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ABSTRACT

Epstein—Barr virus (EBV) is a widely prevalent human
herpes virus infecting over 95% of all adults and is
associated with a variety of B-cell cancers and induc-
tion of multiple sclerosis. EBV accomplishes this in
part by expression of coding and noncoding RNAs
and alteration of the host cell transcriptome. To bet-
ter understand the structures which are forming in
the viral and host transcriptomes of infected cells,
the RNA structure probing technique Structure-seq2
was applied to the BJAB-B1 cell line (an EBV in-
fected B-cell lymphoma). This resulted in reactivity
profiles and secondary structural analyses for over
10000 human mRNAs and IncRNAs, along with 19
lytic and latent EBV transcripts. We report in-depth
structural analyses for the human MYC mRNA and
the human IncRNA CYTOR. Additionally, we provide
a new model for the EBV noncoding RNA EBER2
and provide the first reported model for the EBV tan-
dem terminal repeat RNA. In-depth thermodynamic
and structural analyses were carried out with the
motif discovery tool ScanFold and RNAfold predic-
tion tool; subsequent covariation analyses were per-
formed on resulting models finding various levels
of support. ScanFold results for all analyzed tran-
scripts are made available for viewing and download
on the user-friendly RNAStructuromeDB.

INTRODUCTION

Epstein—Barr virus (EBV) is a widely prevalent human her-
pes virus infecting over 95% of all adults. Most people be-
come infected with the virus at young ages and show min-
imal to mild cold-like symptoms; for those that become
infected later in life, infection presents as mononucleosis
where the symptoms can be more severe and long lasting.
After EBV’s initial infection and lytic cycle, it goes into a la-
tency phase and primarily resides in a subset of B-cell lym-
phocytes. There are several latency profiles in which EBV

can exist (0, I, II or III) and each one is distinguished by a
unique transcription profile of latent genes (1).

It is not entirely clear how latent expression of EBV
transcripts and proteins affects regular B-cell function and
canonical regulation. However, in certain forms of B-cell
cancers (e.g. Burkitt’s lymphoma, Hodgkin’s lymphoma,
and nasopharyngeal carcinoma), EBV is found to be lyti-
cally active and highly associated with cancerous cells, in-
dicating an interplay between the virus and the dysregula-
tion of cellular biology that stimulates cancerous growth.
Furthermore, EBV infection is sufficient to immortalize B-
cells in culture and EBV has been recently linked to the in-
duction of multiple sclerosis (2). There is a clear oncogenic
and disease relevant phenotype associated with EBV and
a deeper understanding of the interplay between host and
virus is needed.

EBYV can influence and alter the regulation of B-cells at
many levels: transcription, post-transcription, translation,
or post-translation (3,4). There are examples of EBV ncR-
NAs which exert control over the cell by altering transcrip-
tion pathways, modulating host RNA levels, depletion of
host trans-regulatory machinery, and more (5-7). The most
highly expressed RNAs by latent EBV are the non-coding
Epstein—Barr encoded RNAs (EBER1 and EBER2), which
promote a pro-tumorigenic environment and can bind to
several host proteins (e.g. PAXS, several hnRNPs and La
antigen) to promote infection (5,8,9). Notably, both EBERs
are structured ncRNAs, with EBER1 being significantly
more structured than EBER2 (8). RNA structure is impor-
tant to EBER function (5,8,9) however, secondary structure
models for EBERs vary (particularly the less stable EBER2)
(6,10,11). Structure modeling of EBERs has relied on chem-
ical and enzymatic probing data from cell lysates and lim-
ited comparative analysis (6,10,11). To date, no in cellulo
probing of EBER structure has been used to inform mod-
els. Additional noncoding transcripts are also expressed in
latency. The stable intronic sequence (sis)RNAs 1 and 2
were described as arising from the EBNA-LP locus of EBV
(12). While sisRNA function is an ongoing area of study,
sisSRNA-1 is highly conserved in sequence/structure and is
highly expressed in latency III, suggesting function. A num-
ber of host regulatory proteins can bind sisRNA-2 (13) and
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this RNA appears to be necessary for cell transformation af-
ter infection (14). Aside from these RNAs, there are other
latent transcripts expressed which have potential to mod-
ulate canonical cellular activity (e.g. LMPs, EBNAs and
BART RNAs).

To discover additional functional RNAs or structural
motifs present in EBV and other herpes viruses, our lab pre-
viously applied the motif discovery tool ScanFold (15,16)
to all human herpes virus genomes—cataloging a myriad
of potentially functional and significantly stable regions
within each virus (17). Here, ScanFold was able to home
in on a functional motif in the 3'UTR of BFRF1 which ex-
hibited activity in a dual luciferase assay, indicating roles
in post-transcriptional control. ScanFold excels at identi-
fying regions of significant thermodynamic stability (using
a thermodynamic z-score), which indicates a non-random
sequence order (i.e. an evolved sequence) with high propen-
sity for structure/function. However, while ScanFold can
identify these regions, it only predicts local RNA struc-
ture (typically base pairs within 120 nucleotides or less) and
the resulting structural models are purely computational.
Therefore, these results can be enhanced by the incorpora-
tion of additional, experimentally derived structural data.

Unlike proteins, RNA structure is less amenable to
atomic (or near-atomic) structure determination methods
(e.g. NMR, X-ray crystallography and cryo-EM). While
RNA molecules can include regions of rigid, static struc-
tures, much of an RNA is loosely structured and highly
dynamic making it unsuitable (in many cases) for analyses
using the high-resolution tools of structural biology (18).
The folding of RNA is, however, hierarchical: the forma-
tion of secondary structure (i.e. base pairing) occurs first
and accounts for a majority of the overall thermodynamic
energy of structure formation (19). The ensuing forma-
tion of tertiary structure is largely constrained by the pres-
ence of secondary structure and, because of this, knowl-
edge of the 2D structural landscape is highly informative for
RNAs. This landscape can be predicted with limited accu-
racy (~70% correct for RNAs < ~700 nt (20)) using experi-
mentally derived thermodynamic parameters. A number of
approaches have been developed to improve predicted 2D
models which typically limit the scope of predictions and
incorporate complementary data. For example, ScanFold
limits the size of 2D structures to a small scanning win-
dow size and informs models based on recurring base pairs
with high propensity for ordered stability (15,16). Other
methods incorporate phylogenetic comparative data into
predictions to identify base pairing with evolutionary sup-
port: e.g. RNAalifold (21) and Multilign (22,23). All
2D prediction methods can be greatly improved by the in-
corporation of experimental structure probing data, where
RNAs are exposed to structure-sensitive reagents to collect
information on their 2D conformations (18). The collection
of such data has been vastly improved through the use of
high-throughput sequencing (24): e.g. as implemented by
the RNA structure probing technique Structure-seq?2 (25).

Structure-seq2 (25) utilizes dimethyl sulfate (DMS), a
small, cell-permeable molecule, to modify unpaired or
loosely structured adenosine (A) and cytidine (C) bases.
DMS methylates the N1 and N3 position of A and C bases
respectively, which present on the Watson—Crick base pair-

ing face of each. Therefore, highly structured, base paired
nucleotides are not accessible for reaction with DMS, mak-
ing DMS a direct probe of base pairing. Here, the loca-
tions of DMS modifications are detected via accumulation
of reverse transcriptase (RT) stops, where modified bases
induce the RT enzyme to terminate transcription one nu-
cleotide downstream from the modified base. When cou-
pled to high throughput sequencing, whole transcriptomes
can be probed for secondary structure in a single experi-
ment. Reactivity profiles, normalized per transcript and cal-
culated from the raw RT-stop counts at each nucleotide, rep-
resent a probability of individual nucleotides being paired
or unpaired and are most informative when coupled with
an RNA folding algorithm (24): e.g. as a soft constraint,
where the reactivity is converted to a pseudo-energy which
alters the overall predicted minimum free energy (MFE) of
structure proportionate to the reactivity—with highly reac-
tive nucleotides being less likely to be base paired due to
their energy penalty contribution to the predicted free en-
ergy.

To better understand structure-function relationships of
EBYV transcripts and human transcripts present during la-
tent viral infection, we have applied the Structure-seq2
method to the BJAB-BI cell line—a B-cell lymphoma artifi-
cially infected with EBV that expresses a latency III gene ex-
pression program (the most transcriptionally active type of
EBYV latent infection). The resulting sequencing data were
analyzed with the bioinformatics package Structure-
Fold2 (26) to generate reactivity profiles for >10000 hu-
man and viral transcripts. For mRNAs and IncRNAs, re-
activity profiles were coupled with ScanFold as pseudo-
energies to yield experimentally informed structural mod-
els with a focus on significantly stable (i.e. potentially func-
tional) local motifs. For shorter transcripts, reactivity pro-
files were used alongside RNAfold to generate global 2D
models. High value motifs and models were further assessed
using the cm-builder pipeline (27), which utilizes IN-
FERNAL (28) and R-scape (29,30) to identify and align
homologous sequences and to detect evidence of signif-
icant sequence covariation (correlated evolution between
sites paired in our model structures). Additionally, we fo-
cus on several high value transcripts to showcase how re-
searchers can use data from this study to generate models
of longer-range interactions, identify functional motifs, and
build structure-function hypotheses for future studies (e.g.
functional assays, small-molecule targeting, stability assays,
etc.). Resulting models and processed reactivity data are
made available on the RNAStructuromeDB (31) to facili-
tate their usage by researchers interested in studying RNAs
significant to EBV infection, B-cell biology, and disease:
e.g. cancer and autoimmune diseases associated with EBV-
mediated deregulation of B-cells.

MATERIALS AND METHODS
BJABJ-BI cell culturing

BJAB-BI cells were grown in suspension at 37°C and 5%
CO; using RPMI media supplemented with 2 mM L-
glutamine, 1% penicillin—streptomycin, 10 mM HEPES, 1
mM sodium pyruvate (Life Technologies), and 10% FBS
(Atlanta Biologicals). Cells were used in experiments when



between 5-30 passages, were passed at v/v ratios of 1:20-1:4
and were regularly tested for mycoplasma contamination.

DMS probing of BJAB-B1 cells

BJAB-BI cells were grown to a volume of ~80 ml to en-
sure enough cells for adequate total RNA isolation yields.
Cells were counted, centrifuged at 150 x g for 3 min, then
normalized to 5000000 cells/ml in DPBS. Then, follow-
ing recommended safety protocols (32), cells were treated
with DMS (2% v/v) for 2 min at room temperature prior
to neutralization with DTT (powder at a 5 times molar
ratio to DMS). Neutralized cells were centrifuged at 4°C
and 200 x g for 2 min, supernatant was removed, and the
cell pellet was dissolved in TRIzol (Invitrogen). DMS prob-
ing of cells (DMS+) was completed in triplicate on sepa-
rate days. Additionally, three DMS negative control sam-
ples (DMS—) were processed identically but without the ad-
dition of DMS.

