, 78]. Importantly, some of these 
alterations may provide opportunities for utilising precision 
therapy.

Carcinoma ex-pleomorphic adenoma

Carcinoma ex PA is a rare primary SGC arising from 
a preexisting PA. It is estimated that 5–15% of benign 
pleomorphic adenomas undergo malignant transforma-
tion to carcinoma (Ca ex PA) [81, 82]. Thus, the detection 
of the benign part of the tumour might lead to a final mis-
diagnosis, but rapid growth and other symptoms should 
indicate suspicion of malignancy [83]. Although salivary 
duct carcinoma, myoepithelial carcinoma (MECA), and ade-
nocarcinoma not otherwise specified (NOS) are considered 
the most commonly detected malignant components of  
Ca ex PA, other types of SGC histopathology have also 
been described [84–89]. The pleomorphic adenoma gene 
1 (PLAG1) and the high-mobility group AT-hook 2 (HMGA2) 
genes are most frequently altered in both PAs and Ca ex 
PAs [90], but not typical for primary salivary duct carci-
noma (SDC), MECA, or AC. Katabi et al. presumed that re-
arrangements in these genes were specific to both PA or 
Ca ex PA and could distinguish Ca ex PA from its de novo 
counterparts [91]. Nonetheless, further investigations have 
shown their occurrence in de novo lesions [88]. Carcinoma 
ex PA tumours have abundant copy number alterations 
(CNAs) that are suspected to be involved in the malignant 
transformation from benign lesions. The most common 
loss of heterozygosity is the amplification of 12q genes 
(HMGA2, MDM2), deletions of 5q, gains of 8q12.1 (PLAG1) 
and 8q22.1-q24.1 (MYC), and amplification of 17 chromo-
somes (ERBB2) [88, 92–94]. Table 3 lists the most common-
ly detected genetic alterations, including fusions and histo-
pathological subtypes of Ca ex PA, reported in the literature.

Myoepithelial carcinoma

The incidence of MECA is estimated to be very low, at 
2% among all SGCs. Nonetheless, because of the difficulty 
of proper diagnosis, the actual number of cases is predicted 
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Table 3. Malignant component of carcinoma ex pleomorphic adenoma as reported in respective studies

Gene Identified malignant component in Ca ex PA References

Genes fusions

CTNNB1-PLAG1 MECA, SDC ~ 30% Asahina et al. [193], Skálová et al. [194], Dalin et al. [126]

FBXO32-PLAG1 ND Bubola et al. [195]

FGFR1-PLAG1 MECA, SDC, ND Dalin et al. [88], Chiosea et al. [128], Skálová et al. [194], 
Bubola et al. [195]

LIFR-PLAG1 MECA, SDC Skálová et al. [194], Dalin et al. [126]

MEG3-PLAG1 ND Bubola et al. [195]

ND4-PLAG1 MECA Dalin et al. [88]

PLAG1-NFIB ND Bubola et al. [195]

TGFBR3-PLAG1 MECA Dalin et al. [88], Rupp et al. [196]

HMGA2-CNOT2 ND Bubola et al. [195]

HMGA2-NFIB ND Bubola et al. [195]

HMGA2 fusions MECA Dalin et al. [88]

Oher PLAG1 fusions MECA Dalin et al. [88]

HMGA2-WIF1 ND, Adenoid cystic carcinoma with 
sarcomatoid transformation, MECA

Persson et al. [92] 
Katabi et al. [197]

ETV6-RET SC Smith et al. [198]

ZCCHC7-NTRK2 ND (recurrence and metastatic case) Pircher et al. [199]

Somatic gene mutations

TP53 SDC, MECA Chiosea et al. [128], Grünewald et al. [141], Dogan et al. [127],
Rupp et al. [196], Dalin et al. [126], Kohsaka et al. [136], 

Mueller et al. [123]

PIK3CA SDC, MECA, EMC Chiosea et al. [128], Dogan et al. [127], Dalin et al. [88], Hallani 
et al. [144], Dalin et al. [126], Kohsaka et al. [136], Mueller et al. [123]

