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Abstract

Background: Threshold regression, in which time to remission is modelled as a stochastic drift towards a boundary,
is an alternative to the proportional hazards survival model and has a clear conceptual mechanism for examining
the effects of drug dose. However, for both threshold regression and proportional hazard models, when dose
titration occurs during treatment, the estimated causal effect of dose can be biased by confounding. An
instrumental variable analysis can be used to minimise such bias.

Method: Weekly antidepressant dose was measured in 380 men and women with major depression treated with
escitalopram or nortriptyline for 12 weeks as part of the Genome Based Therapeutic Drugs for Depression (GENDEP)
study. The averaged dose relative to maximum prescribing dose was calculated from the 12 trial weeks and tested
for association with time to depression remission. We combined the instrumental variable approach, utilising
randomised treatment as an instrument, with threshold regression and proportional hazard survival models.

Results: The threshold model was constructed with two linear predictors. In the naïve models, averaged daily dose
was not associated with reduced time to remission. By contrast, the instrumental variable analyses showed a clear
and significant relationship between increased dose and faster time to remission, threshold regression (velocity
estimate: 0.878, 95% confidence interval [CI]: 0.152–1.603) and proportional hazards (log hazards ratio: 3.012, 95% CI:
0.086–5.938).

Conclusions: We demonstrate, using the GENDEP trial, the benefits of these analyses to estimate causal parameters
rather than those that estimate associations. The results for the trial dataset show the link between antidepressant
dose and time to depression remission. The threshold regression model more clearly distinguishes the factors
associated with initial severity from those influencing treatment effect. Additionally, applying the instrumental
variable estimator provides a more plausible causal estimate of drug dose on treatment effect. This validity of these
results is subject to meeting the assumptions of instrumental variable analyses.

Trial registration: EudraCT, 2004–001723-38; ISRCTN, 03693000. Registered on 27 September 2007.

Keywords: Depression, Dose response, Instrumental variables, Survival analysis, Threshold regression, Time to remission

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: jennifer.hellier@kcl.ac.uk
Biostatistics and Health Informatics Department, Institute of Psychiatry,
Psychology & Neuroscience, King’s College London, De Crespigny Park,
London SE5 8AF, UK

Hellier et al. Trials           (2020) 21:10 
https://doi.org/10.1186/s13063-019-3810-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s13063-019-3810-9&domain=pdf
http://orcid.org/0000-0003-1760-3708
http://www.isrctn.com/ISRCTN03693000
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:jennifer.hellier@kcl.ac.uk


Background
Clinical perspective
When an exposure of interest is subject to unmeasured
confounding, instrumental variable (IV) models can be
used to test and estimate the causal effect of exposures
on disease-related outcomes [1, 2]. IV estimators have
been described and evaluated for use with data in a
time-to-event setting [3]. We explore the practical appli-
cation of these methods in the context of illustrative trial
data, drawing on the virtues of trial design and rando-
mised treatment as an IV [4]. This work is extended to
show the benefits of utilising threshold regression with
an IV estimator method, a novel approach for re-
searchers who may wish to fit models that estimate
causal effects in a survival setting. This manuscript de-
scribes a novel method development informed by appli-
cation of trial data of antidepressant dose response.

Dose response in time to remission
From both patient and clinical service perspectives, re-
ducing time to remission is an important therapeutic
goal. In the treatment of depression, many researchers
have suggested that achieving remission should be
viewed as the primary goal [5–7]. The most commonly
used tool for the analysis of remission times is the Cox
proportional hazards (PH) survival model, which esti-
mates the effect of therapy on the relative risk of remis-
sion. While statistically elegant, and often giving an
efficient and parsimonious characterisation of the effects
of therapy, this model is rather agnostic as to the under-
lying process of recovery. Models based on a more expli-
cit conceptualisation of the process can sometimes be

more helpful [8, 9], particularly where there are multiple
ways in which a variable may have an effect. One such
model is the inverse Gaussian (IG) survival model. In
the IG model, a patient can be considered as starting
some distance away from the threshold for remission
and drifting with some velocity towards the threshold.
Their progress is not assured, but is probabilistic, and
some may drift the wrong way and never remit. Part of
the appeal of the model is that it distinguishes patient
characteristics that might be associated with initial se-
verity, conceived of a distance from the threshold, from
those characteristics associated with velocity of recovery.
Figure 1 illustrates that for two patients, the time taken
to remission is necessarily a function of both initial se-
verity and rate of recovery.
Reaching the threshold for remission is determined by