RNA isolation and quality control

Total RNA for all DMS+/— samples was extracted via
standard TRIzol protocol and two rounds of standard
RNA ethanol precipitation. Quality of total RNA was as-
sessed using both a ThermoFisher Scientific NanoDrop
One and an Agilent Bioanalyzer 2100. All samples had a
RNA Integrity Number (RIN) of 8.5-9.9, where a 10 would
indicate the highest quality total RNA with no degradation
and a 1 would indicate completely degraded RNA.

c¢DNA library generation and quality control

The cDNA library preparation protocol outlined by
Structure-seq2 (25), was followed closely. We will briefly de-
tail each step as it applied to the samples in this paper and
any minor deviations which were taken.

Each DMS+ and DMS— sample had ~400 ug of to-
tal RNA used for polyA selection using the Poly(A)Purist
MAG Kit (ThermoFisher) and reactions were cleaned up
using RNA ethanol precipitation per the manufacturer pro-
tocol. Following this, each sample underwent DNase I treat-
ment (NEB) and reactions were purified with the RNA
Clean and Concentrator kit (Zymo). PolyA selected RNA
quality was assessed via the Agilent Bioanalyzer 2100. All
samples showed minimal rRNA contamination (3.4-8.5%)
and electropherogram traces characteristic of mRNA.

Reverse transcriptase (RT) reactions were performed us-
ing SuperScript III (ThermoFisher), biotinylated dCTPs
(Trilink), random hexamer primers fused with a partial Illu-
mina sequencing adapter (Supplemental Table S1) follow-
ing the reaction conditions detailed in the Structure-seq2
method. After RT was complete, cDNA product was pu-
rified using hydrophilic magnetic streptavidin beads (NEB)
and the RNA Clean and Concentrator kit (Zymo), as de-
scribed in the ‘Streptavidin Version’ of Structure-seq2.

Ligation of partial sequencing adapter to the 3’ end of
cDNA products was accomplished using a hairpin adapter
(Supplemental Table S1), T4 DNA Ligase (NEB), and reac-
tion conditions detailed in the Structure-seq2 method. Lig-
ated product was purified from the reaction via the same
streptavidin bead process used after RT reactions.
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Ligated cDNA samples were then PCR amplified using
full TruSeq adapter primers (Supplemental Table S1), Q5
polymerase (NEB), and reaction conditions previously de-
tailed (25). Subsequently, PCR amplified cDNA libraries
were purified, and size-selected between ~200-800 nu-
cleotides via PAGE using a 10% acrylamide, 8.3 M urea gel.

Resulting cDNA libraries were analyzed on the Agilent
Bioanalyzer 2100 to confirm size selection. Additionally, li-
braries were analyzed via qPCR using primers targeting the
ends of the sequencing adapters (Supplemental Table S1),
and serial dilutions showed a concentration dependent shift
in AAC;, values. The Bioanalyzer and qPCR results confirm
the size of the cDNA libraries and the presence of proper
adapter sequences.

Sequencing of cDNA libraries

The three DMS+ and three DMS— cDNA libraries were
single-end sequenced on a single lane of a Illumina
HiSeq3000 using standard indexing and sequencing primers
with 150 cycles. This was completed at the lowa State Uni-
versity DNA Facility. This sequencing generated FASTQ
files used in downstream analyses.

Acquisition of FASTA sequences for sequence read mapping

The FASTA file used for mapping FASTQ file reference
reads to human mRNA transcripts was downloaded from
NCBI on 4 August 2020 and was filtered to include the
longest isoform transcript of each protein coding gene. The
FASTA file used for mapping FASTQ file reference reads
to human IncRNAs was obtained from Ensembl database
on 18 March 2021. The EBV sequence NC_009334.1 was
downloaded from NCBI on 30 October 2020 and used for
mapping and analysis of EBV transcripts. The 18s ribo-
some sequence NT_167214.1 was downloaded from NCBI
on 9 April 2021.

StructureFold2 processing of sequencing data

FASTQ files were processed via the StructureFold2
(SF2) bioinformatic pipeline using default parameters as
described previously (26).

Briefly, FASTQ files were initially analyzed with the
program Fastgc (version 0.11.5). Identified adapter se-
quences and overrepresented sequences were trimmed us-
ing the SF2 script fastg trimmer.py which utilizes
Cutadapt (version 1.13) to trim and filter reads which
are <30 Phred. Utilizing Bowtie2 (version 2.3.4.1) the
mRNA, IncRNA, ribosome and EBV FASTA files had cor-
responding mapping indexes created and the SF2 script
fastgmapper.py was used to map trimmed FASTQ
files to each reference index. Resulting SAM files were
then filtered using the SF2 script sam_filter.py with
default settings. Next, filtered SAM files were converted
to reverse transcriptase stop count (RTSC) files via the
SF2 script sam_to_rtsc.py. The three DMS+ and
three DMS— RTSC files were combined into two respec-
tive RTSC files via rtsc_combine.py. Coverage and
overlap files (useful for reactivity generation) were gen-
erated for the combined DMS+ RTSC file using the
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rtsc_coverage.py script utilizing the default parame-
ters and the “-ol’ flag. Finally, the combined DMS+ and
DMS— RTSC files were used to generate a REACT file
viathe rtsc_to_react . py script with default parameters
and the ‘“-restrict’ flag which limited reactivity data genera-
tion to transcripts present on the previously generated over-
lap list.

Statistical analysis of reactivity datasets

SAM files generated for each DM S+ and DMS— sample via
the fastg_mapper . py script were analyzed using the pro-
gram Samtools (version 1.10). SAM files for each map-
ping condition (mRNAs, IncRNAs, EBV transcripts, and
18S rRNA) were converted to BAM files then sorted, in-
dexed, and merged into a DMS+ BAM file and a DMS—
BAM file. The Samtools stats module was then executed
on all corresponding DMS+ and DMS— BAM files.

Additionally, the scripts rtsc_coverage.py and re-
act_statistics.py from the SF2 package were used to
obtain details of the reactivity datasets. Here, a coverage
and average transcript reactivity were calculated. Coverage
in this case is defined as the number of observed RT-stops
per transcripts dived by the total number of potential re-
active nucleotides (A and C bases). Using this definition, a
coverage of 1 indicates that there are an equal number of
RT-stops as there are total A and C bases.

18S rRINA optimization of pseudo-energy parameters

In this study, reactivities are transformed to pseudo-
energies following the Deigan method (33) which is written
as Equation 1:

Y, =mX,+b (1)

Here, Y, is the pseudo-energy of a given nucleotide at po-
sition n, X, is the normalized reactivity at nucleotide posi-
tion n, and m and b are constant fitting parameters.

To determine the appropriate value of m and b to use
with ScanFold, fitting optimizations using a crystal struc-
ture reference model of the human 18S rRNA were per-
formed. A DMS reactivity file for the 18S rRNA was ob-
tained by analysis of our FASTQ files with the 18S rRNA
sequence via SF2 (FASTA acquisition and SF2 processing is
described above). ScanFold was run on the 18S rRNA se-
quence using a 120-nucleotide sized window, a 1-nucleotide
step size, and 100 randomizations. Additionally, it used the
18S rRNA react file as a pseudo-energy constraint vary-
ing the m and b parameters from 0.2 to 3.0 and —0.2 to
—3.0, respectively, at 0.2 intervals for each parameter. This
resulted in 225 unique parameter conditions. The resulting
No Filter, —1 z-score, —2 z-score, and —1 z-score global
refold files for each ScanFold model for each parameter
condition (in CT file format) were compared to the ref-
erence structure model of the 18S rRNA using the script
ct_sensitivity ppv_120.py (see Data Availability for
script access). In this process, the base pairs from the ex-
perimental and reference CT files are cross referenced and
any identical (i, j) pairing is counted as consistent and any
unique base pairs are counted as conflicting. Additionally,
this process compares the local base pairs (120 nucleotide

base pair span or less) as this is what ScanFold is opti-
mized to model and the ScanFold results analyzed be-
low focus on these local —1 and —2 z-score motifs. Using
this definition, the sensitivity and positive predictive value
(PPV) formulas can be seen in equation 2 and 3, respec-
tively:

Consistent base pairings

Sensitivity = (2)

Total # of Reference base pairs

Consistent base pairings

PPV (3)

~ Total #of Experimental base pairs

The output for this analysis was used to identify an ap-
propriate slope (1) and intercept (b) parameter for pseudo-
energy incorporation with ScanFold (Supplemental Table
S2).

Incorporation of reactivity values with ScanFold

A description of the ScanFold process can be found in a
methods paper (15) and in several applications of Scan-
Fold to human and viral targets (16,17,34,35). Briefly,
ScanFold can be broken down into two major mod-
ules: ScanFold-Scan and ScanFold-Fold. During
ScanFold-Scan, a small 120 nucleotide analysis window
scans at 1 nucleotide intervals from the 5’ to the 3’ end of
the transcript. In each analysis window, several thermody-
namic metrics are calculated including a minimum free en-
ergy (MFE) (i.e. Gibbs free energy or AG), AG z-score, en-
semble diversity (ED), and a metric indicating the fraction
of random sequences which were more stable than the orig-
inal sequence during z-score determination (termed the P-
value). ScanFold-Fold then takes the data from all over-
lapping analysis windows and builds a consensus model of
significantly stable, local 2D structure by assessing which
modelled base pairs from all overlapping windows con-
tribute the most to significant thermodynamic stability (i.e.
which base pairs yield the lowest AG z-scores). The result
of this process is windowed scanning data along the entirety
of a transcript and a local 2D structure base pair consen-
sus model, with an emphasis on significantly ordered/stable
structures. While ScanFold does not predict the global
structure of these transcripts, it was previously shown that
ScanFold can accurately identify and model regions of
well-structured and functional RNAs, meaning the Scan-
Fold identified structures are of high value for potential
functional assays and therapeutic targeting (35,36).

Each human mRNA, human IncRNA and EBV tran-
script which had SF2 generated reactivity profiles had the
associated reactivity profile and transcript sequence an-
alyzed with ScanFold. Reactivity files which were out-
put from SF2 were parsed and reformatted for input with
ScanFold using the script fasta_react_parser.py
(see Data Availability for script access). This script also
parsed the input FASTA files used for mapping and pulled
out individual sequences to individual FASTA files. The fol-
lowing ScanFold command was used for analyses:

$ python /path/to/ScanFold.py
<Input.fasta> --out_name <Input> --react
<Input.react> --name <Input> -m 0.6 -b
-1.0 --global_refold



Here, the ‘—out_name’ flag denotes a name for the output
directory, ‘—react’ points to the react file, ‘“-name’ specifies
the name to use in file headers (e.g. CTs and WIGs), -m’ and
‘-b’ denote the slope and intercept values used for pseudo-
energy calculations, and ‘—global_refold’ enables global re-
folding of transcripts with the DMS informed —1 and —2
z-score DBN files as constraints.

