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Abstract

Background

Rapid antibiotic administration is known to improve sepsis outcomes, however early diagno-

sis remains challenging due to complex presentation. Our objective was to develop a model

using readily available electronic health record (EHR) data capable of recognizing infant

sepsis at least 4 hours prior to clinical recognition.

Methods and findings

We performed a retrospective case control study of infants hospitalized�48 hours in the

Neonatal Intensive Care Unit (NICU) at the Children’s Hospital of Philadelphia between Sep-

tember 2014 and November 2017 who received at least one sepsis evaluation before 12

months of age. We considered two evaluation outcomes as cases: culture positive–positive

blood culture for a known pathogen (110 evaluations); and clinically positive–negative cul-

tures but antibiotics administered for�120 hours (265 evaluations). Case data was taken

from the 44-hour window ending 4 hours prior to evaluation. We randomly sampled 1,100

44-hour windows of control data from all times�10 days removed from any evaluation.

Model inputs consisted of up to 36 features derived from routine EHR data. Using 10-fold

nested cross-validation, 8 machine learning models were trained to classify inputs as sepsis

positive or negative. When tasked with discriminating culture positive cases from controls, 6

models achieved a mean area under the receiver operating characteristic (AUC) between

0.80–0.82 with no significant differences between them. Including both culture and clinically

positive cases, the same 6 models achieved an AUC between 0.85–0.87, again with no sig-

nificant differences.
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Conclusions

Machine learning models can identify infants with sepsis in the NICU hours prior to clinical

recognition. Learning curves indicate model improvement may be achieved with additional

training examples. Additional input features may also improve performance. Further

research is warranted to assess potential performance improvements and clinical efficacy in

a prospective trial.

Introduction

Sepsis is a major cause of morbidity and mortality in infants worldwide [1,2]. Although sepsis

affects relatively few healthy, term infants, the incidence is 200-fold higher in those born pre-

maturely or chronically hospitalized [3,4]. More than 50% of extremely preterm infants will

have an evaluation for invasive infection and one third will develop sepsis during their NICU

stay [5]. Prematurely born infants experience the highest mortality (7–28%), and among survi-

vors, 30–50% incur major long-term impairments including prolonged hospitalization,

chronic lung disease and neurodevelopmental disabilities [6–8]. Importantly, recent data high-

light the exponential rise of associated healthcare costs and burdens faced not only by sepsis

survivors but also by their caregivers [9]. To date, despite increased understanding of the

pathophysiology of sepsis and sophistication of neonatal intensive care strategies, including

clinical decision support efforts, there have been only modest improvements in outcomes

from sepsis in infants [10].

Following bacterial invasion of the bloodstream, the immune system initiates a potentially

damaging systemic inflammatory response syndrome (SIRS) that may quickly progress to

severe sepsis, multi-organ system failure and death [9,11]. Early sepsis recognition, therefore,

followed by timely intervention, is key to reducing morbidity and mortality. Recent studies

address the consequences of delayed treatment of infected adults and children [12,13]. In a

study of 49,331 adults from the New York State Department of Health, delays in time to antibi-

otics were associated with significantly increased risk-adjusted odds of mortality (1.04 per hour)

[13]. Delayed antimicrobial therapy was shown to be an independent risk factor for prolonged

organ dysfunction and mortality in a study of 130 critically ill children [12]. Despite the impor-

tance of early intervention, delays in recognition and treatment are common [14]. Infants fre-

quently demonstrate subtle, ambiguous clinical signs, which mimic other neonatal disease

processes. Screening laboratory tests have limited diagnostic accuracy in neonatal sepsis, mak-

ing rapid diagnosis difficult. The blood culture, the reference standard for sepsis diagnosis, may

be falsely negative due to the small volume of blood obtained as well as the low density of infect-

ing microorganisms [15–17]. Consequently, infants suspected to have sepsis despite negative

cultures, are often managed conservatively and receive prolonged antibiotic therapy.

Machine learning and statistical modeling approaches have been applied in previous studies

in an effort to address the challenges associated with sepsis recognition and care management

[18–32]. Several studies used machine learning models to identify individuals most at risk for

sepsis related mortality [19,25,26]. Statistical models can predict septic shock as much as 28

hours before onset [18]. While such models may inform clinical decision support tools that

lead to care adjustment for patients with confirmed sepsis, they are less likely to support early

recognition.