the patient’s initial severity or baseline position and the
rate of recovery or progression towards or away from
remission.
A common complication of time to remission studies

is the necessity to titrate each patient’s drug dose over
the first few weeks to a level considered both therapeutic
and acceptable [10]. This practice can result in bias in
the naïve estimates of drug dose-response, since it is
common for the most responsive patients to be titrated
to a lower dose than those with more refractive symp-
toms, for whom dose is often progressively increased in
the hope of achieving an improvement in symptoms.
This practice results in routine analysis suggesting
higher dose being associated with longer time to remis-
sion, something which we know to be a pharmacologic-
ally implausible. A possible solution to this is to estimate

Fig. 1 The inverse Gaussian (IG) model. Two hypothetical time paths of depression (one solid and one dashed) showing actual and linear
smoothed depression scores. The participant’s depression score under the IG model evolves as Brownian motion with a trend but with random
local changes
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the effect of dose using an IV approach [2, 11]. This re-
quires having a variable (the instrument) that influences
dose but does not influence time to remission except
through its influence on dose, and such a variable can be
obtained by exploiting the random treatment assignment
of a randomised controlled trial (RCT).
As a member of the class of so-called non-collapsible

models, the routinely used Cox PH model does not lend it-
self to the IV approach [3], whereas the IG model does
[12]. In this paper, we demonstrate for the first time that
the combination of the IG model and IV estimation proves
to be a straightforward way to recover dose response effects
with less titration bias. It aims to contrast methods for
combining an IV estimator with PH and threshold regres-
sion survival models. We illustrate these methods for the
Genome-Based Therapeutic Drugs for Depression (GEN-
DEP) trial that compared two types of anti-depressant in
people with depression. Estimated causal effects can be
biased by confounding and these methods can be used in
practice to minimise such bias in a survival setting.

Methods: illustrative trial data
Trial design
We analysed data from the Medical Research Council-
funded GENDEP study, a multicentre open-labelled, ran-
domised clinical trial [13], compliant with CONSORT
[14]. The study was carried out in nine European aca-
demic psychiatric centres and was designed to evaluate
therapeutic response to two antidepressants. All partici-
pants provided a written consent after the procedures
were explained. GENDEP is registered at EudraCT and
ISRCTN.

Participants
The GENDEP study included 811 adult men and women
with a current diagnosis of major depressive disorder,
established using the Clinical Assessment in Neuro-
psychiatry interview (SCAN version 2.1). Recruitment
was restricted to people of white European ethnicity.
People with (or had a family history) of bipolar disorder
or schizophrenia and active substance dependence were
excluded. Participants were also excluded if they had
contraindications or a history of lack of efficacy or ad-
verse reaction to both study medications. A total of 468
participants had no contraindications to either drug and
were randomly allocated to receive escitalopram or nor-
triptyline. The present study includes 380 (81%) of these
participants, where treatment dosing was recorded.

Measures and covariates
Depression was measured weekly and here we focus on
the primary outcome, the clinical rated 10-item Mont-
gomery-Åsberg Depression Rating Scale (MADRS) [15].
Remission was calculated at each study week, defined as

a MADRS measure of ≤ 10 for the current and remain-
der of available measures. Time to the week remission
began was calculated from randomisation to the first
week of remission, over a maximum of 12 weeks. Cen-
sored observations are those participants whom dropped
out of or switched treatment.
All other covariates utilised in these analyses were

measured at baseline before randomisation and the initi-
ation of treatment. Body weight and height were mea-
sured by calibrated scales. Body mass index (BMI) was
calculated as a continuous measure of body weight rela-
tive to height (kg/m2). Other baseline covariates consid-
ered were MADRS score, age (years) at randomisation,
age (years) at time of depression onset, duration of
current episode measured in weeks and gender.