DMS informed ScanFold models compared to in silico
ScanFold models

DMS informed ScanFold models for over 6000 human
mRNA sequences were compared to their correspond-
ing in silico (i.e. purely computational) ScanFold mod-
els to determine the effect of incorporating probing con-
straints. This was accomplished by calculating the PPV
and sensitivity for each model via comparison of all pre-
dicted base pairs, —1 z-score base pairs, and —2 z-score
base pairs present in CT files produced by ScanFold
(Supplemental File 1). This process utilized the script
ct_sensitivity ppv.py and has been previously de-
scribed (34).

In addition to comparing the resulting structural models
produced by ScanFold, the effect on the per nucleotide
z-score values (found in the average per nucleotide z-score
WIG file produced by ScanFold) were assessed between
DMS informed and in silico ScanFold models. Here, a
Pearson correlation assessment was conducted on a per
transcript basis comparing the DMS informed and in sil-
ico per nucleotide z-score values (Supplemental File 1).

Incorporation of reactivity values with RNAfold

RNAfold (37,38) was used in several capacities throughout
this study. RNAfold was used as the folding algorithm in
ScanFold which calculates thermodynamic metrics (most
importantly the MFE) of each WT and randomized Scan-
Fold analysis window. Additionally, RNAfo1d was used to
model several transcripts with reactivity profiles as pseudo-
energy constraints. When used in this capacity, the Deigan
model of reactivity incorporation was used along with the
default slope and intercept values of RNAfold. In some
cases, the probability of structure (determined from the
partition function and indicates the likelihood of a given
nucleotide being paired or unpaired) were extracted from
RNAfold analyses of individual targets.

Covariation analysis of structured motifs

For certain high-value structure motifs and transcripts
which underwent more targeted analyses, the cm-builder
pipeline (27) was used to assess covariation. The cm-
builder pipeline automates the use of INFERNAL (28)
and R-scape (29,30) to make sequence and structure ho-
mology alignments and then assess primary and secondary
structure to identify statistically significant events of struc-
ture preserving covariation. Initial alignment databases for
analyzed sequences were generated using BLAST and either
the Refseq database or the NT collections database.

To run cm-builder, the following command line was
used:
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$ perl /path/to/cm-builder -s
<input.fasta> -m <input.dbn> -d
<alignment _database.fasta> -c 24 -k

Here, -s’ denotes the fasta file, -m’ is the motif DBN be-
ing analyzed, ‘-d’ is the alignment database fasta, ‘-c’ de-
notes how many cpu nodes to utilize, and *-k’ specifies to
keep the final Stockholm alignment. During the analyses
INFERNAL (version 1.1.2) was used to make the covariance
model (CM) files. CM files were then passed to R-scape
(version 2.0.0) and Stockholm files, power files, and sum-
mary PDFs were generated. All results from cm-builder
analyses can be found in Supplemental File 2.

Visualizations of modeled RNA

For visualization of data and generation of figure elements,
the programs IGV (39) and VARNA (40) were used, and indi-
vidual elements were then combined and finalized in Adobe
Illustrator. For generation of figure elements, select Scan-
Fold output files (see the ScanFold methods paper for de-
tails of file outputs (15)) were uploaded onto the TGV web-
server and an SVG image was extracted. The DBN tracks of
select motifs were loaded onto VARNA and SVG files were
downloaded accordingly.

Transcriptome metrics analyses

The resulting ScanFold data for all human mRNAs, IncR-
NAs and EBV transcripts were globally analyzed, and sev-
eral metrics were calculated per transcript including the
average of all MFE windows (AG) (resulting from all
ScanFold-Scan analysis windows), the average of AG
z-score windows, the number and percent of windows be-
low —1 and —2, the transcript length, and the number of
ScanFold-Fold extracted motifs. This was accomplished
using the python script transcriptome metrics.py
(see Data Availability). Additional analyses of the data were
completed in excel and data are accessible in Supplemental
File 3.

Regional AG z-score analyses

The average per-nucleotide z-score is a metric calcu-
lated for each nucleotide in a transcript based on all the
ScanFold-Scan analysis windows the nucleotide appears
in. This metric is reported per transcript in the Scan-
Fold ‘Zug-metrics’ WIG file (which is viewable on IGV)
and present in each available download from RNAStruc-
turomeDB (more details in Data Availability). For each an-
alyzed human mRNA this data was parsed to the SUTR,
the coding sequence (CDS), and the 3’'UTR as found in the
Gencode database. Next, the average per-nucleotide z-score
data was parsed to each region of each transcript and the av-
erage value for the region was calculated using the python
script regional_zavg.py (see Data Availability). Result-
ing data are discussed in the Results and viewable in Sup-
plemental File 3.

Differential gene expression analyses

Nine gene expression datasets were obtained from The
Human Protein Atlas on 1 February 2022 (41,42). These
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datasets contain genes that exhibit tissue specific expres-
sion, genes that exhibit tissue enriched expression in at least
one analyzed tissue, housekeeping genes (HKGs), and genes
of transcription factors (TFs). There are 10992 genes that
exhibit tissue specific expression, 8839 HKGs and 1490 TF
genes. Within the list of genes exhibiting tissue specific ex-
pression, there are subsets including 3107 tissue enriched
genes (at least four-fold higher mRNA level in a particular
tissue compared to any other tissue), 1691 group enriched
genes (at least 4-fold higher average mRNA level in a group
of 2-5 tissues compared to any other tissue), and enhanced
genes (at least four-fold higher mRNA level in a particular
tissue compared to the average level in all other tissues). Ad-
ditionally, we found subsets of specificity-based genes using
their tissue distribution. These subsets contain detection in
a single tissue, some tissue (more than one but less than one
third of tissues), many tissues (at least one third of tissues),
and all tissues (HKGs).

The data generated from the transcriptome metrics anal-
yses and the regional AG z-score analyses were cross ref-
erenced to each of the differential gene expression datasets
to analyze trends of certain metrics across the differential
datasets. These analyses were accomplished via the python
scripts differential expressionmetrics.py and
zavg_regional diff _exp.py (see Data Availability).
Output from these analyses can be found in Supplemental
File 4.

Receiver operator characteristic analyses

The proposed alternative secondary structure for EBER2
(see Results) along with the EBER2 reference model (10)
were compared to the DMS reactivity profile generated in
the study using a receiver operator characteristic (ROC)
analysis. The ROC analysis strategy was the same as we
have previously reported (34). Briefly, the CT data files for
each EBER?2 secondary structure was cross referenced to
the DMS reactivity profile generated in this study. The re-
activity data had a threshold sequentially set from lowest
to highest reactivity values at 1% intervals (i.e. 1, 2, 3...
100%) and any associated nucleotide below the threshold
was defined as being paired. Each reactivity threshold was
then referenced to the EBER2 secondary structure CT files
and a true positive rate (TPR), and a false positive rate
(FPR) were calculated. The TPR and FPR can be plotted
for each reactivity threshold, generating an ROC curve. If
a secondary structure model fits or agrees with the reactiv-
ity profile, a larger area under the curve (AUC) will be ob-
served and a model that is more ‘random’ compared to the
data will have a lower AUC and an ROC curve that roughly
follows a 45-degree line as the TPR and FPR are expected
to increase at the same rate for a random model.

Thermodynamic analyses of miRNA binding

To assess miRNA binding potential to CYTOR, the AAG
method presented by Kertesz et al. (43) was used. Here, the
AAG is a measure of the energy gained by miRNA binding
minus the energy needed to break the existing structures and
is represented in Equation 4:

AAG =A GmiRNA Binding — A GOpening Target Structure (4)

For the binding of miR-4767 to CYTOR, the region of
CYTOR from nucleotides 31-119 were assessed as this was
the major structure present around the binding site. For the
binding of miR-138, the region of CYTOR assessed was
from nucleotides 129-588. This second region is larger as
base pairs which were disrupted from miRNA binding were
participating in long range interactions. The thermodynam-
ics of RNA binding were assessed via RNAduplex (38) and
the energy needed to break base pairs and stems involved in
miRNA binding were assessed in RNAFo1d (37,38).

RESULTS
Transcriptome-wide analyses

Sequencing and read mapping overview. After execution
of the RNA structure probing method Structure-seq2
on BJAB-BI1 cells, a total of ~218 million reads for
DMS+ ¢DNA libraries and ~132 million reads for DMS—
cDNA libraries were acquired. The resulting reads were
mapped via StructureFold2 to several reference se-
quences and genomes which included hg38 mRNAs and
IncRNAs, the EBV genome (NC_0093341.1) and asso-
ciated transcripts, and the human 18S ribosomal RNA
(NT_167214.1) sequence. DMS reactivity profiles were gen-
erated for 6588 human mRNAs, 3427 human IncRNAs, and
19 individual EBV transcripts (along with a reactivity pro-
file for the entire EBV genome sequence). Additionally, re-
activity data were acquired for the human 18S rRNA se-
quence as a control for the DMS probing and data process-
ing steps.

Across the 10015 human transcripts and 19 EBV tran-
scripts that had detectible DMS reactivity, the read cov-
erage, read depth, RTSC coverage and reactivity aver-
ages were calculated for each class of transcripts (mRNA,
IncRNA, and EBV transcripts) (Supplemental File 5). The
EBV transcripts had a higher average read coverage and
depth per transcript (96.8 and 14539 reads, respectively)
when compared to the mRNA and IncRNAs. These trends
can be recapitulated using a different metric, RTSC cover-
age, that assesses the coverage of structure probing informa-
tion per transcript. RTSC coverage differs from read cover-
age, as it indicates the number of RT stop events per tran-
script, divided by the total number of potentially reactive
bases (see Materials and Methods for more details). The
trends in RTSC coverage can be seen in Table 1 and follow
the same pattern as read coverage, where EBV transcripts
have the highest RTSC coverage, followed by mRNAs, then
IncRNAs. EBV transcripts have the lowest maximal RTSC
coverage and IncRNAs have the highest RTSC coverage,
followed by mRNAs (Table 1). The average reactivity for
each transcript of each RNA class was analyzed (Supple-
mental File 5) and the EBV transcripts had the highest av-
erage transcript reactivity, followed by mRNAs, then IncR-
NAs (Table 1).