Other studies developed machine learning models to confirm clinician suspected sepsis. A

study of 299 infants compared the ability of several machine learning algorithms to confirm
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suspected sepsis using data available up to 12 hours after clinical recognition but before blood

culture results were available [29]. More recent efforts have augmented standard EHR data

with features extracted from admission notes using natural language processing (NLP) to con-

firm suspected sepsis in adults [30]. Although such models may reduce time to confirmation

as compared to laboratory tests, they are unlikely to substantially reduce time to antibiotic

treatment, which is typically initiated at the time of blood culture.

Some studies have sought to develop models that identify sepsis incidence prior to clinician

suspicion and thereby enable earlier treatment. In infants, a statistical prediction model

(HeRO score) reduced sepsis related mortality in very low birth weight infants (<1500 grams),

presumably by supporting earlier recognition [27,28]. However, in a subsequent, large retro-

spective study, the HeRO score failed to detect neonatal sepsis, suggesting the predictive value

is uncertain in clinical practice [33]. Additional studies used a novel network representation of

vital sign dynamics [22,23] for sepsis prediction in adults. However, these models require

input features derived from heart rate measurements collected every few seconds from bedside

monitors, which are not typically available in most EHRs thereby limiting their general appli-

cability. Two recent studies used hourly vital sign and demographic variables in a proprietary

algorithm (InSight) to predict adult sepsis 4 hours prior to clinician suspicion [31]. Although

these works utilize similar methods, significant physiological and immunological differences

between adults and children may preclude direct application to infants.

Our objective was to develop and evaluate a machine learning model specifically designed

to recognize sepsis in infants hospitalized in the neonatal intensive care unit at least 4 hours

prior to clinical suspicion. Unlike the previous infant study, we developed our sepsis predic-

tion models using only readily available EHR data in an effort to enhance general applicability.

To our knowledge, this is one of only a limited number of studies to investigate machine learn-

ing for sepsis identification prior to clinical recognition, and the first for infant sepsis identifi-

cation prior to clinical recognition using only routinely collected EHR data.

In the following sections, we describe the development of 8 machine learning models tasked

with differentiating patient data collected 4 hours prior to clinical suspicion of sepsis, as indi-

cated by time of draw for culture, from patient data collected during periods with no evidence

of sepsis. We describe our training and evaluation datasets—consisting of information rou-

tinely available in most EHRs—for a population of infants hospitalized in the Children’s Hos-

pital of Philadelphia (CHOP) neonatal intensive care unit (NICU). Finally, we present an

evaluation of model performance demonstrating that several of the presented models are able

to recognize infant sepsis 4 hours prior to clinical suspicion at least as well as those reported in

prior adult studies.

Materials and methods

All data in this study was extracted automatically from the EHR and anonymized prior to

transfer to the study database. Study data did include dates of service and dates of birth, how-

ever there were no direct patient identifiers such as medical record numbers or patient names

in the dataset. The Institutional Review Board at the Children’s Hospital of Philadelphia

approved this research study and waived the requirement for consent. The experimental work-

flow for this study is illustrated in Fig 1.

Study design and setting

We implemented a retrospective case control study among infants hospitalized in the NICU at

CHOP in which individuals were allowed to serve as their own controls. The CHOP NICU is a
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99-bed quaternary unit that admits and treats roughly 1,100 medically and surgically complex

infants annually.

Study subjects

We included infants hospitalized for at least 48 hours in the NICU at the Children’s Hospital

of Philadelphia (CHOP) between September 2014 and November 2017 who received at least

one evaluation for sepsis before 12 months of age. We excluded sepsis evaluations that were

performed within 48 hours of admission to the CHOP NICU due to lack of sufficient baseline

observation time. This cohort of infants contributed both case and control periods of time in

the analysis as outlined in the sections below.

We considered two possible outcomes from sepsis evaluations as cases in our analyses: cul-
ture positive if the evaluation yielded a positive blood culture for a pathogen; and clinically posi-
tive if cultures were negative, but antibiotics were administered for at least 120 hours. Other

possible outcomes from sepsis evaluations, which were excluded as cases, were: (1) negative cul-

tures and less than 72 hours of antibiotic administration (i.e. not sepsis); (2) cultures positive for

bacteria from sources other than blood; (3) positive cultures for viral or fungal pathogens; and

(4) indeterminate results due to pending cultures at the time of data extraction, cultures positive

for known contaminants (i.e. non-pathogenic bacteria), or administration of antibiotics for at

least 72 hours but less than 120 hours (i.e. uncertainty about whether the infant had clinical sep-

sis). Although these infants may have physiologic changes that overlap with those of infants

experiencing bacterial bloodstream infections, we excluded observation times around these

evaluations from consideration since disease processes other than culture-proven or clinically-

presumed bacterial bloodstream infections were not the focus of our study.