Intervention and dosing
Eligible participants were randomised to receive a 12-
week treatment. The two randomised antidepressants
represented the two most common mechanisms of ac-
tion among commonly used antidepressants and have a
good efficacy record. Escitalopram is highly selective in-
hibitor of the serotonin transporter [16]. Nortriptyline is
a tricyclic antidepressant with an affinity for the nor-
adrenaline transporter 100 times higher than that for the
serotonin transporter [17].
Trial medication was started immediately after the first

assessment. Escitalopram was initiated at 10 mg daily and
increased to a target dose of 15 mg daily within the first
two weeks (unless adverse effects limited dose increase)
and could be increased to 20 mg daily (and up to 30 mg if
there was clinical agreement that a higher dose was
needed). With similar clinical guidelines: nortriptyline was
initiated at 50 mg daily and titrated to a target of 100 mg
within the first two weeks (unless adverse effects limited
dose increase); this could be increased to 150 mg with a
maximum of 200 mg (if there was clinical agreement that
a higher dose was needed). Relative dose was determined
weekly by division of the current dose by the British
National Formulatory’s (https://www.bnf.org/) recommen-
dation of maximum daily dose: 20 mg daily and 150 mg/
day for escitalopram and nortriptyline, respectively. The
parameter of interest was the average relative dose, for
which the denominator was the number of weeks a meas-
ure of dose was available, of a possible 12 weeks.
All available weekly data in response to antidepressant

treatment with dosing measures, MADRS scores and
relevant covariates were included in the analyses.

Methods: analysis models
Kaplan–Meier
Time to remission is initially presented as Kaplan–Meier
plots. Relative dose is dichotomised using the median to
demonstrate survival functions by high and low dose.
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Inverse Gaussian model
Threshold regression refers to a statistical model for
time to event data, in which the time to the event is de-
fined as the first hitting of an absorbing boundary by an
underlying stochastic process. We use the version of the
IG model termed ‘Wiener Process with Absorption’ in
the review by Aalen and Gjessing in 2001 [18] and previ-
ously applied in psychiatry by Crouchley and Pickles in
1991 [19]. In this model, the distribution of time to re-
mission (t) is given by:

f ig tð Þ¼ ci=σ ið Þ 2πt3
� �−1=2� �

exp − ci−μitð Þ2= 2σ2
i t

� �� �

The IG distribution depends on the mean and variance
parameters of the underlying Wiener process (μ and σ)
and the initial patient status (c), where ci/σi is the pa-
tient’s initial distance from the threshold, μi/σi is the vel-
ocity of the patient towards or away from the threshold.
In Fig. 1, the patients’ initial distance (ci/σi) is shown as
their baseline depression severity; the velocity towards
the threshold (μi/σi) is a measure that determines their
rate of recovery.
Most explanatory variables (denoted x1, x2, …, xm)

could be linked to both initial severity (distance from
the remission threshold) and the rate of symptom im-
provement (velocity). However, randomised treatment or
post-randomisation variables such as dose (denoted z1,
z2, …, zm), cannot be associated with initial severity, but
only to the rate of symptom improvement. Initial dis-
tance is linked to baseline covariates with an exponential
function:

ci=σ i¼ exp α
0
xi

� �
¼ exp α1x1þα2 x2þ…þαmxmð Þ¼ exp θ1ð Þ

whereas the velocity is linked to covariates as a linear
function, given the matrix γ = (x1, x2,…, xm, z1, z2,…, zm):

μi=σ i ¼ β
0
γi

� �
¼ β1γ1 þ β2 γ2 þ…þ βmγmð Þ ¼ θ2

where {α}and {β} are coefficients to be estimated. The
simple linear function implies that the predicted direc-
tion of drift can be both towards and away from the
boundary and that remission is not inevitable even in
the long run. Unlike the PH model, coefficient estimates
from the linear predictor for velocity do not systematic-
ally vary with the inclusion of other uncorrelated
variables.
The associated survival function:

S tð Þ¼ϕ
c−μt

σ√ t

� �
− exp

2cμ
σ2

� �
ϕ

−c−μt

σ√ t

� �

where ϕ(.) is the cumulative standard normal distribu-
tion. The hazard rate can be calculated, as usual, from
h(t) = f(t)/S(t). Given there are three parameters in the