HRAS SDC, MECA, EMC Chiosea et al. [128], Dogan et al. [127], Dalin et al. [88], 
Hallani et al. [144], Dalin et al. [126]

ERBB2 SDC (gain/amp) Chiosea et al. [128], Dogan et al. [127], Dalin et al. [126], 
Kohsaka et al. [136], Mueller et al. [123]

AKT1 SDC Dalin et al. [126]

ALK SDC Mueller et al. [123]

APC SDC Dogan et al. [127], Mueller et al. [123]

AR SDC Dogan et al. [127]

ARID1A SDC Kohsaka et al. [136]

ASXL1 SDC Dogan et al. [127]

ATM SDC, MECA Chiosea et al. [128], Dalin et al. [88], Mueller et al. [123]

ATR MECA Dalin et al. [88]

AURKA SDC Dogan et al. [127]

BAP1 SDC Dogan et al. [127]

BRAF SDC Chiosea et al. [128], Kohsaka et al. [136]

BRCA1 MECA Dalin et al [88]

BRCA2 SDC Dogan et al. [127], Kohsaka et al. [136]

BTK SDC Dogan et al. [127]

CCNE1 SDC Dogan et al. [127], Mueller et al. [123]

CCND3 SDC Mueller et al. [123]

CDH1 SDC Dogan et al. [127]

CDK4 SDC Grünewald et al. [141], Mueller et al. [123]

CDK6 SDC Mueller et al. [123]

CDK12 SDC Dogan et al. [127]

CDKN1B SDC Dogan et al. [127]

CDKN2A SDC Chiosea et al. [128], Mueller et al. [123]
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Gene Identified malignant component in Ca ex PA References

CHEK2 SDC Mueller et al. [123]

CREBBP MECA, SDC Dalin et al. [88], Mueller et al. [123]

CTCF SDC Dogan et al. [127]

DNMT1, DNMT3A, NMT3B SDC Dogan et al. [127]

DOCK7 SDC Dalin et al. [126]

EGFR SDC Dogan et al. [127]

EP300 SDC Mueller et al. [123]

ERBB3 SDC Dogan et al. [127]

EWSR1 MECA (clear cell) Skálová et al. [194]

FANCA, FANCC SDC Dogan et al. [127] 

FASN SDC Dalin et al. [126]

FAT1 SDC, MECA Dogan et al. [127], Dalin et al. [88]

FAT4 MECA Dalin et al [88]

FBXW7 SDC Dogan et al. [127], Mueller et al. [123]

FGFR1 MECA, SDC Dalin et al. [88], Dalin et al. [126], Mueller et al. [123]

FGFR2 MECA Dalin et al. [88]

FGFR3 SDC Chiosea et al. [128]

FGFR4 SDC Mueller et al. [123]

FH SDC Dogan et al. [127]

FLCN SDC Dogan et al. [127]

FOXA1 SDC Dalin et al. [126], Kohsaka et al. [136]

GATA2 SDC Dogan et al. [127]

HMGA2 ND Persson et al. [92] 

HNF1A SDC Dogan et al. [127]

JUN SDC Dogan et al. [127]

KDR SDC Dalin et al. [126]

KIT SDC Mueller et al. [123]

KMT2A SDC Dogan et al. [127], Kohsaka et al. [136]

KMT2B SDC Dalin et al. [126]

KMT2C SDC Dogan et al. [127], Dalin et al. [126], Kohsaka et al. [136]

KMT2D SDC Kohsaka et al. [136]

LIFR MECA Dalin et al. [88]

MAP2K2 SDC Kohsaka et al. [136]

MAP3K1 SDC Dogan et al. [127]

MDM2 ND, SDC Persson et al. [92], Mueller et al. [123]

MET MECA Dalin et al. [88]

MLH3 SDC Dalin et al. [126]

MML2 MECA Dalin et al. [88]

MN1 MECA Dalin et al. [88]

MSH5 SDC Dalin et al. [126]

MTOR SDC Dalin et al. [126]

MYC SDC Dogan et al. [127]

NCOA1, NCOA2 MECA Dalin et al. [88]

NCOR1 SDC Dogan et al. [127], Dalin et al. [126]