Identification of case periods

There is no literature that has defined the transition time from an infant’s normal health state

to a state of critical illness associated with sepsis onset. However, prior research suggests that

Fig 1. Experimental workflow. Data was obtained from the CHOP NICU Sepsis Registry (NSR). Domain expert review was used to identify an initial feature set.

Continuous data was normalized. Mean data imputation was used to complete missing data. Nested k-fold cross-validation, in which the complete dataset is divided into

k stratified bins of approximately equal size (k = 10 in our study), was used to train and evaluate models. The curved arrows indicate loops over the data folds. The outer

loop runs over all k folds. For each iteration, a fold is reserved for testing. The remaining k-1 folds are passed to the inner loop, which performs standard k-fold cross-
validation to automatically select features and model tuning parameters. Mutual information between individual features and target class was used for automated feature

selection. The model is then trained using k-1 folds and evaluated on the held-out fold. This process is repeated k times so that each data fold is used once for evaluation.

https://doi.org/10.1371/journal.pone.0212665.g001
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an incubation period of two days is sufficient for detection of bacteria in blood culture [34,35].

Consequently, it seems plausible that there may be physiologic changes due to sepsis 48 hours

prior to clinical presentation but unlikely that there would be detectable changes more than 48

hours prior. As our goal was to predict sepsis 4 hours prior to current clinical recognition, we

obtained case data from the 44-hour window starting 48 hours prior to clinical evaluation (T-

48h) and ending 4 hours prior to evaluation (T-4h).

Identification of control periods

As illustrated in Fig 2, we identified candidate control start times as any time point during an

included individual’s hospitalization in the NICU beginning 48 hours after admission for

which there were no sepsis evaluations within 10 days. Note, these criteria allow for inclusion

of candidate control times starting on day 3 of an individual’s NICU stay provided the individ-

ual did not receive a sepsis evaluation for at least ten days following the candidate control time.

Since previously undetected sepsis is occasionally noted at autopsy for deceased infants, we

similarly excluded the 10 days prior to death from consideration for possible control observa-

tions. Finally, since antibiotics are occasionally administered outside the immediate context of

sepsis evaluations (e.g. unusually prolonged treatment for severe sepsis, or for certain surgical

procedures), we also excluded observation time when systemic antibiotics typically used to

treat sepsis were administered within the preceding 48 hours since it is less likely that an infant

on such antibiotics will develop sepsis or demonstrate a positive blood culture. We then used

random sampling with replacement of all available candidate control times to achieve datasets

with a 9% and 25% incidence of culture positive and clinically positive cases, respectively, to

reflect sepsis incidence rates similar to clinical observation. Since sepsis evaluations are not

evenly distributed across all times of day, we weighted time of day in the sampling strategy to

ensure a similar distribution between both case and control observations. We treated data in

the 44-hour window ending four hours prior to each selected control time as a control sample.

Data source

Data for this study was obtained from the CHOP NICU sepsis registry established in 2014.

The registry is automatically populated with data abstracted from the EHR (Epic Systems, Inc.,

Verona, WI) for all infants evaluated for sepsis while hospitalized in the CHOP NICU. For

each infant with at least one sepsis evaluation, the registry captures EHR data for a pre-deter-

mined list of variables including demographics, longitudinal vital signs (collected hourly),

diagnosis, antibiotic, microbiological, and treatment data throughout the infant’s entire hospi-

talization. From this data source, we identified 618 unique infants with 1,188 sepsis evaluations

that met the inclusion and exclusion criteria (see Fig 3). Demographic information is given in

Fig 2. Timeline representation of a hypothetical NICU hospitalization and corresponding sepsis data sampling scheme. Sepsis evaluation times are indicated by t0

and k0. For this hypothetical scenario, case data is taken from the two 44-hour windows, [t-48, t-4] and [k-48, k-4], starting 4 hours prior to blood draw, t0 and k0, for the

two sepsis evaluations. Time indices, t-n, indicate times n hours prior to blood draw. In this scenario, individual control start times are randomly selected from all

candidate control start times (CCST) (indicated by the shaded regions). CCST include all times starting on day 3 after admission (indicated by x0) that are separated by

at least 10 days from any sepsis evaluation time. For a randomly selected control start time, b0, control data is taken from the 44-hour window [b-48, b-4].

https://doi.org/10.1371/journal.pone.0212665.g002
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Table 1. There were 110 culture positive and 265 clinically positive evaluations included as

cases.