IG distribution, c, μ and σ, but the distribution only de-
pends on these through the functions of c/μ and μ/σ,
from a statistical point of view, there are two free
parameters.
It is important to note, in a randomised trial, the IG

model could be used to estimate the intention-to-treat
analysis, where treatment allocation could feature alone
in the velocity linear predictor. However, in our analyses
the estimand of interest is dose response and dose is
measured after randomisation and therefore could be
subject to confounding. One method for dealing with
this is to use an IV approach to get unbiased estimates
of dose. This is the first time IG models have been used
with IV estimation to estimate dose response.
Covariates may have a different impact on the initial

distance or velocity. The two sets of covariates used in
the velocity or distance linear predictors can be partially
or entirely different. Post-randomisation variation in vari-
ables were only included in the velocity linear predictor
[18]. In this application, different variables were tested as
potential predictors for exp(θ1) and θ2. Baseline MADRS
score, duration of current depressive episode and gender
(reference category male) were considered possible predic-
tors of distance from remission. Age of onset, BMI and
relative dose were used in the second (velocity) linear pre-
dictor. The IG model was fitted by maximum likelihood
using a purpose written program in Stata 14, Stata code
is given in Additional file 1.

Cox model
Cox PH regression is a well-known model for analysing
remission times [20]. For our purposes, we note that the
effect of predictors of time to remission enter the model
multiplicatively on the rate of remission by exponenti-
ation of a regression type linear predictor:

λi tð Þ ¼ λ0 tð Þ exp β1x1 þ β2 x2 þ…þ βmxmð Þ

where λi(t) is the hazard function at time t, here i is a
subscript for observation and the xs are the covariates
with effects estimated by their corresponding coefficients
{β}. The constant λ0(t) represents the baseline hazard
function.
The Cox model, though it has many strengths, is non-

collapsible, since the marginal regression parameter for a
covariate is not equal to the conditional parameter when
other covariates are included in the model [21, 22] . This
implies that the magnitude of an estimated coefficient
depends upon the inclusion or exclusion of another pre-
dictor variable, even when these two variables are
uncorrelated.
We compared estimates from the IG model with the

Cox PH model. We included baseline MADRS score,
duration of depression, gender, age of depression onset,
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baseline BMI and average relative dose. PH were as-
sumed. Estimates are presented as log hazard ratios
(HR) with associated 95% confidence intervals (CI).

Instrumental variable estimation using the two-stage
residual inclusion approach
A correct IV analysis rests on three fundamental as-
sumptions [4, 23]: (1) the instrument must be correlated
with the exposure of interest (relevance); (2) the instru-
ment affects the outcome only through its relation to
the exposure of interest, there is no residual direct effect
of treatment on the outcome (exclusion restriction); and
(3) the instrument must be independent of the con-
founder (exogeneity).
Randomised antidepressant treatment was used as an

IV using the two-stage residual inclusion (TSRI) ap-
proach [3]. The first stage of this method involved esti-
mating the exposure of interest average relative dose, yD,
from our IV variable, randomised treatment. This re-
gression model was further adjusted for the baseline co-
variates and age at randomisation, covariate set {C}.
Inclusion of other measured covariates in this step can
help improve precision of the IV estimator:

yD¼c0þczZþccCþΔ

The residuals from the first-stage regression, Δ, can be
considered as estimating the effects of other uncon-
trolled factors that influence a patient’s dose. In the sec-
ond stage of this method, we estimate the survival
model, but we include among the predictor variables the
residuals from the first stage together with the patient’s
relative dose, D:

h tjD;Zð Þ¼b0 tð Þþbd tð ÞDþbcCþρ0 tð ÞΔ

where hðtjD;ZÞ denotes the observed hazard function
of T given (D, Z) evaluated at time time, t.
The second stage was implemented in both survival

models. Confidence intervals and p values were based on
1000 non-parametric bootstrap samples to account for
the two-stage approach.

Results
Of the participants for whom antidepressant dose data
were available, 196 were allocated to escitalopram and
184 to nortriptyline. Of these, 306 (80.3%) completed at
least eight weeks of treatment. Completion rates were
higher for escitalopram, 134 in the escitalopram group
and 99 in the nortriptyline group had outcome data
available for week 12. Additional file 2 details the base-
line characteristics of participants included in the ana-
lyses. The trial population was mainly women with a
mean age of 42 years (SD = 11); just over half the partici-
pants were married or cohabiting. For the majority,

depressive onset was 10 years before the beginning of the
study and most had had two previous depressive episodes.
The current episode was approximately 20 weeks in dur-
ation (SD = 17). Half of the participants had taken antide-
pressants previously. BMI indicated average weight and
baseline MADRS scores were high (mean = 30, SD =6).
At week 8, the median dose of escitalopram was 15 mg