ScanFold transcriptome metrics. The acquired DMS re-
activity data were incorporated as pseudo-energies into
ScanFold analyses of large transcripts. Use of these soft
constraints informs and restricts the folding landscape dur-
ing secondary structural predictions, leading to experimen-
tally consistent structure models that may be biologically



Table 1. Reactivity and sequencing statistics for multiple classes of transcripts
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RTSC coverage average

Transcript class (Min/Max)

Reactivity average
(Min/Max)

Read coverage average
(Min/Max)

Read depth average
(Min/Max)

Human mRNAs 12.16 (1/1362)
Human IncRNAs 7.51 (1/4411)
EBYV Transcripts 106.07 (0.02/837)

0.203 (0.119/0.359)
0.171 (0.112/0.34)
0.251 (0.174/0.29)

81.2 (0.45/100)
45.82(1.97/100)
96.82 (73.95/100)

512.43 (0.01/165048)
286.79 (0.02/201838)
14539.97 (5.14/147319)

and/or functionally relevant. The DMS informed Scan-
Fold results for human transcripts predict 3.225 million
base pairs to be significantly stable (z-scores < —1), which
is reduced to 0.879 million base pairs when limited to nu-
cleotides with z-scores <—2. The percent of nucleotides per
transcript (both mRNA and IncRNAs) predicted to con-
tain unusually stable structure ranged from 0 to ~62% with
an average of ~20% for <—1 z-score nucleotides and 0 to
~52% with an average of ~6% for <—2 z-score nucleotides
(Table 2, Supplemental File 6).

The ScanFold generated data present in the analyzed
human mRNAs and IncRNAs had the average windowed
AG z-score, windowed MFE, and number of significantly
stable motifs for each transcript calculated. The mRNA and
IncRNA averaged data were compared as seen in Figure
1. The IncRNAs in this dataset had a lower median AG
z-score (—0.70) compared to mRNAs (—0.51) and IncR-
NAs also contained the transcripts with the overall low-
est average AG z-score (Figure 1A). Additionally, the me-
dian MFE of mRNAs (—78.98 kcal/mol) was slightly lower
than the IncRNAs (—78.19 kcal/mol) and the mRNAs had
the lowest overall average MFE transcripts (Figure 1B).
The IncRNAs contained the transcripts with highest num-
ber of significantly stable structures (Figure 1C), but both
the mRNA and IncRNA class of RNAs contained tran-
scripts which were enriched for significantly stable struc-
tures (i.e. ScanFold-Fold extracted structures). Tran-
scriptome metrics results for all mRNA and IncRNA tran-
scripts can be found in Supplemental File 3.

Differential gene expression. Within an mRNA, the
3'UTR is known to contain regulatory elements and act
as a hub of post-transcriptional control (44). The average
length of the 3’UTR in organisms is associated with in-
creasing organismal complexity due to the increased abil-
ity for regulatory control of the associated transcript (45).
With this in mind, we hypothesized that mRNAs of genes,
which undergo more selective, or tissue specific expression
likely experience increased regulatory control to modulate
their expression. RNA regions of significantly low AG z-
score have thermodynamic stability that is far lower than
randomized sequences of identical nucleotide composition.
Significantly low z-score sequences are thus presumed to
have a non-random sequence order that has been directed
and preserved by evolution for a function (46). Therefore, it
would be expected that more regulatory elements (i.e. lower
AG z-scores and higher number of significantly stable mo-
tifs) would occur in mRNA that exhibit restricted expres-
sion.

To examine this, nine gene lists from the Protein Atlas,
which contain the name of genes expressed in all cell types
(i.e. housekeeping genes (HKGs)), genes expressed in a vari-
able number of tissues, down to genes expressed in just sin-

gle tissues, were obtained. These gene lists were cross refer-
enced to the human mRNA transcripts analyzed by Scan-
Fold in this study. For each transcript in each identified
group, the average MFE, z-score and number of signifi-
cantly stable motifs were calculated and parsed to each gene
group (see Materials and Methods) and results can be seen
in Table 3. Consistent with our hypothesis, the Group En-
riched Genes, which are defined as having >4-fold higher
expression in only 2-5 tissues, had the lowest average MFE,
z-score, and the largest average number of motifs per tran-
script, whereas the Detected in All (HKGs) group had the
highest AG z-score and lowest average number of motifs per
transcript.

To further characterize the AG z-score trends present
in the mRNAs of these groups, the average per nucleotide
z-score in the SUTR, CDS and 3'UTR was analyzed for
each transcript. Across all groups, the 5UTRs had the high-
est average per-nucleotide z-scores, while the CDS averages
were consistently between the SUTR and 3'UTR averages,
and the 3’'UTR averages were consistently the lowest, show-
ing a bias for ordered structure in the 3'UTR for all separate
gene groups (Table 3). The Tissue Enriched Genes showed
the lowest average per-nucleotide z-score in the S'UTR,
while the Detected in Single transcript group had the lowest
CDS and 3'UTR average per-nucleotide z-score. The De-
tected in All (HKGs) group had the highest average per-
nucleotide z-score across all mRNA regions.

DMS informed ScanFold versus in silico ScanFold mod-
els. To assess the effects of DMS probing constraints on
ScanFold model generation, over 6000 human mRNA se-
quences had their corresponding DMS—informed and in
silico (i.e. purely computational) ScanFold models com-
pared using the PPV and sensitivity metrics, where the DMS
informed model was considered the reference model and the
in silico model was considered the predicted model. Here,
PPV indicates the fraction of base pairs from the in silico
model that are consistent with the DMS model and the sen-
sitivity measures the fraction of DMS informed base pairs
which are consistent with the in silico model (Equations 2
and 3 in Materials and Methods). This allows for assess-
ment of how accurately in silico ScanFold is modelling
structure by comparison to DMS informed structures (via
PPV) and how well in silico ScanFold performs at find-
ing low z-score structures by comparison to DMS informed
structures (sensitivity).

This analysis used all modelled base pairs, base pairs be-
low a —1 z-score threshold, and base pairs below a —2 z-
score threshold found in ScanFold outputs and compared
how many consistent pairs were present between the DMS
informed and in silico models (Figure 2A). The median PPV
for the unfiltered base pairs, —1 z-score base pairs, and —2
z-score base pairs were 0.60, 0.66 and 0.76, respectively. The
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Table 2. Human mRNA and IncRNA base pair (BP) partitioned z-score (ZS) statistics

Avg. # of —1 ZS BPs Avg. # of —2 ZS BPs Average transcript

Average % of transcript

Average % of transcript

per transcript per transcript length length with —1 ZS BPs length with —2 ZS BPs
Total 322.03 87.71 3153.44 21 5.7
mRNAs 366.92 96.56 3704.7 19 4.9
IncRNAs 235.74 70.87 2093.72 23 7.3
A, B, C o
1
0 300
0+
s — + — + T sl | u 200 1
-2
3] 100 100
4 0 4 &
mR‘NA Inc‘RNA leNA Inc‘RNA mR‘NA Inc;RNA

Average AG z-score per transcript Average AG (MFE) per transcript

Number of motifs per transcript

Figure 1. Transcriptome wide metric analyses of human mRNAs and IncRNAs which had DMS reactivity profiles and were analyzed by ScanFold. (A)
Violin plots showing transcript average (from all ScanFold-Scan analysis windows of a given transcript) AG z-score for mRNAs and IncRNAs. (B)
Violin plots showing transcript average (from all ScanFold-Scan analysis windows of a given transcript) MFE for mRNAs and IncRNAs. (C) Violin
plots of the distribution of mRNA and IncRNA number of significantly stable motifs (i.e. —2 z-score structures).

Table 3. Analysis of ScanFold metrics and trends when cross referenced to lists of differentially expressed genes

Regional per-NT z-score for

Full length mRNAs transcripts mRNAs

Gene groups (# of Avg. Avg. Avg. # of

transcripts in group) MFE windowed ZS Motifs SUTR CDS 3UTR Description of group

Detected in all —78.88 —0.47 72 —058  —0.854  —1.044  Genes that have detectable levels (n'TPM > 1 or

(HKGs) (694) transcription frequency > 1) of transcribed
mRNA molecules in all tissues.

Detected in many —81.76 —0.56 9.45 —0.707 —-0.877 —1.136  Genes that have detectable levels ("'TPM > 1 or

(247) transcription frequency > 1) of transcribed
mRNA molecules in at least one third but not
all tissues.

Detected in some —81.49 —-0.59 10.89 —0.741 —0.907 —1.107 Genes that have detectable levels (n'TPM > 1 or

(113) transcription frequency > 1) of transcribed
mRNA molecules in more than one but less
than one third of tissues.

Detected in single —77.69 —0.57 8.48 —0.613 —1.003  —1.491  Genes that have detectable levels (n'TPM > 1 or

(25) transcription frequency > 1) of transcribed
mRNA molecules in a single tissue.

enhanced genes —81.04 —0.52 7.93 —0.609 —0.887 —1.06  Genes that display at least four-fold higher

(307) mRNA level in a particular tissue compared to
any other tissue.

group enriched —82.46 —0.63 125 —0.659 -0.912 —1.174  Genes that display at least four-fold higher

genes (56) average mRNA level in a group of 2--5 tissues
compared to any other tissue.

reg TFs (69) -81.81 -0.52 11.61 -0.686 -0.877 -1.105  Genes of transcription factors that are
regulatory proteins known to bind to consensus
DNA sequences and activate transcription.

tissue enriched —81.07 —0.54 8.37 —0.656 —0.895 —1.105  Genes that display elevated expression in at

expression (457) least one of the analyzed tissues.

tissue enriched —80.35 —0.55 7.36 —0.81 —0.91 —1.215  Genes that display at least four-fold higher

genes (94) mRNA level in a particular tissue compared to

the average level in all other tissues.

median sensitivity for the unfiltered base pairs, —1 z-score
base pairs and —2 z-score base pairs was 0.57,0.62 and 0.18,
respectively (Figure 2A). The close similarities between the
PPV and sensitivity between the unfiltered base pairs and
the —1 z-score base pairs is due in part to both the DMS in-
formed models and the in silico models having similar num-
ber of average base pairs per transcript. However, in the —2

z-score analyses, the DMS informed models had almost 4
times the amount of average base pairs per transcript com-
pared to the in silico models (Supplemental File 1).