Machine learning analysis

Feature selection and data imputation. Through literature and physician expert review,

we identified 30 features collected in the NICU sepsis registry that are known or suspected to

be associated with infant sepsis (see S1 Table) [36,37]. We derived 6 additional features from

hourly vital signs including thresholds for temperature and fraction of inspired oxygen (FiO2),

and the difference between the most recent measurement and the average over the previous 24

Fig 3. Study flow diagram. Excluded episodes, Indeterminate�: episodes with pending cultures at the time of data extraction, results that most likely

represented contaminants, episodes with bacteria isolated from sources other than blood.

https://doi.org/10.1371/journal.pone.0212665.g003
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hours for heart rate, temperature, respiratory rate, and mean arterial blood pressure. The tem-

perature threshold variable was set to 1 if temperature was less than 36 or greater than 38

degrees Celsius and 0 otherwise. The FiO2 threshold variable was intended as a surrogate mea-

sure to indicate high levels of ventilator support and was set to 1 if FiO2 was greater than or

equal to 40% and 0 otherwise. Additional features included nursing assessments of clinical sta-

tus (apnea, bradycardia, or desaturation events; lethargy; poor perfusion), indwelling lines

(central venous line, umbilical artery catheter), and support (extracorporeal membrane oxy-

genation, mechanical ventilation). One area in which there is some overlap in factors contrib-

uting to increased risk for sepsis in both children and adults is the presence of underlying

chronic medical conditions, perhaps related to immune dysfunction and impaired resistance

to bacterial pathogens [38–40]. Given the shared increased risk observed in both populations,

it seems plausible that the baseline risk of sepsis may also be higher among infants who have

experienced co-morbid conditions such as necrotizing enterocolitis, prolonged ventilation for

chronic lung disease, or surgical procedures (e.g. ventriculo-peritoneal shunt placement, car-

diac procedures, or gastrointestinal surgeries). We therefore included indicator variables for

the presence of these comorbidities in our analyses.

Prior to model selection and training, we calculated the percent of sepsis evaluations for

which data was missing for each feature, see Table 2. Threshold features are not listed, as the

percent missing is identical to that of the corresponding raw feature. Features that indicated

the presence of co-morbid conditions, nursing assessments of clinical status, indwelling lines,

and support are also not listed as they are considered as having no missing values. One vari-

able, capillary pH, was missing for more than 80% of case evaluations and more than 90% of

control samples and was therefore removed from the dataset. For the remaining features, we

Table 1. Demographics at time of initial sepsis evaluation. Columns 2–4 indicate values by evaluation result (individuals may have multiple evaluations). Last column

indicates overall study population values. Values in brackets indicate number of individuals.

Culture Positive Clinical Sepsis Negative Study Population

Number of Infants 92 199 492 618

Gestational Age (weeks) Median (32)

Range (22, 40)

Median (32)

Range (23, 41)

Median (34)

Range (22, 41)

Median (34)

Range (22, 41)

Race (Percent)

White 39% [36] 39% [78] 43% [212] 43% [266]

Unknown 35% [32] 29% [59] 30% [148] 30% [184]

Black 23% [21] 23% [46] 22% [108] 21% [131]

Two or more 1% [1] 4% [7] 3% [13] 3% [19]

Asian 1% [1] 4% [7] 2% [10] 3% [16]

Native American/Alaskan Native 1% [1] 1% [2] <1% [1] <1% [2]

Ethnicity (Percent)

Non-Hispanic 86% [79] 87% [174] 88% [435] 88% [542]

Hispanic 14% [13] 13% [25] 12% [57] 12% [76]

Unknown 0% [] 0% [] 0% [] 0% []

Age Days Median (25)

Range (2, 235)

Median (23)

Range (2, 164)

Median (16)

Range (2, 322)

Median (17)

Range (2, 322)

Comorbidities

IVH or VP Shunt 7% [6] 10% [20] 8% [39] 8% [47]

Surgical Conditions 15% [14] 18% [36] 18% [89] 17% [104]

Congenital Heart Disease 11% [10] 8% [16] 9% [43] 8% [51]

Chronic Lung Disease 18% [17] 16% [32] 15% [76] 14% [87]

NEC 30% [28] 37% [74] 14% [70] 17% [107]

https://doi.org/10.1371/journal.pone.0212665.t001
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used mean imputation to replace missing values with the population mean calculated from the

entire dataset. There are a number of imputation methods (e.g. KNN, MICE) that often per-

form better than mean imputation [41–43], however these methods typically introduce addi-

tional model parameters (e.g. KNN requires selection of a distance measure, the number of

neighbors, and the weighting scheme used to compute the imputed value from the neighbor’s

values) that increase the potential for variance (overfitting). Due to the constraint of our lim-

ited training dataset size, we sought to mitigate this concern by using mean imputation which

does not require selection of any parameters. Finally, post imputation, we normalized each

continuous valued feature to have zero mean and unit variance.