NF1 SDC Dogan et al. [127], Dalin et al. [126], Kohsaka et al. [136], 
Mueller et al. [123]

NOTCH1 MECA, SDC Dalin et al. [88], Mueller et al. [123]

NOTCH2-3 SDC Mueller et al. [123]

Table 3. Cont.
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Gene Identified malignant component in Ca ex PA References

NSD1 SDC Dalin et al. [126]

PIK3R1 SDC Dogan et al. [127]

PTEN SDC Chiosea et al. [128], Dogan et al. [127], Kohsaka et al. [136]

PTPN11 SDC Dogan et al. [127]

PTPRS SDC Dogan et al. [127]

RAD51C SDC Dogan et al. [127]

RET SDC Dalin et al. [126]

RICTOR SDC Mueller et al. [123]

ROS1 SDC Mueller et al. [123]

RTEL1 SDC Dogan et al. [127]

SF3B1 SDC Dalin et al. [126]

SMAD4 SDC Dalin et al. [126]

SMARCA4 MECA, SDC Dalin et al. [88], Dalin et al. [126]

TSC2 SDC Mueller et al. [123]

ZFHX3 SDC Kohsaka et al. [136]

EMC – epithelial-myoepithelial carcinoma, MECA – mucoepidermoid carcinoma, ND – no data available, SDC – salivary duct carcinoma

Table 3. Cont.

to be greater [10, 95]. The tumour might occur as a de 
novo lesion or arise from the malignant transformation of  
a PA or myoepithelioma [96]. These data suggest that MECA 
ex PAs are more frequently detected than de novo lesions 
[88, 97]. However, the conclusion regarding which com-
ponent is characterised by more aggressive behaviour or 
poorer patient outcomes remains debatable [95, 97–100]. 
In most cases, this subtype of cancer is associated with 
adverse patient results, including early local and DM  
[10, 88, 95]. Myoepithelial carcinoma is one of the most 
commonly confirmed components of Ca ex PAs [89, 101].

Salivary gland MECA rarely occurs; therefore, few ge-
netic studies of this type are available. Dalin et al. analysed 
40 tumours with divisions on either the MECA de novo or 
the MECA ex PA, as well as cases with and without recur-
rence. In MECA ex PA, more genetic alterations, including 
fusions, somatic mutations, and CNVs, were found. Accord-
ing to the authors, CNVs are responsible for the malignant 
transformation of the PA into the MECA ex PA and are also 
associated with a worse prognosis. FGFR1-PLAG1 fusion 
was the most commonly (18%) identified in the MECA ex 
PA, followed by TGFBR3-PLAG1 but with no evidence of their 
prognostic value. Furthermore, EWSR1-ATF1 was described 
only in the MECA de novo, with or without recurrence [88].  
In contrast to the research conducted by Skálová et al., 
EWSR1 rearrangements were found frequently in the clear 
cell component of MECA both in de novo cases and those 
arising from the PA, but the fusion partner genes were not 
identified [102]. In the aforementioned study, PIK3CA was 
present only in patients without relapse, whereas FGFR2 
mutations were found in patients with recurrence [88]. 
The findings are summarised in Table 4. FGFR2 mutations 
were also described in 2 patients after radical PA excision, in 
which the MECA rapidly developed. In both PAs and MECAs 
(without the PA component), FGFR2 point mutations were 
confirmed, which might be indicative of an aggressive dis-

ease course [103]. Recently, Gandhi et al. reported a novel  
CTCF-NCOA2 fusion in a single MECA patient [104]. Further-
more, Cormier et al. presented a novel TERT promoter muta-
tion in metastatic MECA ex PA (the tumour was previously 
misdiagnosed as PA) [9].

Adenocarcinoma 

Polymorphous adenocarcinoma

Polymorphous adenocarcinoma (PAC) is a rare, slow- 
growing malignant tumour. It mainly arises from the minor 
salivary glands (second most common histopathological 
type), particularly those localised on the hard palate. There 
is a higher prevalence in women than in men, and patient 
outcomes are defined as one of the most favourable out-
comes among SGCs [105, 106].