(interquartile range 10–20 mg) and the median dose of
nortriptyline was 100 mg (interquartile range 75–125 mg).
Overall average relative dose was higher for escitalopram
0.74 than nortriptyline 0.61. In the total sample, there was
a weak positive correlation of the average relative dose
with the final week 12 MADRS score (r = 0.0726, p = 0.27)
and a significant positive correlation with time to remis-
sion (r = 0.2668, p < 0.01), reflecting that higher doses may
be prescribed for those patients not responding well to
treatment. Furthermore, of those patients given an escalat-
ing dosing regimen at some period during the 12 weeks of
study, the majority did not reach remission: 61% (n = 78/
128) and 71% (104/145) for escitalopram and nortripty-
line, respectively.
Figure 2 shows, over the 12 study weeks, the relative

dose for those participants not in remission. The in-
creasing dosing regimens are apparent for both treat-
ments. For those not in remission, the median relative
dose for escitalopram was 100% of the prescribing guide-
lines from week 7 onwards and the maximum dose
reaches twice that of the recommended daily dose. We
know from previous reports of this trial that the more
highly dosed escitalopram regimen proved to be more
efficacious than the lower-dosed nortriptyline [13].

Regression analysis
Table 1 showed that relative dose was strongly predicted
by randomised treatment, with an F-statistic of 32 [24]
and beta = − 0.131 (95% CI − 0.18 to − 0.09), implying
that the relative daily dose of nortriptyline on average
over the 12-week period was 13% lower than escitalo-
pram. Sex and age showed marginally significant associa-
tions, but, perhaps surprisingly, prior duration and age
of onset of depression and BMI were unrelated to rela-
tive dose. We extracted the residuals from this regres-
sion for inclusion in subsequent survival analyses. Since
treatment allocation was random, these residuals meet
the assumptions required for a TSRI estimator. We refer
to these as Stage 1 residuals.
Overall, the average time to remission was 7.96 weeks

(95% CI = 7.4–8.5). In total, we observed 143 partici-
pants in remission over 3269 treatment weeks. In Fig. 3,
survival functions from Kaplan–Meier, Cox and IG
models are plotted for median dichotomised high and
low relative doses and unadjusted for covariates. All
three suggest that a higher dose is associated with

Hellier et al. Trials           (2020) 21:10 Page 5 of 11



increased time to remission in all three methods, mean
time to remission was 7.82 weeks (95% CI = 7.3–8.3) for
lower doses and 9.40 weeks (95% CI = 9.0–9.8) for
higher doses. We suspected that these counterintuitive
results were explained by titration bias.
Table 2 shows results from the Cox and IG models.

For each covariate, two rows of estimates are shown:
those in the first row are for the standard analysis while
those in the second row were obtained using the TSRI
estimator from models that also included the Stage 1 re-
siduals as an additional covariate. In the standard Cox
model, while, as expected, baseline MADRS score was

highly significant, with log HR = − 0.051 (95% CI = −
0.079 to − 0.023) implying higher severity being associ-
ated with longer time to remission, higher relative dose
was not significantly associated and the estimated coeffi-
cient also implied a decreasing log HR = − 0.180 (95% CI
= − 0.933 to 0.573). Like the simple summary statistics
suggested, this implies an increase in relative dose was
associated with a decreased chance of remission and lon-
ger time to remission.
The same pattern of response was found in the standard

IG model. For the distance linear predictor, representing
the logarithm of initial depression status, it is seen that

Fig. 2 Median relative dose. Plots are shown for escitalopram and nortriptyline by trial week for those participants not in remission. Error bars are
minimum and maximum quantities

Table 1 Predicting relative dose using linear regression. Regression output for prediction of relative dose from treatment and
baseline covariates. The association measure is the regression coefficient (SE), with 95% CIs