In an effort to control model overfitting, we implemented a second feature selection process

as part of the hyper-parameter tuning process, referred to as “automated feature selection” in

Fig 1. The automated method is based on the mutual information between each individual fea-

ture and sepsis class (case or control). Mutual information is an estimate of the dependency

between two variables that quantifies the amount of information (bits) that one may infer

about one variable based on the observed value of the other [44]. For each step in the outer

loop of the cross-validation procedure (described below), the top n features were selected

based on the mutual information estimate from the data in the k-1 data folds that are used to

train the model [45,46]. We employed a commonly adopted heuristic to determine n, in which

we require at least 10 samples from each class per feature.

Model training. We trained eight machine learning classification models to differentiate

input data from control and case windows as either “sepsis negative” or “sepsis positive”:

Table 2. Domain expert identified features with percent missing. Heart rate, temperature, respiratory rate, and mean arterial blood pressure differences are the differ-

ence between the most recent measurement and the average over the previous 24 hours.

Feature Percent Missing

Controls

(N = 1188)

Percent Missing

Culture Positive

(N = 110)

Percent Missing Clinically Positive

(N = 265)

Gestational age <1% 0 <1%

Postnatal age 0 0 0

White blood cell count 74% 45% 43%

Hemoglobin 74% 45% 43%

Platelet count 74% 46% 43%

Immature to total neutrophil (I/T) ratio 75% 48% 45%

Capillary pH 95% 84% 82%

Bicarbonate 56% 33% 29%

Glucose 56% 33% 29%

Creatinine 56% 33% 29%

Respiratory rate 2% 11% 9%

Temperature 0 <1% <1%

Heart rate 0 <1% <1%

Systolic blood pressure 0 <1% 1%

Diastolic blood pressure 0 <1% 1%

Mean arterial pressure 9% 2% 1%

Weight 0 0 0

Fraction inspired Oxygen (FiO2) <1% 0 0

Heart rate difference <1% <1% 1%

Respiratory rate difference 3% 16% 16%

Mean arterial pressure difference 39% 35% 29%

Temperature difference 12% 14% 11%

https://doi.org/10.1371/journal.pone.0212665.t002
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logistic regression with L2 regularization, naïve Bayes, support vector machine (SVM) with a

radial basis function kernel, K-nearest neighbors (KNN), Gaussian process, random forest,

AdaBoost, and gradient boosting [47–50]. As illustrated in Figs 1 and 4, we trained and evalu-

ated each model with a nested cross-validation approach consisting of an outer evaluation

loop and an inner parameter selection and training loop [51]. At initiation of the procedure,

the input data set is divided into k folds with approximately equal numbers of cases and con-

trols. For each iteration of the outer loop, one data fold is reserved for testing. The remaining

k-1 folds are passed to the inner loop where automated feature selection is performed followed

by model parameter tuning. All models, except naïve Bayes and Gaussian process (so-called

parameter-free models), include hyper-parameters that must be systematically selected inde-

pendent of the evaluation data. These include, for example, regularization terms used to con-

trol potential model over-fitting to the training data, the kernel coefficient in an SVM with a

radial basis function, and the number of trees in a random forest. The inner loop includes a

grid search over candidate parameters. The parameter values evaluated for each model are

given in Table 3. Each parameter setting is evaluated with a (k-1)-fold cross validation proce-

dure (the last, kth, fold remains in the outer loop for evaluation). The hyper-parameters that

yield the best average cross-validation area under the receiver operating characteristic (AUC)

are selected. The model is then trained on the data in the k-1 folds using the best parameters

and then evaluated on its prediction performance for the held-out fold in the outer loop. This

process is repeated k times, once for each iteration of the outer loop, resulting in k evaluations

of model performance.

Model evaluation. Due to the nonspecific presentation of sepsis in infants and adverse

outcomes that may result from delays in therapy, physicians often rely on clinical judgment to

begin empirical antibiotic therapy in infants [52]. Furthermore, it is frequently difficult to

obtain an adequate volume of blood from critically ill infants, thus reducing the sensitivity of

blood cultures [17,53]. As a result, cultures may be negative despite the presence of infection.