Weinreb et al. revealed a PRKD1 p.E710 hotspot mu-
tation in nearly 73% of tumours, and these observations 
were not identified in other SGCs. Thus, this alteration 
is unique to PAC and may be useful for differentiating it 
from its mimics [107, 108]. Notably, in cribriform adeno-
carcinoma (CA), PRKD1-3 fusions are the most common. 
CA is classified as an aggressive variant of PAC with a high 
predisposition to metastasis [109–112]. Among the fu-
sion partners ARID1A, ATL2, DDX3X, PPP2R2A, PRKAR2A, 
SNX9, and STRN3 (cases with high-grade transformation) 
should be mentioned [113–116]. However, the type of ge-
nomic alteration is not specific for any AC subtype, and 
occasionally, either PRKD1-3 fusions or PRKD1 rearrange-
ments are found in PAC and CA, respectively [109]. There-
fore, differentiation between these 2 variants with various 
behaviours might be challenging.

Adenocarcinoma not otherwise specified

Tumours with a histopathological diagnosis of adenocar-
cinoma NOS constitute a heterogeneous group that has not 
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yet been well characterised. For example, NTRK2-ZCCHC7 
and SS18-ZBTB7A fusions have been described [116, 117]. 
In R/M cases, TP53 (55%), PIK3CA, HRAS, CDKN2A, ERBB2, 
PTEN, NF1, and ARID1A alterations were observed with 
considerable frequency [69].

On the basis of genetic pattern analysis, microsecre-
tory adenocarcinoma has been distinguished from NOS. 
Microsecretory adenocarcinoma harbours MEF2C-SS18 fu-
sion in approximately 90% of cases [39, 118].

The most common alterations in basal cell adenocarci-
noma and mucinous adenocarcinoma are shown in Table 1.

Salivary duct carcinoma

Salivary duct carcinoma is one of the most aggressive 
SGCs, with either early relapse or frequent DM. It is also 
associated with significant mortality. Predilection in elder-
ly males with a smoking history is usually combined with 
advanced-stage presentation and parotid gland localisation 
[119–123]. The estimated morbidity is 5.5–12% [124, 125]. 
Moreover, SDCs ex PAs have also been detected [122, 126–128]. 
Table 2 provides genetic information for this subtype.

In addition to the microscopic structure resembling 
high-grade ductal carcinoma of the breast, SDC is also 
characterised by the overexpression of human epidermal 
growth factor receptor 2 (HER2). Instead of oestrogen and 
progesterone receptor positivity, androgen receptor (AR) 
expression is detected in 75–98% of cases [122, 126, 129, 
130]. Notably, AR is seldom detectable in other SGCs [131]. 
However, studies are inconclusive regarding the prognos-
tic value of the AR [129, 131, 132]. Nevertheless, Kawaki-
ta et al. showed in a retrospective study that the utilisa-
tion of HER2-targeted therapy and androgen deprivation 
therapy significantly improved patients results compared 
with conventional therapy management [133]. The an-
ti-HER2 therapies that induce improvement in clinical re-
sponses in SDC patients use trastuzumab in combination 

with chemotherapy (i.e. taxanes, capecitabine, carbopla-
tin, eribulin) or with another anti-HER2 targeted agent  
(i.e. pertuzumab). Further expectations and therapeutic 
advances are related to novel anti-HER2 drugs such as  
antibody-drug conjugates (i.e. trastuzumab emtansine, 
trastuzumab deruxtecan) introduced in this setting [134].

In recent years, genetic knowledge about SDC has in-
creased profoundly, but it still has not been comprehen-
sively investigated. The tumour mutation burden is ex-
tremely high in most SDC cases, in contrast to other SGCs. 
Vos et al. evaluated therapy with nivolumab (anti-PD-1) 
and ipilimumab (anti-CTLA-4) in patients with metastatic 
SGC. Although the efficacy was limited in AdCC, with in-
frequent responses, they found it promising for non-AdCC 
SGCs, particularly salivary duct carcinomas [135]. Genetic 
fusions are not recurrent events in this subtype, whereas 
somatic mutations as well as CNVs are considerably more 
common [123, 126, 136]. Moreover, most of them provide 
opportunities for the utilisation of targeted treatment for 
this unpredictable cancer [30, 127, 137–139]. TP53, HRAS, 
PIK3CA, and ERBB2 (HER) rearrangements are the most 
common, and some of them are related to poor outcomes 
[123, 126–128, 136, 140, 141]. Interestingly, although HRAS 
mutations constitute the majority of de novo lesions, they 
are rare in SDC ex PAs [123, 126, 127, 136]. Data regarding 
the molecular landscape of SDCs are presented in Table 5.