Relative dose Coefficient (SE) 95% CI p value

MADRS 0.003 (0.002) − 0.001 to 0.006 0.117

Prior duration of depression (weeks) 0.000 (0.001) − 0.001 to 0.001 0.853

Sex (female) 0.046 (0.024) 0.000 to 0.093 0.052

Age of depression onset (years) 0.001 (0.001) −0.002 to 0.004 0.399

BMI (kg/m2) 0.003 (0.002) −0.001 to 0.008 0.149

Treatment (nortriptyline) −0.131 (0.023) −0.175 to − 0.086 < 0.001

Age (years) − 0.002 (0.001) − 0.005 to 0.000 0.060

BMI body mass index, CI confidence interval, MADRS Montgomery-Åsberg Depression Rating Scale, SE standard error
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baseline MADRS score is significant, with p < 0.001, with
a positive regression coefficient signifying the initial dis-
tance (or baseline depression status from a remission
boundary) tends to be higher for participants with higher
baseline depression scores. The coefficient for duration of
the depressive episode and gender are also positive, indi-
cating that initial depression status was further from re-
mission for women and those with a longer duration of
depression. For the velocity linear predictor, the regression
coefficients are all negative, indicating a negative effect
slowing remission. Relative dose has a non-significant
negative coefficient − 0.029 (95% CI = − 0.218 to 0.160),
consistent with the unadjusted analyses seen in Fig. 3 and
the standard Cox model in this table, where a higher rela-
tive dose delays remission.
For the IG model, when the Stage 1 residuals are in-

cluded as an additional covariate in the velocity linear pre-
dictor, the coefficient of relative dose becomes highly
significant (p = 0.018) and positive, showing a faster rate of
recovery with increasing dose (beta = 0.878, 95% CI =
0.152–1.603), which makes theoretical sense. The estimates
for the other covariates generally remain unchanged.
For the Cox model, the addition of the Stage 1 resid-

uals as a covariate shows a similar effect in terms of the
direction and significance, but there is clear evidence of
the problems of non-collapsible in modelling relative
risk, with the log HR estimate of 3.012 (95% CI = 0.086–
5.938) implying an extreme HR of > 20. The results of
the model comparisons are presented in Fig. 4.

In both models, we obtained further evidence of titra-
tion bias from the highly significant estimated effects of
the first-stage residuals, such that high residuals strongly
predicted longer time to remission (IG beta = − 1.101,
95% CI − 1.774 to − 0.247; Cox beta = − 3.508, 95% CI =
− 6.569 to − 0.447). Hausman [25] showed that the test
of the coefficient of the first-stage residuals is a test for
the presence of unmeasured confounding. By including
these residuals in the second stage, we correct for some
of the confounding, known as endogeneity [26]. We can
hypothesise that the residuals, the prescribing of higher
(or lower) dose than expected given the patients’ charac-
teristics and drug assignment, are representing a group
of unmeasured variables that imply a poor (good) prog-
nosis and a slow (fast) rate of recovery.
The results for all other covariates are essentially iden-

tical to the more naïve analyses as expected. The corre-
lations of the residuals with these baseline covariates
were all small.

Discussion
In this paper, we have used a novel application of IV
techniques in an IG model to estimate an unbiased rela-
tive dose response on time to remission relationship in
the GENDEP study.
We demonstrate the benefits of these analyses estimat-

ing causal parameters accounting for confounding, rather
than those that estimate associations. This is achieved
through using a model with mechanistic underpinnings,

Fig. 3 Time to depression remission. Plots show relative dose dichotomised by median split of average weekly dose. Analyses were adjusted for
no further covariates. Plots from left to right: Kaplan–Meier; Cox model; IG model. Shaded area shows 95% pointwise CIs for Kaplan–Meier and
Cox models, IG model 500 bootstrap replications of the survival function used to estimate a standard error and CI
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together with a TSRI estimator to account for the un-
measured confounding that arose from the process of in-
dividual patient dose titration. The results for the trial
dataset illustrate emphatically how the method can re-
cover scientifically meaningful estimates of the dose–re-
sponse relationship even where standard analysis gives
estimates in the wrong direction.
Application of a TSRI method is intended to give an

unbiased estimate of dose response on time to remis-
sion. The IV analyses showed a clear and significant re-
lationship between increased dose and faster time to
remission. Both the direction and magnitude of the dose
response were changed by use of the IV approach, and
though evident in both the IG and Cox models, the non-
collapsibility of the Cox model made this model hard to
interpret.
The methods proposed here demonstrate an important

application of IV methodology that is clinically useful.
We have shown how IV assumptions have led to the
correction of an antidepressant titration bias in a rando-
mised controlled trial. This application is especially im-
portant because treatment assignment can provide a
perfect IV for confounding control and IV methods pro-
vide an alternative causal analysis.
We have seen that in spite of their different mathem-

atical structures, the IG model and Cox regression give
qualitatively similar findings. Recognising the strengths
of the Cox regression and where its assumptions are
valid, it should be used. There are, however, clear