To assess how much the z-score trend was affected by
the incorporation of DMS reactivity values, the average per
nucleotide z-score values for both the DMS informed and
in silico ScanFold models for individual human mRNA



Table 4. Reactivity overview for EBV transcripts

Max Average Std. Latent/
EBV-transcripts reactivity ~ reactivity deviation Gini Lytic
BFLF1 1.79 0.26 0.37 0.70 Lytic
BFLF2 1.46 0.26 0.36 0.69 Lytic
BFRF1 1.84 0.25 0.38 0.73  Lytic
BFRF1A 1.82 0.20 0.37 0.79  Lytic
BFRF2 2.03 0.25 0.37 0.72  Lytic
BHRF1 1.58 0.34 0.36 0.56  Lytic
BNLF2a 1.75 0.25 0.38 0.71 Lytic
BNLF2b 1.31 0.28 0.36 0.66  Lytic
DR-Left 1.67 0.27 0.36 0.68 Latent
DR-Right 1.71 0.25 0.36 0.71 Latent
EBERI1 1.94 0.27 0.38 0.66  Latent
EBER2 1.37 0.25 0.35 0.69 Latent
EBNA-LP 1.56 0.29 0.37 0.65 Latent
FGAM-synthase 2.20 0.22 0.37 0.76  Lytic
LMP1 1.88 0.25 0.37 0.70  Latent
LMP2A 2.01 0.25 0.37 0.71  Latent
LMP-2B 1.80 0.32 0.36 0.59 Latent
sisSRNA1 1.12 0.23 0.37 0.74  Latent
sisRNA2 1.83 0.25 0.37 0.71  Latent
TR-Region 1.46 0.28 0.36 0.66 Latent
Genome-FWD 3.87 0.13 0.42 0.92
Genome-REV 4.54 0.13 0.47 0.93

transcripts were used in a Pearson correlation assessment.
This revealed a median correlation of 0.74 with upper and
lower quartiles of 0.51 and 0.97, respectively (Figure 2B).
Additionally, the average z-score per transcript between
DMS informed and in silico models had a median differ-
ence of only —0.046.

Global EBV data analyses

There were 19 EBV transcripts which had enough cover-
age to generate DMS reactivity profiles (Table 4). Of the
19 transcripts, 18 had their reactivity profiles analyzed with
ScanFold;the 81 nt sisRNA-1 transcript had probing cov-
erage, however, it was too short for comparative ScanFold
analysis. Interestingly, the transcripts probed in BJAB-B1
cells contain both lytic and latent transcripts (the expres-
sion phase for each transcript is indicated in Table 4). Ad-
ditionally, DMS reactivity profiles were generated for the
whole genome in both the forward and reverse orientation.
While detailed analyses for two of the EBV transcripts is
provided below (EBER2 and the tandem terminal repeat
(TR) RNA), here we provide an overview of the reactivity
and ScanFold metrics for all EBV transcripts with DMS
coverage.

The reactivity coverage for each EBV transcript ranged
from 1 (the minimum coverage needed to generate a reac-
tivity profile) to 837, observed for the EBER1 transcript.
The high coverage is due to the high abundance of EBER 1
in BJAB-B1 cells. The average reactivity for each transcript
was calculated using the SF2 package with BHRF1 hav-
ing the highest average reactivity (0.345) followed closely by
LMP-2B (0.321). The transcript with the lowest average re-
activity was BFRF1A, a transcript encoding a protein nec-
essary for the processing of DNA concatemers during viral
replication and packaging (47) (Table 4).

The same transcriptome metric analysis that was applied
above to ScanFold analyzed human mRNAs and IncR-
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NAs was also applied to the EBV transcripts; resulting data
are in Table 5. Average windowed MFE values ranged from
—106.5 kcal/mol for the TR RNA to —68.02 kcal/mol for
LMPI1. Two repeat regions within the EBV genome, the
direct repeat left (DRL) and direct repeat right (DRR),
had the lowest average windowed AG z-score in the set at
—1.70 and —1.66, respectively. These were followed closely
by EBER1 with an average windowed z-score at —1.58. The
lytic transcript BHRF1 had the highest average windowed
z-score at 0.62 and there were four transcripts from the set
whose average windowed z-score were positive (Table 5).

In cellulo models

EpsteinBarr virus encoded RNAs (EBERs). Using the in
cellulo DMS reactivity, pseudo-energy constrained MFE
models for both EBER1 and 2 were generated using
RNAfold. The DMS informed model for EBERT1 is highly
similar to the previously established model of Glickman et
al. (10) (Supplemental Figure S1), hereafter referred to as
the EBER1 reference model. High reactivity sites occurred
throughout the transcript model with only a few sites hav-
ing strong reactivity values embedded in more structured
areas (e.g. nucleotides position A18 and A115). In con-
trast, while some consistencies in 2D structure between our
EBER?2 model and the Glickman et al. (10) EBER2 refer-
ence model are observed, there are notable structural rear-
rangements between the two models (Figure 3). First off,
the Basal Stems of both structures are identical, and Stem
1 is highly similar with subtle differences in the size of the
terminal hairpin loop. The Stem 1 structure does contain
two additional base pairs (A40-U48 and C41-G47) in the
hairpin loop region in our model compared to the reference
model which has a larger loop in this region and the refer-
ence model has two additional base pairs at the base of Stem
1 (G21-C63 and G22-C64) whereas, in our model, these Gs
are in a looped-out region and the Cs are involved in base
pairing of Stem 2.

The region of greatest difference between our proposed
EBER?2 model (in cellulo based) and the EBER2 reference
model (in vitro based) is the rearrangement of the refer-
ence model Stem 2 into Stems 24 of our model with little
structural similarity. Notably though, the looped-out region
from nucleotides 106-124 in the reference model retain nu-
cleotides 110-122 in a looped-out region. This region was
previously shown to be loosely structured and available for
binding oligonucleotides used in pulldowns of EBER2 and
is accessible to single strand specific RNases (8,10).

A few positions in our model also contain DMS reactiv-
ity in structured regions. Notably, positions A108 and A125
showed strong reactivity values and are in stems flanked by
G-C pairings. To assess how well both EBER2 models agree
with or fit the in cellulo generated DMS reactivity data, we
performed a receiver-operator characteristic (ROC) analy-
sis using the in cellulo DMS reactivity profile and the cor-
responding CT files for both 2D structure models in Fig-
ure 3 (see Materials and Methods). Briefly, reactivity values
are constrained at regular, increasing thresholds from low-
est to highest reactivity. When constrained, the correspond-
ing nucleotide is defined as being paired and we cross ref-
erence this position to the 2D models of EBER2 to gain
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Figure 2. Box plots comparing structures and per-nucleotide z-scores of in silico and DMS informed ScanFold models. (A) Box plots showing the
results of PPV and sensitivity analyses on unfiltered base pairs (BPs), —1 z-score BPs and -2 z-score BPs resulting from in silico and DMS informed
ScanFold models. (B) Box plot showing the distribution of correlation values which compared the per-nucleotide z-score values of individual transcripts

for in silico and DMS informed ScanFold models.

Table 5. ScanFold metrics for EBV transcripts
Avg. #of ZS % of ZS #of ZS % of ZS

Avg. windowed # of windows windows windows windows Sequence # of
EBV-Transcripts window AG z-score windows <=-1 <=-1 <=-2 <=-2 length Motifs
BFLF1 —79.94 —0.74 1459 556 38.1 136 9.3 1578 5
BFLF2 —76.08 —0.74 838 307 36.6 80 9.5 957 1
BFRF1 —84.47 0.24 892 124 13.9 5 0.6 1011 0
BFRF1A —77.04 0.14 289 7 2.4 0 0.0 408 0
BFRF2 —91.10 —-0.22 1657 376 22.7 116 7.0 1776 2
BHRF1 —69.31 0.62 457 38 8.3 3 0.7 576 0
BNLF2a —91.53 -0.22 64 5 7.8 0 0.0 183 0
BNLF2b —88.19 0.11 178 37 20.8 9 5.1 297 0
DR-Left —89.17 —1.70 925 578 62.5 399 43.1 1044 10
DR-Right —90.60 —1.66 926 598 64.6 381 41.1 1045 11
EBER1 —92.11 —1.58 48 48 100.0 7 14.6 167 0
EBER2 —89.27 —0.51 54 18 333 0 0.0 173 0
EBNA-LP —96.15 —0.25 76 1 1.3 0 0.0 195 0
FGAM-synthase —93.31 —0.30 3838 1030 26.8 327 8.5 3957 8
LMP1 —68.02 —0.17 997 303 30.4 53 5.3 1116 0
LMP2A —85.45 —0.48 6740 2084 30.9 760 11.3 6859 11
LMP-2B —75.72 —0.62 1018 356 35.0 125 12.3 1137 4
siSRNA2 —92.16 —1.04 2672 1295 48.5 592 222 2791 11
TR-Region —106.48 —-0.93 1539 726 47.2 351 22.8 1658 7
FWD-Genome —90.43 —0.53 172 645 55559 322 19 580 11.3 172 764 -
REV-Genome —89.57 —0.50 172 645 53525 31.0 18 742 10.9 172 764

a true positive rate (TPR) and false positive rate (FPR).
The TPR and FPR can then be plotted at each interval to
form an ROC curve, where a larger area under the curve
(AUC) indicates a greater initial increase in TPR and a bet-
ter fit to the data. As the reactivity values here are experi-
mentally derived from an in cellulo system, they represent a
probabilistic likelihood of specific nucleotides being paired
or unpaired and cross referencing these with several poten-
tial models can be informative, regardless of how the model
was generated. Unsurprisingly, the DMS informed model
had a larger AUC, 0.718, when compared to the DMS reac-
tivity profile and the reference EBER2 model had an AUC
of 0.612.

To further assess the quality of the proposed and ref-
erence EBER models, we performed a covariation analy-

sis using the cm-builder pipeline. The proposed EBER2
model in Figure 3A had a total of six base pairs iden-
tified as having statistically significant covariation (i.e. E-
value < 0.05) with all base pairs having a power over 0.1.
Here, the power metric is a measure of the amount of se-
quence variation observed in the alignment and the depth
of the alignment. Covariation analysis on the EBER2 ref-
erence model identified no statistically significant covary-
ing base pair (Figure 3B). Similarly, the EBER1 reference
model had no statistically significant covarying base pairs
identified. However, our proposed model of EBER1, which
differs by only three base pairs from the reference model,
had five base pairs identified as having statistically signif-
icant covariation, all with power above 0.1 (Supplemental
Figure S1).
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(B) The previously established reference model of EBER2.

Tandem terminal repeat RNA of Epstein—Barr virus. The
EBYV genome contains a region of tandem terminal repeats
which can contain several copies up to ~20 (48). During
lytic reactivation, the genome is linearized with the termi-
nal repeats flanking the ends of the genome. When the virus
enters latency, the genome is circularized at the terminal re-
peats through a homologous recombination process which
is only partially understood (49). Interestingly, the terminal
repeats are transcribed during latency and participate in an
interaction with EBER?2 that is mediated by base pairing.
EBER?2 also interacts with the transcription factor PAXS,
and this complex will then bind the TR RNA (Figure 4).
The overall result of the interactions between EBER2, TR,
and PAXS facilitates the recruitment of this complex to the
EBV genome for transcriptional control—a novel regula-
tory mechanism (8).