Epithelial-myoepithelial carcinoma

Epithelial-myoepithelial carcinoma (EMC) is rarely de-
tected, and it was first reported by Donath et al. in 1972. 
Previously, it appeared under other terminology of adeno-
myoepithelioma or clear cell adenoma. The tumour con-
sists of a dual cell population that forms a double layer: 
inner ductal cells and outer myoepithelial cells [142–144]. 
Notably, various histological subtypes of EMCs exist, in-
cluding sebaceous, oncocytic, and double-clear subtypes. 

Table 4. Genetic rearrangements in the mucoepidermoid carcinoma de novo and the mucoepidermoid carcinoma ex pleomorphic adenoma 
presented in the study by Dalin et al. in relation to oncological outcomes

MECA de novo MECA ex PA

No recurrence Recurrence No recurrence Recurrence

TGFBR3-PLAG1 HMGA2 fusions TGFBR3-PLAG1 FGFR1-PLAG1

Other PLAG1 fusions EWSR1-ATF1 FGFR1-PLAG1 Other PLAG1 fusions

EWSR1-ATF1 FGFR1 Other PLAG1 fusions HMGA2 fusions

MSN-ALK FGFR2 HMGA2 fusions FGFR2

PIK3CA SMARCA4 HRAS MAML2

MAML2 PCM1 PIK3CA NOTCH1

NOTCH1 TRIP11 FGFR1 ATM

ATM   LIFR ATR

KMT2C   MET BRCA1

SETD2   MAML2 MN1

   ATR COL2A1

   CREBBP FAT1

   NCOA1 FAT4

   NCOA2  

MECA – mucoepidermoid carcinoma, PA – pleomorphic adenoma
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Thus, the differential diagnosis could pose difficulties 
[145, 146]. Morbidity predominates in females more than 
males. Most commonly, the parotid gland is affected, and 
the tumour is characterised by a high overall survival rate. 
Although DM rarely occur, relapses are common [143, 147].

HRAS (27–87%) was described as the most frequently 
mutated gene in EMC [146, 148–150]. In the studies con-
ducted by Urano et al. and Nakaguro et al., these findings 
were not detected in EMCs ex PAs [146, 150]. In parallel, 
Hallani et al. did not prove HRAS alterations for de novo 
EMC [144]. PIK3CA and AKT1 have been reported quite 
commonly in EMC (22–40% and 6.5–20%, respectively) 
[146, 148]. CTNNB1, FBXW7, and TP53 rearrangements and 
SMARCB1 deletions have been reported in single cases 
(the last 3 in high-grade tumours) [144, 148]. Mäkelä et al. 
described rare metastatic EMC in a 36-year-old woman, 
where in addition to HRAS mutation, ARID1B, ATR, CDK12, 
ERBB4, MAPK1, NANOG, NOTCH2, PIK3R1, and RPTOR al-
terations were detected [151].

Secretory carcinoma

Secretory carcinoma (SC) (previously known as mamma-
ry analogue secretory carcinoma) is a novel salivary gland 
tumour that was described by Skálová et al. in 2010 [152]. 
Most of these tumours were previously classified as 
AcCC [153]. The age at diagnosis is relatively low (mean  
45 years), including paediatric patients. There is a greater 
predilection in men, and the disease course is indolent, 
with favourable patient outcomes [154, 155].

