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In a green tandem reaction using aldehyde derivatives, malononitrile, and dimedone, a
radical tandem Knoevenagel–Michael cyclocondensation reaction of tetrahydrobenzo[b]
pyran scaffolds was developed. Using visible light as a sustainable energy source,
methylene blue (MB+)-derived photo-excited state functions were employed in an
aqueous solution as single-electron transfer (SET) and energy transfer catalysts. The
range of yields is quite uniform (81–98%, average 92.18%), and the range of reaction time
is very fast (2–7min, average 3.7 min), and the point mentioned in the discussion is that the
procedure tolerates a range of donating and withdrawing groups, while still giving very
excellent yields. The reaction is fairly insensitive to the nature of the substituents. Research
conducted in this project aims to develop a non-metallic cationic dye that is both
inexpensive and widely available for more widespread use. In addition to energy
efficiency and environmental friendliness, methylene blue also offers an excellent atom
economy, time-saving features, and ease of use. As a result, a wide range of long-term
chemical and environmental properties can be obtained. The turnover number and
turnover frequency of tetrahydrobenzo[b]pyran scaffolds have been computed.
Surprisingly, gram-scale cyclization is a possibility, implying that the technology may be
applied in industries.
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Graphical Abstract |

1 INTRODUCTION

Photoredox catalysts have recently played an increasingly
important role in the organic synthesis by forming C–C and
C–heteroatom bonds via single electron transfer (SET) and
photo-induced electron transfer (PET). From small-scale to
large-scale, they are required for a variety of treatments.
Technological advances have led to the development of flow
reactors (Politano and Oksdath-Mansilla, 2018) using visible
light and dual photosensitized electrochemical reactions
(Verschueren and De Borggraeve, 2019), resulting in a more
inexpensive, green, and efficient method of reaction. It took

until much later for MB+’s staining properties to be recognized.
Methylene blue belongs to the thiazine dye family and is a cationic
dye. Several medical procedures involve the use of methylene blue.
It possesses anti-malarial effects and has been demonstrated to be
effective in the treatment of methemoglobinemia (Wainwright and
Crossley, 2002; Clifton and Leikin, 2003; Tardivo et al., 2005). MB+

has a τf ~ 1.0 ns singlet lifetime, a 664 nm absorbance, and a molar
absorbance (ε = 94,000) (Romero et al., 2016). With a triplet
lifespan of τf ~ 32 μs(Pitre et al., 2016), the triplet 3MB+* is a
significantly more stable excited state (Patel et al., 2021). The
photocatalytic cycles of methylene blue are depicted in Figure 1
(Patel et al., 2021). When the dye in the ground state is bombarded
with visible light to produce the high-energy excited state of the dye
(Dye*), the photoredox cycle begins. Two distinct pathways from
the dye in the excited state (Dye*) are used to demonstrate the
visible light photoredox catalysis. The Dye* reductive property can
be used in the presence of a sacrificial electron acceptor. In other
words, as an electron donor, Dye* leads to the radical cation species
of Dye. Dye* acts as an electron acceptor in the presence of a
sacrificial electron donor (Miyabe, 2017).

Furthermore, green chemists believe that visible light
irradiation is a reliable technique for environmentally friendly
organic chemical syntheses since it has large energy reserves, low
prices, and renewable energy sources (Mohamadpour, 2021a;
Mohamadpour, 2021b).

Because of their biological and pharmacological action, the
structures that makeup pyran derivatives have aroused the
curiosity of biochemists and synthetic organic chemists
(Figure 2) such as Chk1 kinase inhibitory activity (Foloppe et al.,
2006), analgesic properties (Kuo et al., 1984), anticancer (Wang et al.,
2000), vasodilatory (Ahluwalia et al., 1997), spamolytic (Ellis, 1977),
antihypertensive, hepatoprotective, cardiotonic (Heber et al., 1993),
vasodilator (Coates, 1990), anti-leukemic (Fokialakis et al., 2002;
Beagley et al., 2003), emetic (Cannon et al., 1975), anti-anaphylactic
(Biot et al., 1997), diuretic (Hafez et al., 1987), and anti-alzheimer
activities (Bayer et al., 2006).