To model how the TR RNA might fold on its own and
in the presence of multiple copies we generated a DMS in-
formed model of a single (i.e. mono-) segment of the TR
RNA and a double (i.e. di-) segment of the RNA using
RNAfold (Figure 4). The mono- and di-segments of the
TR RNA were also analyzed with ScanFold to identify
regions and nucleotides which have significant thermody-
namic stability. The TR RNA mono-segment (Figure 4A
and B) forms several long stems and multi-branched re-
gions where ~64% of nucleotides are involved in local or
long-range base pairs. Overall, moderate to highly reactive
nucleotides are modeled in single-stranded regions, loops,

bulges, or in base pairs flanked by unpaired regions or non-
canonical base pairs. Several helical regions contain highly
reactive nucleotides, notably at positions 14, 75 and 227
in Figure 4A. Additionally, the TR RNA mono-segment
was assessed for covariation and 8§ statistically significant
covarying base pairs were identified in a cluster between
nucleotides 50130 (Figure 4A). Of these 8 covarying base
pairs, 4 had power above 0.1 and 4 were <0.1.

To further interrogate the thermodynamic landscape,
we overlaid the structure probabilities (as determined by
RNAfold from the partition function) onto the 2D struc-
tural model of the TR RNA mono-segment (Figure 4B).
Most of the probabilities are moderate in value, an indica-
tion of potentially dynamic nature of the TR RNA struc-
ture. The region known to bind EBER2 (nucleotides 177—
200) has an average probability of 0.504. The region of con-
sistent highest probability is from nucleotides 296-373 (av-
erage probability of 0.894) and the region from nucleotides
114-137 has the lowest probability (average probability of
0.126). To assess how the 2D structural landscape may dif-
fer between a TR RNA mono-segment and a TR RNA di-
segment, a DMS informed 2D structural model of the di-
segment using RNAfold was generated (Figure 4C). Inter-
estingly, almost all the structure predicted for the mono-
segment was preserved in the di-segment, except for two re-
gions. The region of the mono-segment which had the low-
est probabilities (nucleotides 114-137) unfolds, and forms
a long-range, continuous 18 nucleotide stem with the cor-
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Figure 4. Secondary structural models of mono and di-terminal repeat RNA units of the EBV type II genome. (A) A DMS informed RNAfo1d 2D structure
model of the EBV TR RNA mono-segment. The DMS reactivity data used is overlaid on the model as red shaded nucleotides with the DMS reactivity
scale ranging from 0.0 (white) to 1.0 (dark red). The model has nucleotide positions labelled at every 20-nucleotide interval. The site which binds EBER2
is highlighted in purple. Sites of R-scape identified covariation are highlighted in green and blue. (B) The same TR RNA mono-segment as modeled in
panel A. Here, structure probabilities (as determined by RNAfo1d) are overlaid on the model and ScanFold predicted base pairs with AG z-scores < —1
are highlighted with green base pair lines. (C) A DMS informed, RNAfo1d 2D structural model of the EBV TR RNA di-segment. Here, the first segment is
highlighted in green, and the second segment is highlighted in red to help differentiate their positions. The EBER2 binding sites are highlighted in purple.

This model has nucleotide positions labelled at every 40-nucleotide interval.

responding region of the second segment (Figure 4C). Ad-
ditionally, in the mono-segment, the 5’ and 3’ ends of the
RNA came together to form a six base pair stem. In the di-
segment, the 5" end of the first segment forms a homologous
six base pair stem with the 3’ end of the second segment.
Similarly, the 5" end of the second segment forms this stem
with the 3’ end of the first segment.

The oncogenic MYC mRNA. The resulting ScanFold
data for the 10015 human mRNA and IncRNA transcripts
are available for download from the RNAStructuromeDB.
Here, we show how researchers interested in using the DMS
informed ScanFold data for the transcripts in this dataset
can assess the thermodynamic and structural landscape of
an RNA of interest. This will lower the barrier of entry for



those interested in studying these transcripts as DMS in-
formed structural models and thermodynamic analyses are
already complete and available for visualization or down-
load. Researchers can visualize local structural motifs (us-
ing genomic viewing software such as TGV (39) and VARNA
(40)) and home in on regions of significant thermodynamic
stability, an indication of potential functionality. Identified
regions of significant thermodynamic stability and their lo-
cal structure models can serve as starting points for func-
tional assay design (e.g. dual luciferase assays, half-life ex-
periments, etc.), targets for therapeutic targeting, or targets
for more intensive structural studies: such as identifying sig-
nificantly stable motifs for structural biology.

Here, we focus on the MYC mRNA
(ENST00000621592.7) as an example of how to view
and use DMS informed ScanFold data. M YC encodes a
transcription factor which is a master regulator of several
cell cycle control pathways including apoptosis and cell
proliferation. MYC is considered an oncogene and its
dysregulation and overexpression is a major contributor to
over 60 percent of all cancers, including EBV-associated
cancers (50). There is a need to understand the regulation of
the MYC mRNA and how native structure contributes to
regulatory processes. Aside from understanding structure-
function mechanisms within the MYC mRNA, accurate
structure models can also be used for small molecule or
antisense oligonucleotide (ASO) design. This is particularly
significant, as attempts to drug the M YC protein have been
unsuccessful (50).

Data files from ScanFold output (description of files
in Table 1 of (15)) can be loaded into the IGV software
(or viewed on the RNAStructuromeDB) and an example
of the M YC MFE and z-score analysis tracks are in Figure
5A. The z-score data from overlapping windows are used to
deduce the base pairs which most contribute to significant
thermodynamic stability, and these are modeled by the base
pair track (Figure 5A). From here, regions which have base
pairs with AG z-scores <—2 are identified and are pulled
out as extracted structures (i.e. motifs). In this study, each
extracted structure from the MYC mRNA underwent co-
variation analyses via the cm-builder pipeline. A total of
5 out of the 13 extracted structures (extracted structures 1,
6,10, 11 and 13; Figure 5A) showed evidence of at least one
statistically significant covarying base pair (Supplemental
File 2).

The region of M YC which contains extracted structure
1 along with an adjacent hairpin which contains —1 AG z-
score base pairs is depicted in Figure 5B. This region resides
in the 5UTR as the 5’ most motif and when analyzed, both
hairpins show evidence of covariation. The region depicted
in Figure 5C represents a 3'UTR region which we (35) and
others (51) have previously tested in dual luciferase assay
reporter systems and the DMS informed —2 z-score struc-
ture presented here matches our previous in silico predicted
structure of the region (35). Despite deep phylogenetic con-
servation, this region showed no evidence of statistically
significant covariation. There is evidence of functionality,
however, as this region acts as a hub for protein and micro-
RNA binding and has been previously shown to signifi-
cantly affect the translation efficiency of reporter transcripts
through miRNA targeted repression. Both mutations to the
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miRNA seed sequence and mutations to adjacent struc-
ture which reinforces structural stability ablated the trans-
lational repression associated with this region (35,51). Fi-
nally, the region encompassing M YC extracted structures
5-8, shown in Figure 5D, is the second cluster of low z-score
structures in the 3’'UTR after the region depicted in Fig-
ure 5C. To our knowledge, this second clustered region has
not been previously described or tested. Covariation analy-
sis with cm-builder highlighted one significantly covary-
ing base pair at C2073-G2084.

CYTOR IncRNA. In this study, reactivity profiles for
3427 human IncRNAs were generated and these transcripts
were analyzed with ScanFold. Individual thermodynamic
and structure results for these IncRNAs can be down-
loaded from the RNAStructuromeDB. These results con-
tain FASTA and react files for a given sequence and can
be used to complete further analyses, such as global MFE
modelling with the program RNAfold. The IncRNA cy-
toskeleton regulator RNA (CYTOR) provides an example
of how to use the generated ScanFold data and how to
further process these data into informative models.

In a study of IncRNAs dysregulated in EBV infected lym-
phoblastoid cell lines (LCLs), CYTOR was identified as sig-
nificantly upregulated (52). The function of CYTOR has
been linked to differentiation, stress response and cytoskele-
tal maintenance, while its overexpression promotes onco-
genic and disease states (53). CYTOR is involved in the pro-
gression of a myriad of cancers including breast cancer, gas-
tric cancer, colorectal cancer, hepatocellular carcinoma and
more (53). Its over expression can drive tumor growth while
reduced expression is associated with tumor shrinkage and
increased life expectancy of cancer patients. While there is
stillmuch to learn about the mechanisms of CYTOR’s onco-
genicity, it is known to bind several RBPs (e.g. NCL and
SAMG68 (54), B-catenin (55) and EZH?2 (56)) and acts as a
miRNA sponge (e.g. miR-4767 (57) and miR-138 (58)) al-
tering the miRNA and transcriptome landscape of associ-
ated cells.

Figure 6A shows the DMS reactivity data overlaid on
the nucleotides of CYTOR (ENST00000646636.1, 1020 nu-
cleotides long). This model has several motifs and regions
that have statistically significant covariation (Figure 6A;
data in Supplemental File 2). The region of highest enrich-
ment for covarying base pairs occurs from nucleotides 327—
575 where 9 covarying base pairs are observed ranging in
power from 0.00 to 0.59. The structural probabilities, as de-
termined by RNAfold, are overlaid on the CYTOR model
(Figure 6B). There are several regions which show clus-
tered high probability nucleotides, notably the regions en-
compassed by nucleotides 131-144:576-589 (average prob-
ability of 0.96), 164-275 (average probability of 0.97), 338—
484 (average probability of 0.94), 590-656 (average prob-
ability of 0.97), 671-693 (average probability of 0.95) and
809-818 and 999-1008 (average probability of 0.99). The
region which is enriched in covarying base pairs has an av-
erage probability of 0.55, indicating that the region may be
loosely structured or conformationally dynamic.