Secretory carcinoma has a significant histological and 
molecular resemblance to breast secretory carcinoma. It 
is characterised by harbouring the same translocation 
t(12;15)(p13;q25), resulting in the ETV6-NTRK3 fusion gene 
encoding a chimeric oncoprotein-tyrosine kinase (unlike 
AcCC) [152, 155, 156]. Other ETV6 fusion partners have 
also been discovered, including ETV6-MAML3 [157], ETV6-
MET [158], and ETV6-RET [157, 159]. Notably, some of these 

genes remain unknown (ETV6-X) [160]. Recently, other  
novel fusions, such as VIM-RET [161], CTNNA1-ALK [162], 
and dual fusion, ETV6-RET and EGFR-SEPT14, were iden-
tified in an 18-year-old male [159]. ETV6-NTRK3 and MYB- 
SMR3B fusions were found in recurrent high-grade sub-
mandibular tumours [161]. Only a few studies have analysed 
genetic rearrangements other than fusions. Na et al. iden-
tified pathogenic PRSS1 mutations, mainly in patients with  
an aggressive disease course and recurrence, where-
as other findings were classified as likely pathogenic or 
of uncertain significance [163]. In contrast, Skálová et al. 
analysed 3 tumours with high-grade transformation and 
did not detect the most commonly occurring genetic al-
terations associated with poor outcomes (TP53, CTNNB1, 
EGFR, CCND1) [164].

Testing for ETV6-NTRK3 gene rearrangements is critical 
for SC patients care since entrectinib, an inhibitor of tro-
pomyosin receptor kinase (TRKs), has been reported to be 
effective and safe in treating solid tumours with NTRK fu-
sion genes. In an integrated analysis of phase 1–2 trials 
(STARTRK-1, STARTRK-2, and ALKA-372-001) of solid tu-
mours with the NTRK fusion gene, the response rate to 
the TRK inhibitor entrectinib was 57%, and the median 
progression-free survival was 11.2 months [165]. Another 
TRK inhibitor, larotrectinib, is also effective in the treat-
ment of solid tumours with the NTRK fusion gene [166]. 
Other potential therapies for SC patients with identified 
oncogenic RET fusions, namely ETV6-RET , are selpercati-
nib and pralsetinib selective RET inhibitors, currently un-
der preclinical and clinical testing [167].

Clear cell carcinoma

Clear cell carcinoma (CCC) (previously known as hyali-
nising clear cell carcinoma) is an indolent low-grade tu-
mour that typically arises from the intraoral minor salivary 
glands. There is a higher prevalence in females, whereas 
relapses and metastases are rare [168].

Table 5. The genetic pathways most commonly affected in salivary duct carcinoma

Pathway Genes References

DNA damage TP53 (39–60%), ATM, BRCA2, CHEK2, MDM2, MDM4, MLH3, MLH5 [123, 126, 127, 136, 140, 141]

MAPK HRAS (11–49%), NF1 (7–20%), BRAF, KRAS, NRAS [123, 125, 126, 127, 128, 136, 137, 140]

RTK ERBB2 (10–100%), ALK, EGFR, ERBB3-4, FGFR1-2, FGFR4, FLT3, JAK2, KDR, 
KIT, MET, NTRK2, PDGFRA, RET

[123, 126, 127, 136, 137, 140]

PI3K/AKT/mTOR PIK3CA (19–47%), PTEN (6–13.5%), AKT1-3, PIK3R1, RICTOR, RPTOR, TSC2 [123, 125, 126, 127, 128, 136, 137, 140]

Androgen signalling AR, FASN, FOXA1 [126, 136]

Histone modification KDM6A, KMT2A, KMT2C, KMT2D, KMT2E, NSD1 [126, 127, 136, 140]

Cell cycle CDK4, CDK6, CDK12, CDKN1A, CDKN1B, CDKN2A, CCNE1, CCND1-3, RB1 [123, 126, 127, 136, 140, 141]

NOTCH CREBBP, EP300, FBXW7, NOTCH1-3 [123, 140]

SWI/SNF complex ARID1A, SMARCA4, SMARCB1 [123, 126, 127, 136]

WNT-β-catenin APC, CDH1, CTNNB1, FAT1 [123, 126, 140]