Several methods for synthesizing tetrahydrobenzo[b]pyran
scaffolds with MCRs in the presence of various catalysts have
been published. For example, CaHPO4 (Bodaghifard et al., 2016),
SiO2NPs (Banerjee et al., 2011), ethylenediamine diacetate (Zhou
et al., 2017), silica-bonded N-propylpiperazine sodium n-propionate
(Niknam et al., 2013), I2 (Bhosale et al., 2007), NH4Al(SO4)2.12H2O

FIGURE 1 | Photocatalytic cycles can be carried out with MB+ (Patel
et al., 2021).
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(Mohammadi et al., 2017), NH4H2PO4/Al2O3 (Maleki and Sedigh
Ashrafi, 2014), ACoPc-MNPs (Zolfigol et al., 2016), ZnO NPs
(Banerjee and Saha, 2013), Fe3O4@SiO2-imid-PMA (Esmaeilpour
et al., 2015), NiFe2O4@SiO2–H3PW12O40 (Maleki et al., 2016),
theophylline (Mohamadpour, 2021c), triethanolamine (Rahnamaf
et al., 2020), sodium alginate (Mohamadpour, 2022a), Fe3O4@SiO2@
TiO2 (Khazaei et al., 2015), MgFe2O4 nanoparticles (Eshtehardian
et al., 2020), trichloroisocyanuric acid (Hojati et al., 2018), Na2 eosin
Y (Mohamadpour, 2021d), DABCO (Tahmassebi et al., 2011), and
Pd nanoparticles (Saha and Pal, 2012). There are limitations onmetal

catalysts such as, expensive reagents, severe reaction conditions,
monotonous yields, environmental hazards, workup processes, and
long reaction times associated with these methods. A homogenous
catalyst is also difficult to separate from a reaction mixture. Our goal
was to investigate photocatalysts (Mohamadpour, 2021e;
Mohamadpour, 2021f) in green environments in order to
synthesize heterocyclic compounds that had previously been
explored. This research also shows the use of MB+

(Mohamadpour, 2022b; Mohamadpour, 2022c) as a metal-free
dye photo-redox catalyzer that is low-cost and widely available.

TABLE 1 | Optimization of various photocatalystsa.

Entry Photocatalyst Solvent (3 ml) Time (min) Isolated yields (%)

1 — H2O 20 64
2 Methylene blue (0.1 mol%) H2O 3 81
3 Methylene blue (0.2 mol%) H2O 3 97
4 Methylene blue (0.5 mol%) H2O 3 97
5 Riboflavin (0.2 mol%) H2O 3 61
6 Acenaphthenequinone (0.2 mol%) H2O 3 46
7 Phenanthrenequinone (0.2 mol%) H2O 3 43
8 Erythrosin B (0.2 mol%) H2O 3 48
9 9H-Xanthen-9-one (0.2 mol%) H2O 3 49
10 Xanthene (0.2 mol%) H2O 3 47
11 Rhodamine B (0.2 mol%) H2O 3 63
12 Rose bengal (0.2 mol%) H2O 3 56
13 Fluorescein (0.2 mol%) H2O 3 67

aReaction conditions: malononitrile (1 mmol), benzaldehyde (1 mmol), and dimedone (1 mmol) in H2O, as well as a white LED (18 W) and a variety of photocatalysts, were utilized at room
temperature.

FIGURE 2 | Pyran motifs can be found in a variety of medicinally important compounds.
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Visible light assists Knoevenagel–Michael cyclocondensation process
of aldehyde derivatives, malononitrile, and dimedone in an aqueous
solvent at room temperature and in an air environment. This was a

successful one-pot reaction that was completed in a timely, cost-
effective, and simple manner.

2 RESULTS AND DISCUSSION

To begin, LED irradiation was used to study the reaction of
benzaldehyde, malononitrile, and dimedone in H2O (3ml) at
room temperature. In 3ml H2O for 20min, there was a 64%
yield of 4a without photocatalysts. As a way of improving the
reaction, methylene blue, riboflavin, acenaphthenequinone,
phenanthrenequinone, erythrosin B, 9H-xanthen-9-one, xanthene,
rhodamine B, rose Bengal, and fluorescein (Figure 3) were examined
in the same settings. This reaction proceeded with 43–97% yields and
produced the acceptable matching product 4a (Table 1). Methylene
blue, according to the data, performed better in such a response.
Using 0.2 mol% MB+, the yield was raised to 97% (Table 1, entry 3).
The CH2Cl2, DMSO, toluene, THF, and DMF all resulted in
decreased yields. When the reaction is carried out in EtOAc,
EtOH, MeOH, H2O/EtOH (1:1), CH3CN, or solvent-free
conditions, the reaction rate and yield increase. With a high yield
and rate, the reaction took place in H2O. Using the same conditions
as entry 12, a yield of 97% was obtained. In Table 2, the impact of
white light on the yield was examined using a variety of light sources.
Testing without the light source resulted in a small amount of 4a. The
effective synthesis of product 4a requires visible light and MB+,
according to the findings. Changes in the intensity of white LEDs
were also used to find the improved settings (10, 12, 18, and 20W).