From the ScanFold-Scan analysis, CYTOR had an av-
erage windowed AG z-score value of —0.278 with the low-
est window being —3.55 and the highest being 1.83. The av-
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Figure 5. DMS informed ScanFold analysis of the M YC mRNA. (A) An IGV visualization of ScanFold data for the M YC mRNA. At the very top is
a positional marker with every 500 base pairs marked. Below this is the MFE track and the AG z-score track from the ScanFold-Scan analysis. Next is
the base pair track resulting from ScanFold-Fold, followed by a heatmap of DMS reactivity data used in analysis. Further down is a track showing the
locations of ScanFold extracted structures and finally, a cartoon representation of the M YC mRNA where the 5 and 3’ UTRs are represented by thinner
grey lines and the coding sequence is depicted with a larger black box. Regions of additional focus are highlighted with opaque blue boxes. (B) Extracted
structure 1 with a downstream hairpin. The start and end of the structure are labelled with the transcript nucleotide position. The DMS reactivity data for
the region is overlaid on the model as red shaded nucleotides with the DMS reactivity scale ranging from 0.0 (white) to 1.0 (dark red). Base pairs with AG
z-scores <—1 and <-2 are colored green and blue respectively. Covarying pairs, as identified by R- scape, are highlighted with dark green and blue opaque
boxes. (C) Extracted structure 3-4 with a downstream hairpin. The start and end of the structure are labelled with the transcript nucleotide position.
The DMS reactivity data for the region is overlaid on the model. Base pairs with AG z-scores <—1 and <-2 are colored green and blue respectively. (D)
Extracted structure 5-8. The start and end of the structure are labelled with the transcript nucleotide position. The DMS reactivity data for the region is
overlaid on the model as red shaded nucleotides. Base pairs with AG z-scores <—1 and <-2 are colored green and blue respectively. A covarying pair, as

identified by R-scape, is highlighted with a dark green, opaque box.

erage windowed MFE values were —79.97 kcal/mol with
a lowest and highest window value of —118.71 and 0.0
kcal/mol respectively. From the 5’ to 3’ end, the z-score and
MFE showed no trend or biases across the transcript. The
ScanFold-Fold analysis of the data generated per nu-
cleotide AG z-scores (which are overlaid on the RNAfold
generated model in Figure 6C) and there were no identi-
fied consensus base pairs with a z-score <—2. However,
several —1 z-score motifs were identified throughout the
transcript, and these were used as constraints to generate a
global refolded model of CYTOR (using RNAfold) which
locked in the —1 z-score structures and allowed for longer
range interactions to form around them (Supplemental Fig-
ure S2). The —1 z-score constrained and refolded model
of CYTOR was then compared to the DMS constrained
RNAfold model and nucleotides that were similar struc-

tured between the two models are highlighted in Figure 6D.
Notably, the low z-score regions correspond well with some
regions of high structure probability, indicating that these
regions are well structured and potentially functional mo-
tifs within the larger transcript.

Additionally, to assess the binding potential of the miR-
NAs which target CYTOR (Figure 6A), we used the AAG
method described by Kertesz et al. (43) which accounts for
the energy gained by miRNA binding and the energy re-
quired to break existing structures (more details in the Ma-
terials and Methods). Here, a positive AAG would indi-
cate that miRNA binding is thermodynamically unfavor-
able as input energy would be required for binding, whereas
a negative AAG indicates that miRNA binding is ther-
modynamically spontaneous. The region where miR-4767
binds to CYTOR had a AAG of —17.38 (kcal/mol). The
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region of miR-138 binding to CYTOR had a AAG of + 1.6
(kcal/mol) and occurred in a region with more structure
and long-range interactions.

DISCUSSION

Insights from in silico and DMS informed ScanFold com-
parisons

The comparison of in silico ScanFold to DMS informed
ScanFold models allowed for an in-depth assessment
about how well in silico ScanFold performs in the absence
of probing data and how the incorporation of probing data
is influencing model generation. The PPV of in silico Scan-
Fold increases as the z-score cutoff becomes more strin-
gent, from unfiltered base pairs to a —2 z-score threshold.
When compared to DMS informed models, in silico Scan-
Fold models —2 z-score structures with great consistency
(Figure 2A). This is an observation we previously reported
in our analyses of SARS-CoV-2 where the —2 z-scores struc-
tures agreed better (than higher z-score structures) with a
myriad of structure probing reactivity datasets and reactiv-
ity informed structural models. While the PPV was consid-
erably higher for —2 z-score base pairs in this study, the sen-
sitivity was much lower compared to the —1 z-score pairs.
This suggests that while in silico ScanFold is modeling
—2 z-score base pairs with high confidence, it is missing
many —2 z-score pairs which are present in the DMS in-
formed ScanFold models. Data indicate that DMS in-
formed ScanFold models contain nearly four times as
many —2 z-score base pairs (on average) per transcript,
compared to the corresponding in silico models (Supple-
mental File 1). Presumably, the incorporation of DMS re-
activity data disallow the formation of higher (i.e. less neg-
ative) z-score structures with more spurious base pairs dur-
ing the ScanFold-Scan step of the program. When the
ScanFold-Fold module then parses the DMS informed
scanning data, more —2 z-score pairs are identified because
of less competition from more poorly predicted structures.
This finding highlights the value of considering experimen-
tal probing data not only in secondary structure modeling,
but also in functional motif discovery—something not pre-
viously appreciated.

Notably, the per nucleotide z-score correlation analyses
revealed a high global correlation between DMS informed
and in silico ScanFold z-score data and minimal changes
in the average z-score per transcript (Figure 2B, Supple-
mental File 1). This is an indication that the z-score met-
ric is less affected by the incorporation of DMS reactivity
values across a transcript and what is affected is the iden-
tification of significantly stable base pairs. Taken together,
these observations yield several key findings. In the absence
of RNA structure probing reactivity data, the z-score met-
ric of in silico ScanFold can home in on regions of well-
ordered, stable structures. The —2 z-score structures mod-
eled by in silico ScanFold have high agreement with DMS
informed models making ScanFold a fast and powerful
tool to identify well-structured and presumably functional
regions within mRNAs. When it comes to identifying po-
tentially functional and/or therapeutic regions in pathogens
or disease related human RNAs, —2 z-score structures, as

identified by in silico ScanFold, provide high confidence
model predictions and a valuable starting point for ad-
ditional studies. There is, however, great potential utility
in combining experimental probing data with ScanFold.
While in silico —2 z-score models are robust, they are lim-
ited to the best-predicted structures, whereas the experimen-
tal data, while validating those well-predicted regions, also
expands the list of potentially functional structure.

Highly regulated human genes have greater propensity for or-
dered RNA structure

In the DMS informed ScanFold analyses of human mR-
NAs and IncRNAs, we found that mRNAs had a slightly
more negative average window MFE when compared to
IncRNAs, while IncRNAs had a slightly lower average
AG z-score. The lower AG z-score transcripts and re-
gions can be interpreted as having an increased poten-
tial for structure-related functionality and thus their bi-
ases for sequence-ordered thermodynamic stability. This in-
dicates that IncRNAs have similar, if not more potential
for regulatory function as mRNAs have. Furthermore, the
transcriptome-wide analysis of ScanFold metrics result-
ing from BJAB-B1 mRNAs show that transcripts which
have higher likelihoods of being regulated (i.e. tissue spe-
cific transcripts) have lower AG z-scores, per-nucleotide z-
scores and a higher number of ScanFold extracted struc-
tures than transcripts which are expected to be less regu-
lated (i.e. HKGs). These results support the hypothesis that
these transcripts are under increased regulatory pressures
and gives evidence for ScanFold extracted structures hav-
ing potential regulatory roles. Additionally, a global de-
crease in z-score values from the 5’ to 3’ end of transcripts
was observed for all gene groups. An indication that the
3’'UTRs are enriched with low z-score structure, supporting
previous observation that 3’UTRs are hubs for transcript
regulation (44).

For example, our detailed analysis of M YC, which re-
quires exquisite levels or posttranscriptional control for
normal cellular development and function, revealed thir-
teen —2 z-score structures. One of these structures was in
the SUTR, one in the CDS, and eleven structures were ob-
served in four distinct clusters in the 3’UTR. The SUTR
motif may represent a minimal structural motif needed to
impart some form of translational regulation, or stability
regulation to the transcript and this motif merits further
testing in a functional reporter assay (59,60). The first clus-
ter of —2 z-score structure in the 3’UTR has been experi-
mentally validated by our lab and others to exhibit trans-
lational repression of the transcript via miRNA and RBP
binding (35,51). Disruption of the miRNA binding sites or
alteration of structure in the region can ablate miRNA tar-
geting. Interestingly, covariation analysis of this region did
not show evidence for statistically significant covarying base
pairs. However, downstream structure in the 3UTR did
contain regions of statistically significant covariation. These
remaining clusters of —2 z-score structure in the 3'UTR, to
our knowledge, remain unstudied for their functional im-
pact on M YC regulation, but due to their low z-score struc-
ture and evidence of covariation, merit further analyses.



Differing strategies provide novel structural insights into the
human IncRNA CYTOR

Our focused analysis of the IncRNA CYTOR was stim-
ulated by the high degree of induction of this transcript
due to EBV infection. Even with DMS reactivity incor-
poration, the CYTOR IncRNA is on the upper end of se-
quence length (1020 nucleotides) for accurate and robust
global MFE model generation and some regions may be
more poorly modeled than others. Therefore, modeling of
2D structure relied on several orthogonal approaches to try
and identify regions of robust, well-formed structure and
an attempt to identify potential functional regions within
the longer transcript. Two 2D structural models of CYTOR
were generated, the first using the associated DMS reactiv-
ity profile and RNAfold and another model was made us-
ing the DMS reactivity profile and ScanFold to initially
identify local structure motifs followed by a global refold
where ScanFold identified motifs were used as initial con-
straints. The regions that are similar between the two CY-
TOR models (Figure 6D) are of interest as both model gen-
eration strategies (the DMS constrained RNAfold global
fold model and the DMS informed ScanFold constrained
refolded model) converged on similar structures. As Scan-
Fold focuses on accurate prediction of local structures,
initially identifying local structures and then constraining
these regions to be paired in a global refold helps to limit
the global folding landscape to allow for more robust long-
range interaction modelling. While it is likely that some re-
gions of the CYTOR transcript are conformationally dy-
namic and loosely structured, the regions of similarity be-
tween the models may represent well-structured and bio-
logically relevant structures (as both models were DMS in-
formed). These may be regions which assist in structure-
function based modes of regulation and these regions could
also serve as starting points for potential structure-specific
targeted therapeutics.

Several of the high structure probability regions within
CYTOR (Figure 6B), overlap well with both the low z-
score regions (Figure 6C) and the regions which were struc-
turally similar between models (Figure 6D). It is possible
that these well-structured regions could be serving as hubs
for trans-acting factors or helping to direct positions of
binding motifs in 3D space. Furthermore, the regions of
low probability (Figure 6B) are likely loosely structured
and more dynamic which could allow for binding of miR-
NAs, other IncRNAs, genomic sequences, or allow for room
to accommodate larger RNP complexes in adjacent struc-
tured regions. Two known miRNA binders of CYTOR bind
in regions of higher probability (Figure 6A and B). While
the binding of miR-4767 to CYTOR is predicted to be
highly favorable (AAG of —17.38 (kcal/mol)), the binding
of miR-138 is predicted to be slightly unfavorable (AAG
of + 1.6 (kcal/mol)). However, the presence of unknown
trans-acting factors around miR-138 may influence local
stability, allowing for miRNA targeting. Additionally, the
nucleotide probabilities (Figure 6B) are moderate to low in
this region, implying a potential for conformational dynam-
ics which may allow for increased propensity of miRNA
binding. Structural modulation around the site of miRNA
targeting is something we have previously observed within
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the MYC mRNA (35) and could be a mechanism present
in CYTOR to finely tune the regulation of expression. As
more information becomes available on known binders and
resulting functions of CYTOR, these structural maps can be
used to help infer potential structure-function mechanisms
of action.