Other ABL1, AURKA, BCOR, CCND1, CCNE1, FLCN, GNAS, HMGA2, IDH1-2, IGFR1, 
IKBKE, KLF5, AMP, MAP2K1, MAP2K4, MITF, MPL, MYC, PRDM1, SMAD4, 

SMO, STK11, TNIK, VHL, ZFHX3

[123, 126, 127, 136, 140, 141]

Fusions ETV6-NTRK3, ABL1-PPP2R2C, BCL6-TRADD, HNRNPH3-ALK, EML4-ALK, 
RAPGEF6-ACSL6

[126, 127, 195]
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Considering the occurrence of clear cells in other SGCs, 
differential diagnosis may be a challenge [169]. Anto-
nescu et al. first described genetic rearrangement in the  
CCC-EWSR1-ATF1 fusion t(12;22)(q13;q12). It occurs in more 
than 90% of cases, and, being unique for CCC, it is there-
fore a helpful differentiation tool [170]. EWSR1-CREB1, 
EWSR1-CREM, and SMARCA2-CREM fusions have been re-
ported in single cases thus far [171–173].

Intraductal carcinoma

Intraductal carcinoma (IC) is a rare salivary gland tu-
mour that affects mainly the parotid gland, with features 
similar to mammary atypical ductal hyperplasia or ductal 
carcinoma in situ of the breast [174, 175]. Recent studies 
have classified 4 distinctive subtypes: intercalated duct 
type, apocrine, hybrid, and oncocytic [176].

RET rearrangements, including recurrent NCOA4-RET (in-
tercalated, oncocytic, seldom hybrid), TRIM27-RET (hybrid, 
apocrine), and TRIM33-RET (oncocytic) rearrangements, have 
been detected [177–179]. In contrast, RET gene altera tions 
have not yet been confirmed in the apocrine subtype [180].

The relationship between IC and SDC remains controver-
sial, even though they are considered diverse entities. Intra-
ductal carcinoma, especially invasive apocrine IC, is a pre-
cursor for more aggressive cancers, such as SDC [174, 176, 
180]. Nevertheless, this issue requires further investigation. 
Molecular evidence of resemblance to SDC revealed a high 
occurrence of HRAS and PIK3CA hotspot mutations in apo-
crine IC [174, 180–182]. Additionally, ATM, SPEN, and TP53 
mutations and either DFFA-ARID1A or KIF13B-EPB41L4B fu-
sions were found in this subtype [174,180]. In parallel, BRAF 
V600E mutations in the oncocytic subtype and novel fu-
sions of TUT1-ETV5 and KIAA1217-RET in intercalated duct 
variants and hybrid intercalated duct tumours with invasive 
growth have also been identified [178, 179].

Furthermore, Majewska et al. reported an MYO18A-ALK 
fusion in intercalated duct-type IC in elderly patients after 
radical excision and no disease relapse during follow-up [183].

Recently, Watanabe et al. presented a case of a 59-year-
old male with high-grade intercalated-type IC and DM. 
Despite radical excision and postoperative radiotherapy, 
the patient developed multiple DM. Genetic analysis re-
vealed a CTNNA1-ALK fusion and TP53 mutation. Despite 
further ALK-TKI therapy, the patient’s condition declined, 
and NGS analysis of the blood samples revealed a novel 
PIK3CA mutation (ALK fusion was not detected). The im-
portance of this shift remains uncertain. Nevertheless, 
treatment failure might be related to novel alterations and 
the predominance of other abnormalities in recurrent tu-
mour tissue [184].

Conclusions

Salivary gland carcinomas are rare entities with unpre-
dictable disease courses. The diversity of both the histo-
logical architecture and molecular alterations is distinct 
among individual subtypes, which leads to diagnostic dif-
ficulties. Moreover, because of the rare incidence of SGCs, 
multicentre clinical trials are urgently needed to provide 
targeted therapeutic options. Currently, the value of gene-

tic analysis has been highlighted, particularly in terms 
of the possibilities of precision therapies and in light 
of the insufficient effectiveness of standard treatment op-
tions. Knowledge of the molecular landscape of SGC, espe-
cially related to outcome predictors, will provide novel and 
precise methods for diagnosis and therapy in the future.
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