Consequently, we suspect that some of the infants in the clinically positive group may be truly

infected. Therefore, to gain insight on model predictive performance for cases with near cer-

tainty of sepsis and those with less certainty, we executed the model training and evaluation

Fig 4. Pseudo-code for nested k-fold cross validation. The inner loop performs cross-validation to identify the best

features and model hyper-parameters using the k-1 data folds available at each iteration of the outer loop. The model is

trained once for each outer loop step and evaluated on the held-out data fold. This process yields k evaluations of the

model performance, one for each data fold, and allows the model to be tested on every sample.

https://doi.org/10.1371/journal.pone.0212665.g004
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procedure on two data subsets, denoted CPOnly and CP+Clinical, of our overall dataset. Both

subsets include all controls. However, CPOnly includes only the culture positive sepsis cases,

whereas CP+Clinical contains the culture positive and the clinically positive cases. The preva-

lence of cases in the CPOnly dataset and the CP+Clinical dataset was 9% and 25.0%,

respectively.

We compared inter-model performance through AUC for the CPOnly and CP+Clinical

datasets. The significance of model AUC differences was evaluated by considering the mean

AUC of each model over the 10 validation folds. The null hypothesis of equal inter-model

AUC distributions was tested with Friedman’s rank sum test and post-hoc analysis of pairwise

differences was conducted using Nemenyi’s test (R PMCMRplus, version 1.4.1).

We also compared model performance at fixed sensitivity values. All of the prediction mod-

els evaluated in this study generate a numeric score in the range 0 to 1, which can be directly

interpreted as the probability of sepsis. To classify the input as positive or negative for sepsis, a

numeric threshold must be selected, such that scores above that threshold are considered “sep-

sis positive.” To compare performance at specified sensitivity levels, we set the decision thresh-

old independently for each model in order to achieve the desired sensitivity and report

corresponding specificity, positive predictive value (PPV), and negative predictive value

(NPV). For each reported performance measure, we obtain 10 observed values (one for each

fold in the outer loop of the nested cross validation procedure). We report the mean value and

range for each metric over the 10 observations.

We evaluated potential model overfitting (sensitivity to training data sample variance) and

bias (insufficient model capacity) through learning curve analysis. A learning curve is a plot of

a selected performance metric as a function of the number of training samples. Two curves are

generated, one each for the training and validation sets. In the absence of bias and variance

(overfitting), both the training and validation curves will approach optimum performance as

Table 3. Hyper-parameters and value ranges evaluated in each fold of nested cross-validation procedure. For

models with more than one parameter, the cross-product of all parameter value combinations was evaluated. Detailed

definitions of each parameter are available in the Python scikit-learn documentation (https://scikit-learn.org/stable/

modules/classes.html).

Model Parameters Values Tested

AdaBoost Base estimator (default values unless

otherwise indicated)

Decision Tree Classifier

Logistic Regression (balanced class weights)

Support Vector Machine Classifier (RBF kernel,

balanced class weights)

Number of estimators 50, 100

Learning rate 0.1, 0.5, 1.0

Gradient boosting Number of estimators 50, 100, 200

Individual estimator maximum depth 3, 5, 10

k-nearest neighbors Number of neighbors 5, 10

Neighbor weights uniform, distance

Logistic regression Inverse regularization 0.01, 0.1, 1, 10, 100

Random Forest Number of estimators 10, 50, 100, 200

Split criterion gini, entropy

Tree maximum depth 2, 4, 6

Support vector

machine�
Inverse regularization 0.01, 0.1, 1, 10, 100

Kernel coefficient, γ 0.01, 0.1, 1, 10, 100

�The radial basis function kernel was used for the support vector machine

https://doi.org/10.1371/journal.pone.0212665.t003
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the training set size increases. In the presence of variance, the training curve will approach the

optimum value, but the validation curve will not. In the presence of bias, the training and vali-

dation curves will both fail to approach the optimum value.

We used the Python scikit-learn library [54], which contains implementations of all models

used in this study, to execute all aspects of automated feature selection, hyper-parameter selec-

tion, model training, and model evaluation. Data for this study is provided in the supplemen-

tary files (S1 and S2 Files). All code is available at https://github.com/chop-dbhi/sepsis_01.