TABLE 2 | Optimization of the solvents and visible lighta.

Entry Light source Solvent (3 ml) Time (min) Isolated yields (%)

1 — H2O 15 trace
2 Blue light (18 W) H2O 3 90
3 Green light (18 W) H2O 3 86
4 White light (10 W) H2O 3 83
5 White light (12 W) H2O 3 91
6 White light (20 W) H2O 3 97
7 White light (18 W) EtOAc 3 71
8 White light (18 W) EtOH 3 76
9 White light (18 W) — 8 74
10 White light (18 W) MeOH 6 67
11 White light (18 W) H2O/EtOH (1:1) 3 88
12 White light (18 W) H2O 3 97
13 White light (18 W) CH3CN 3 68
14 White light (18 W) CH2Cl2 20 33
15 White light (18 W) DMSO 25 35
16 White light (18 W) toluene 25 28
17 White light (18 W) THF 15 18
18 White light (18 W) DMF 15 24

aReaction conditions: at room temperature, malononitrile (1 mmol), benzaldehyde (1 mmol), and dimedone (1 mmol) were added to MB+ (0.2 mol %).

FIGURE 3 | Structures of various photocatalysts.
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TABLE 3 | Synthesis of tetrahydrobenzo[b]pyran scaffolds.

(Continued on following page)
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TABLE 3 | (Continued) Synthesis of tetrahydrobenzo[b]pyran scaffolds.

Frontiers in Chemistry | www.frontiersin.org July 2022 | Volume 10 | Article 9347816

Mohamadpour Organic Chemistry, Photoexcited MB+

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


SCHEME 1 | Synthesis of tetrahydrobenzo[b]pyran scaffolds.

TABLE 4 | Calculated turnover number (TON) and turnover frequency (TOF).

Entry Product TON TOF Entry Product TON TOF

1 4a 485 161.6 12 4l 480 240
2 4b 465 155 13 4m 475 158.3
3 4c 440 146.6 14 4n 405 57.8
4 4d 480 240 15 4o 475 118.7
5 4e 425 85 16 4p 475 237.5
6 4f 490 163.3 17 4q 435 87
7 4g 475 95 18 4r 460 92
8 4h 490 245 19 4s 490 163.3
9 4i 420 60 20 4t 440 73.3
10 4j 410 82 21 4u 455 151.6
11 4k 485 242.5 22 4v 485 161.6

SCHEME 2 | There has been a mechanistic approach presented for synthesizing tetrahydrobenzo[b]pyran scaffolds.
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White LED (18W) was found to be the best choice according to the
researchers (Table 2, entry 12). Table 3 and Scheme 1 show that a
wide variety of substrates were evaluated under ideal conditions. In
Table 3, it appears that the benzaldehyde substituent had no
influence on the outcome of the reaction. Within the reaction
conditions, polar and halides were allowed. The current reaction
conditions permit both electron-donating and electron-withdrawing
reactions to proceed successfully.Ortho-,meta-, and para-substituted
aromatic aldehydes have a very high yield. Various aldehydes, such as
the heavier naphthaldehyde, result in a completed product with
negligible yield loss. Heterocyclic aldehydes followed a similar pattern
in terms of reactivity.

Likewise, Table 4 displays the turnover number (TON) and
turnover frequency (TOF). A higher TON and TOF numerical
value mean less catalyst is utilized, and a higher yield, and the
catalyst becomes more efficient with increasing value.

The chosen strategy is depicted in Scheme 2. It is possible to
tautomerizemalononitrile (2) by exposing it to visible light (A). After
that, the aldehydes (1) and (A) are joined to generate
arylidenemalononitrile (B), which is photochemically activated to
yield a radical intermediate (C). More energy can be utilized to
accelerate this reaction, altering visible light. According to recent
studies (Patel et al., 2021), visible light energy is utilized by this
widely available cationic dye to create catalytic approaches that use
single-electron transfer (SET) as well as energy transfer (EnT). To
boost the visible-light–induced *MB+, a SET approach is used to
produce themalononitrile radical. The energy transfer (EnT) activity
between the radical adduct (C) and the MB radical produces the
intermediate (D) and ground-state MB. The intermediate (F) is
formed when the malononitrile radical takes a hydrogen atom from
(E). The intermediates (F) and (D) combine as aMichael acceptor to
generate (G), which then undergo intramolecular cyclization and
tautomerization to give rise to the final product (4).