advantages in this setting for the IG model where, com-
pared to a multiplicative model, the linear additive form
of the equation predicting velocity is more easily inter-
preted in the IV setting [27], a property demonstrated in
our results. Also, in having two linear predictors and
thus two sets of coefficients for covariate effects, namely
those associated with the distance and velocity, the IG
model allows researchers to consider the mechanism of
time to remission separately from the covariates that in-
fluence the initial depth of depression from those which
influence the course of the depression progression after
initiation of treatment. Additionally, the IG focuses on
survival (remission), which may be of greater interest
than HRs [28, 29]. The structure of the IG model is such
that different choices in the threshold might not be ex-
pected to give rise to systematic variation in the esti-
mated coefficients of the model, which would be an
appealing property, this requires further investigation.
Tchetgen Tchetgen et al. [3] introduce the TSRI and a

two-stage least squares regression based on using the
predicted values from the first stage in place of the ex-
posure variable as methods for IV estimation in the sur-
vival context. Although the two approaches are
equivalent in their estimation [30], in this application we
have chosen the TSRI approach. This approach can be
extended to a binary exposure and we favour the explicit
estimation of the coefficient for the residuals.
We have shown the implementation of an IV—rando-

mised treatment—to estimate the average casual effect

Fig. 4 Results comparing naïve and IV model estimates from IG and Cox models. Regression estimates and 95% CI for dose effect on time to
remission under the Cox (PH), log HR, and inverse Gaussian (IG), velocity coefficient, models. Estimates shown without (naïve) and with (IV) the
stage 1 residuals introduced as control variables. Results from fully adjusted models
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of an exposure—dose—on time to remission. The
methods demonstrate that IV in survival context is easy
to understand and apply once an appropriate IV has
been identified. The use of this causal methodology rests
on the validity of the assumptions for the IV [31] and
the conditions that must be satisfied to achieve consist-
ent estimates of the causal effects. The three main con-
ditions that define an IV are: (1) treatment has a causal
effect on dose; (2) treatment affects the time to remis-
sion only through the relative dose; and (3) there is no
confounding of the effect of treatment on time to remis-
sion. We can argue that randomised treatment satisfies
conditions (1) and (3). Furthermore, the first stage of the
IV method demonstrates that allocation is strongly cor-
related with the exposure of interest, relative dose [1].
To explore the exclusion restriction in the context of
our modelling, we tested an interaction between treat-
ment and centre as an alternative IV which would then
allow for a direct effect of treatment in the second stage
model. Treatment allocation was not associated with
time to remission in the presence of the relative dose
(Cox log HR = – 0.744, 95% CI = − 3.190 to 1.702, IG
velocity estimate = − 0.015, 95% CI = − 0.308 to 0.278).

Limitations of the study
One weakness in our study is the plausibility of the rela-
tive dose variable. We have used a flexible escalating dose
trial, with the two antidepressants follow a different dosing
scheme. To analyse the effects of dose response, drug
doses needed to be modelled on the same scale. We chose
a relative comparison to prescribing daily maximums,
averaging these over weeks of treatment. To fully explore
the effect of dose, it could be argued that the role of
plasma levels of antidepressants and their proximal me-
tabolites should be modelled. However, plasma levels are
not comparable between the two antidepressants and a
standardised scale would still need to be derived that
could be used for plasma metabolites of both drugs. Fur-
thermore, we are making the assumption that the standar-
dised dose effects for the two antidepressants are
equivalent in our modelling and the mechanism of in-
creased dose effect comparable. By averaging the relative
dose over the 12 weeks, we are aware there may be some
finer dosing effects where the rate of dose increase may
affect the velocity to recovery that still requires further in-
vestigation and would be insightful future work.
Finally, these analyses were a subsample of the rando-

mised trial population (n = 380, 81%); this may have biased
our results if the subsample that had dosing information
available is not representative of the whole trial population.

Conclusions
In conclusion, we have shown that higher antidepressant
dosing can predict quicker time to depression remission.

We have further demonstrated the use of an innovative
causal instrumental variable approach in a survival
context. The results appear robust and meet the testable
assumptions of the modelling. We have highlighted the
benefit of an IG model for time-to-event analyses.
Further study is needed to establish why some people do
not respond well to higher doses of antidepressant
treatment.
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