Results

We implemented eight machine learning models with the objective of identifying infant sepsis

four hours prior to clinical recognition in both the CPOnly and CP+Clinical datasets. Models

were tasked with classifying input data from control and case windows as either “sepsis nega-

tive” or “sepsis positive”. The AUC for all models for the CPOnly and CP+Clinical datasets is

presented in Table 4 (hyper-parameters are given in S2 and S3 Tables). Representative ROC

curves for models with the highest mean AUC for each dataset are presented in Fig 5. The

Friedman rank sum test was used to test the null hypothesis that all models have equal AUC

distributions over the 10 cross-validation folds, which was rejected for both the CPOnly and

CP+Clinical dataset results with p<0.001. Post-hoc analysis with the Nemenyi test was con-

ducted to compare differences between model pairs. For the CPOnly data set, the following

statistically significant differences (p<0.05) were found: AdaBoost had higher AUC than

Gaussian process and KNN; and logistic regression had a higher AUC than KNN. For the CP

+Clinical dataset, the following significant differences were found: KNN had a lower AUC

than gradient boosting, logistic regression, random forest, and SVM; and Gaussian process

had a lower AUC than gradient boosting, logistic regression, random forest, and SVM. No sta-

tistically significant differences were found for any other pairs.

The models evaluated in this study produce a numeric output, which can be interpreted as

the probability of sepsis. By default, the input is classified as sepsis positive if the estimated

probability is greater than a threshold of 0.5. However, the threshold is an adjustable parame-

ter. We set the decision threshold independently for each model in order to facilitate model

comparison with uniform (i.e. fixed) sensitivity across all models. Performance at a fixed sensi-

tivity of 80% across all models is presented in Table 5 and Table 6 for the CPOnly and CP+-

Clinical datasets, respectively. Performance at 90% and 95% sensitivity is presented in the S4

Table 4. Area under receiver operating characteristic for CPOnly (controls and culture positive cases) and CP+-
Clinical (controls, culture positive cases, and clinically positive cases) for each model. Each value is computed as

the mean over 10 iterations of cross-validation. Values in brackets indicate performance range over the 10 iterations.

Bold text indicates highest performance in each column. The null hypothesis of equal inter-model distributions was

rejected by the Friedman rank sum test with p-values of<0.001 for both the CPOnly and CP+Clinical datasets.

Model CPOnly CP+Clinical

AdaBoost 0.83 [0.76, 0.89] 0.85 [0.80, 0.90]

Gradient boosting 0.80 [0.71, 0.91] 0.87 [0.82, 0.92]

Gaussian process 0.75 [0.67, 0.90] 0.79 [0.69, 0.88]

k-nearest neighbors 0.73 [0.66, 0.87] 0.79 [0.72, 0.83]

Logistic regression 0.83 [0.76, 0.89] 0.85 [0.80, 0.94]

Naïve Bayes 0.81 [0.69, 0.87] 0.84 [0.79, 0.90]

Random forest 0.82 [0.73, 0.88] 0.86 [0.82, 0.91]

Support vector machine� 0.82 [0.76, 0.88] 0.86 [0.82, 0.91]

�The radial basis function kernel was used for the support vector machine

https://doi.org/10.1371/journal.pone.0212665.t004
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and S5 Tables. The SVM model performed at least as well or better than all models for all met-

rics on the CPOnly dataset, while no model outperformed every other model on every metric

for the CP+Clinical dataset.

We applied an automated univariate feature selection method using mutual information

(see Fig 1) to select the top n features for each iteration of the nested k-fold procedure (see S6

Table). Based on the number of cases available in the training data, 11 features were selected

for the CPOnly dataset, and 35 (i.e. all features) were selected for the CP+Clinical dataset. Dif-

ferent features may be selected for each iteration. To gain some insight on feature importance,

we examined features selected for the CPOnly dataset for more than half of the cross-valida-

tion iterations for which the mean magnitude of the logistic regression coefficient was greater

than 0.095 as shown in Table 7. The corresponding coefficients obtained for the logistic regres-

sion model, which was among the best models, are also shown. The coefficients obtained for

the CP+Clinical dataset are included for comparison. Kernel density estimates for the

Fig 5. Receiver operating characteristic (ROC) curves for the logistic regression model and the gradient boosting model on the CPOnly (left) and CP

+Clinical dataset (right), respectively. Each figure presents three curves: the solid black curve corresponds to the iteration of the nested cross-validation

procedure with the median value of area under the curve (AUC), the two dashed lines represent the iterations with the minimum and maximum AUC.

https://doi.org/10.1371/journal.pone.0212665.g005

Table 5. Classifier model prediction performance on CPOnly (controls and culture positive cases) for fixed sensi-

tivity ratio of 0.8. The probability of sepsis threshold was adjusted individually for each model in each cross validation

run to achieve 0.8 sensitivity. Each metric value is computed as the mean over 10 iterations of cross-validation. Values

in brackets indicate performance range over the 10 iterations. Bold text indicates highest performance in each column.