Analyses of EBV RNAs provides novel structural insights

There were 19 EBV transcripts present in BJAB-B1 cells
that had enough read and RTSC coverage to generate DMS
reactivity profiles; notably, both lytic and latent transcripts
were probed (Table 4). While the BJAB-B1 cell line is con-
sidered to primarily expresses a latency III program, peri-
odically the virus will become lytically active in a fraction
of the cultured cells allowing the collection of structural in-
formation on not just latent transcripts, but some lytic tran-
scripts as well (1).

The lytic transcript BHRF1, which is a viral homologue
of cellular B-cell lymphoma 2 (BCL-2), is known to have
anti-apoptotic function in the cell, help to accelerate M YC-
induced lymphoma development and is considered a ther-
apeutic target of lytic EBV infection (61). BHRF1 had the
highest average reactivity and the highest average windowed
AG z-score (0.34 and 0.62, respectively). These two met-
rics taken together indicate that the BHRF1 transcript is
less structured than the other EBV transcripts as the in-
creased reactivity values indicate greater nucleotide acces-
sibility and the high, positive AG z-score indicate the tran-
script is lacking in significantly stable structure and may
even have propensity for being significantly unstable. This
could potentially allow for rapid translation of the mRNA
into protein as there is little structure present to inhibit
the ribosome and this could lead to a faster inhibition of
apoptosis. Additionally, the apparent unstructured nature
of BHRF1 suggest that, in addition to trying to therapeuti-
cally target the BHRF1 protein, the mRNA transcript may
be amenable to sequence specific ASO targeting.

The EBV regions of lowest AG z-score were the two di-
rect repeat regions (DRL and DRR), followed closely by
EBERI. It is somewhat expected that the direct repeat re-
gions had lower AG z-scores as the z-score metric excels at
finding regions of non-random sequence which folds into
stable structure and this is very characteristic of repeat re-
gions themselves (which often form complementary hair-
pin structures). The finding that the AG z-score of EBER1
is —1.58 is interesting as it indicates the short ncRNA is
highly organized to be very thermodynamically stable. In
contrast, EBER2 has a AG z-score of —0.51 and the overall
structure appears to be less significantly ordered and there
are several competing structural models for this RNA. It
may be that the conformational dynamics of EBER2 are
greater than that of EBER1, perhaps to allow for binding
of multiple trans-acting factors (e.g. PAXS, TR RNA, La
antigen, etc.). Regarding potential conformational dynam-
ics, there were several nucleotides that were highly reactive
but are modelled to be embedded in Watson—Crick helices.
Some of these nucleotides are adjacent to the large looped-
out region present in both models. A certain amount of
helical breathing or structural rearrangement may be oc-
curring depending on the presence or absence of potential
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trans-regulatory interactors. It should be noted that the ref-
erence EBER2 model was generated from in vitro prob-
ing experiments conducted on Raji cell lysate (10), while
our DMS reactivity data comes from in cellulo BJAB-BI
probing. These highly different probing environments affect
the presence and abundance of the trans-acting factors that
bind EBER?2, which can affect its conformational equilib-
rium. Future work on the EBER targets could include com-
prehensive probing analyses across a variety of cell types to
help clarify the level of conformational dynamics and con-
texts in which they are occurring.

The EBER2 reference model had good agreement with its
corresponding chemical and enzymatic probing data, with
only a few nucleotides and reactivities being inconsistent.
As noted by the authors, most of these were at the ends of
helices or in weaker base pairs (A-U or G-U pairs) and a
certain degree of ‘helical breathing’ may explain some of
the inconsistencies. From the Glickman et al. study, there
were two highly reactive cobra venom RNase (which targets
and cuts double stranded RNA) reactivity sites at position
C99 and C100 (Figure 2 of (10)) ,which were inconsistent
with the reference model. However, our proposed model has
these nucleotides in base pairs at the end of Stem 3, an in-
dication that the previously generated in vitro data is also
consistent with our model.

Notably, both our alternative models proposed for
EBER1 and EBER2 had 5 and 6 co-varying base pairs, re-
spectively, and the reference models had no covarying base
pairs (Supplemental Figure S1 and Figure 3). This is some-
what surprising as 5 of the EBER2 co-varying base pairs
appear in a region which is structurally identical between
our proposed model and the reference model. Addition-
ally, our proposed EBER1 model differs by only three base
pairs from the reference model and has 4 covarying base
pairs identified in regions of identical structural context.
These results can be explained in part by understanding
that the initial alignments with which covariation is deter-
mined is based on both a sequence and secondary structure
alignment (via INFERNAL) and even small structural differ-
ences can lead to varying alignments. In the case of EBER1,
analysis of the Stockholm alignments showed our proposed
model and the reference model had 45 aligned sequences
in common with 14 and 6 sequences being unique to our
proposed model and the reference model, respectively. This
analysis exemplifies that identification of significantly co-
varying base pairs can lend additional evolutionary sup-
port to models, but it can also be a mercurial technique and
the absence of co-variation does not indicate an absence of
function.

The TR RNA is an emerging transcript of interest within
EBV. While the tandem terminal repeats have been known
to assist in circularization, linearization, and sorting of EBV
genomes in the genomic context, the transcription of the
tandem terminal repeats into TR RNA is a more recent
observation and preliminarily it is known to play roles in
regulating transcription of the EBV genome by forming a
complex with PAX5 and EBER2. As the region of the TR
RNA which binds the genomic TR is still unknown, it may
be a region of low probability which is capable of breaking
cis-structure to form the trans-interaction. In our proposed
model of the TR RNA, the region known to bind to EBER2

(Figure 4A) is in a region of low probability (Figure 4B)
and the adjacent nucleotides (nucleotides ~400-420) which
form long-range interactions with the EBER2 binding site
are presumably left unpaired; it is possible that this region
is available for interaction with genomic sequence. Future
studies could be conducted which mutate this region to as-
sess if there is a loss of binding of TR RNA to the genomic
sequence.

To compare the folding of a single or dimeric TR RNA
molecule, we folded the mono- and di-segments of the
TR RNA (Figure 4C). Surprisingly, almost all the struc-
ture present in the mono-segment was preserved in the di-
segment, except for the 5" and 3’ ends of the transcript
and the region of lowest structure probability (the stem en-
compassed by nucleotides 114-131), which formed a com-
pletely complementary, long-range intersegmental interac-
tion with the corresponding nucleotides in the second seg-
ment. This indicates that the segments have potential for
forming larger, multi-segment structures, which may be sta-
bilized by this interaction. If the TR RNAs are forming
inter-segmental structure, disruption of this region, may
disrupt complex formation and function. More work is
needed to parse out the interactions of TR RNAs.

CONCLUSION

In this study, we report the application Structure-seq2 to
the BJAB-BI cell line (an EBV infected B-cell lymphoma).
DMS modified RNAs underwent transcriptome-wide li-
brary preparation and sequencing. Bioinformatic analysis
of resulting sequencing reads (using StructureFold2)
generated DMS reactivity profiles for over 10000 human
mRNAs and IncRNAs, along with 19 latent and lytic EBV
RNAs. Using the DMS reactivity profiles from in cellulo
probing, we provide an alternative model of the highly
abundant EBV ncRNA, EBER2. Additionally, we pro-
vide the first structural model of the EBV tandem termi-
nal repeat RNA (in both a mono- and di-segment con-
figurations), which interacts with EBER2 to drive lytic
reactivation—indicating unique and common structural
features of the mono- and di-segment sequences, as well as
insights into interactions with EBER2.

ScanFold was used to analyze 6588 human mRNAs
and 3427 human IncRNAs which had a sufficient cover-
age to generate a DMS reactivity profile. These DMS in-
formed ScanFold results are available for individual view-
ing and download from the RNAStructuromeDB. These
results provided high resolution thermodynamic analyses
of each transcript and contain robust, biologically rele-
vant 2D local structural models with an emphasis on re-
gions of significant thermodynamic stability and propensity
for function. As DMS probing, RNA sequencing/analysis,
and reactivity modelling of RNAs is highly technical and
time consuming, the availability of the structure models
generated in this study should significantly lower the bar-
rier of entry for researchers interested in studying any of
these transcripts. We show how to use the resulting Scan-
Fold data to further investigate transcripts using the M YC
mRNA and the CYTOR IncRNA as examples: here, we pro-
vide the first experimentally informed model of CYTOR
secondary structure.



As our discovery of novel RNA sequences (both within
mRNAs and IncRNAs) continues to grow, so does our
need for accurate and robust structural analyses of these
transcripts. Deducing the structure—function mechanism of
RNAs is of vital importance as is identifying regions for po-
tential therapeutic targeting and the data generated in this
study is a crucial step towards these goals.

DATA AVAILABILITY

Processed data and analyses generated in this study can
be found in the Supplemental Data section. ScanFold
generated data along with input reactivity profiles for hu-
man mRNAs and IncRNAs can be viewed and downloaded
from the RNAStructuromeDB. To access this data, the fol-
lowing link can be used: https://structurome.bb.iastate.edu/
transcript-search.

To search the database, enter the ENST identifier for a
transcript into the search bar and by clicking the ‘Experi-
mentally informed transcripts’ toggle button, human mR-
NAs and IncRNAs from this study can be accessed. By
clicking the ‘View Results’ button, an IGV window will be
generated displaying the ScanFold data for the transcript
of interest. Additionally, the ‘Download Results’ button
will allow for download of a zipped directory containing
all ScanFold output for the associated ENST identifier,
including the reactivity file used

EBV transcripts and genomes analyzed by Scan-
Fold with DMS pseudo-energy incorporation can be
downloaded from the RNAStructuromeDB at the fol-
lowing link: https://structurome.bb.iastate.edu/download/
DMS-informed-scanfold-analysis-ebv-bjab-b1.

Additionally, custom python scripts used in this study
and mentioned above can be found on Github in the
two following repositories: https://github.com/moss-lab/
Transcriptome_Scripts https://github.com/moss-lab/SARS-
CoV-2.

FASTQ files and resulting REACT files from this study
have been uploaded to the NCBI GEO database (Accession
number GSE210478).

SUPPLEMENTARY DATA
Supplementary Data are available at NARGAB online.
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