A comparison of the catalytic ability of several catalysts described
in the literature is presented in Table 5 for the synthesis of
tetrahydrobenzo[b]pyran scaffolds. In the presence of visible light,
it could possess a number of useful properties, such as the need for a
small amount of photocatalyst, a rapid reaction time, aqueous
solvents, and the absence of byproducts. The atom–economic
protocol is exceedingly successful at multigram scales and has
significant industrial implications. Their efficiency and purity set
them apart from other materials.

3 EXPERIMENT

3.1 General
A 9100 electro–thermal apparatus was used to determine the
melting points of all compounds. A Bruker (DRX-400 and
DRX-300) instrument was also used to record the nuclear
magnetic resonance (1HNMR) spectra using CDCl3 as the
solvent.

3.1.1 Preparation of Tetrahydrobenzo[b]pyran
Scaffolds in General (4a–v)
Methylene blue (0.2 mol%) was mixed with dimedone (3,
1.0 mmol), malononitrile (2, 1.0 mmol), and aldehydes (1,
1.0 mmol) in H2O (3 ml) and agitated at room temperature
under white LED (18W) irradiation. The reaction, which used
n-hexane/ethyl acetate (3:1) as the eluent, was monitored using
TLC. As a result of the reaction, the resultant substance was
screened and rinsed with water, and the crude solid was
crystallized from ethanol in order to yield the pure chemical
without further purification. If we could make the
aforementioned compounds using gram scale methods, we
would be able to scale up to the level of pharmaceutical
process development. 50 mmol of m-tolualdehyde,
malononitrile, and dimedone were used in one experiment.
The large-scale reaction ran well, requiring only 3 min to
complete, and the product was recovered using typical
filtration processes. The 1HNMR spectrum of this material
suggests that it is spectroscopically pure. After comparing the
spectroscopic data, the products were categorized (1HNMR). The
1HNMR spectra files are provided in the Supplementary
Material.

4 CONCLUSION

According to the findings, using a single-electron transfer (SET)/
energy transfer (EnT), a radical tandem Knoevenagel–Michael
cyclocondensation process of aldehyde derivatives, malononitrile,
and dimedone can be used to generate metal-free
tetrahydrobenzo[b]pyran scaffolds. In an aqueous solution and
an air atmosphere at room temperature, visible light is used as a
renewable energy source. Green protocol advantages include the

TABLE 5 | Comparing the catalytic characteristics of different catalysts described in the text for the production of catalyst 4aa.

Entry Catalyst Conditions Time/yield (%) Reference

1 CaHPO4 H2O/EtOH, 80°C 120 min/91 Bodaghifard et al. (2016)
2 SiO2 NPs EtOH, rt 25 min/94 Banerjee et al. (2011)
3 Silica-bonded N-propylpiperazine sodium n-propionate H2O/EtOH, Reflux 25 min/90 Niknam et al. (2013)
4 I2 DMSO, 120°C 3.2 h/92 Bhosale et al. (2007)
5 NH4Al(SO4)2.12H2O EtOH, 80°C 120 min/92 Mohammadi et al. (2017)
6 NH4H2PO4/Al2O3 EtOH, Reflux 15 min/86 Maleki and Ashrafi, (2014)
7 Fe3O4@SiO2-imid-PMA H2O, Reflux 20 min/94 Esmaeilpour et al. (2015)
8 Theophylline H2O/EtOH, rt 10 min/89 Mohamadpour, (2021c)
9 Trichloroisocyanuric acid EtOH, 80 °C 10 min/90 Rahnamaf et al. (2020)
10 MB+ visible light irradiation, H2O, rt 3 min/97 This work

aBased on the benzaldehyde, malononitrile, and dimedone three-component synthesis.
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use of minimal amounts of photocatalyst, excellent yields, a
reaction side that is highly efficient, safe conditions for the
reaction, and a speedy procedure without the use of toxic
chemicals or solvents. The purification process did not require
chromatography. A model substrate reaction at the multigram
scale demonstrates that this reaction can be scaled up without
compromising the outcome. Due to these advantages, this
technology offers significant benefits for industrial applications
and for environmental concerns.
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