Model Specificity PPV NPV

AdaBoost 0.71 [0.64, 0.81] 0.23 [0.18, 0.30] 0.97 [0.97, 0.98]

Gradient boosting 0.69 [0.58, 0.91] 0.23 [0.16, 0.47] 0.98 [0.97, 0.99]

Gaussian process 0.53 [0.32, 0.80] 0.16 [0.11, 0.29] 0.97 [0.95, 0.98]

K-nearest neighbors 0.20 [0, 0.77] 0.13 [0.09, 0.26] 0.29 [0, 1]

Logistic regression 0.71 [0.61, 0.82] 0.23 [0.17, 0.31] 0.97 [0.97, 0.98]

Naïve Bayes 0.69 [0.49, 0.77] 0.22 [0.14, 0.28] 0.98 [0.96, 0.99]

Random forest 0.71 [0.62, 0.83] 0.23 [0.19, 0.32] 0.98 [0.97, 0.99]

Support vector machine� 0.72 [0.63, 0.83] 0.23 [0.18, 0.32] 0.98 [0.97, 0.98]

PPV: positive predictive value; NPV: negative predictive value

�The radial basis function kernel was used for the support vector machine

https://doi.org/10.1371/journal.pone.0212665.t005
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continuous features and distributions for binary features are shown in Fig 6. The density esti-

mates show that there are differences between the distributions of the culture positive cases

and the controls. We note that diastolic blood pressure and mean arterial pressure have coeffi-

cients with different signs in the two datasets. It is possible that these differences reflect an

actual difference in the distribution of those variables between the two different populations of

cases. Alternatively, there may be interactions with other variables that differ between the two

populations. For example, “heart rate” has a positive coefficient (not shown) combined with a

negative “heart rate difference” coefficient that suggests an interaction between increased risk

associated with elevated heart rate and decreased risk associated with heart rate variability that

may be explained in part by known sepsis pathophysiology and prior research [55,56].

We performed a secondary analysis to further evaluate feature importance by examining

the performance of the SVM model on the CP+Clinical dataset when cumulatively removing

input features. The results, shown in Table 8, suggest remarkable robustness to feature

removal. There appears to be a weak interaction between the clinical attributes, which seem to

lower the sensitivity, and the imputed values, which appear to improve specificity and positive

Table 6. Classifier model prediction performance on CP+Clinical (controls, culture positive cases, and clinically

positive cases) for fixed sensitivity ratio of 0.8. The probability of sepsis threshold was adjusted individually for each

model in each cross validation run to achieve 0.8 sensitivity. Each metric value is computed as the mean over 10 itera-

tions of cross-validation. Values in brackets indicate performance range over the 10 iterations. Bold text indicates high-

est performance in each column.

Model Specificity PPV NPV

AdaBoost 0.72 [0.62, 0.82] 0.51 [0.43, 0.62] 0.92 [0.91, 0.95]

Gradient boosting 0.74 [0.63, 0.84] 0.53 [0.43, 0.63] 0.92 [0.91, 0.93]

Gaussian process 0.60 [0.32, 0.85] 0.44 [0.29, 0.65] 0.90 [0.83, 0.93]

K-nearest neighbors 0.55 [0.4, 0.67] 0.39 [0.32, 0.46] 0.90 [0.86, 0.92]

Logistic regression 0.74 [0.65, 0.82] 0.52 [0.45, 0.62] 0.93 [0.91, 0.95]

Naïve Bayes 0.73 [0.63, 0.85] 0.52 [0.42, 0.66] 0.92 [0.91, 0.93]

Random forest 0.74 [0.56, 0.84] 0.53 [0.39, 0.63] 0.92 [0.90, 0.93]

Support vector machine� 0.72 [0.6, 0.85] 0.51 [0.41, 0.65] 0.92 [0.90, 0.93]

PPV: positive predictive value; NPV: negative predictive value

�The radial basis function kernel was used for the support vector machine

https://doi.org/10.1371/journal.pone.0212665.t006

Table 7. Features selected by the univariate feature selection process more than half of the cross-validation iterations for the CPOnly dataset where the mean mag-

nitude of the logistic regression coefficient was� 0.1. The CPOnly Count column indicates the number of iterations out of ten for which the feature was selected. All fea-

tures were used in every iteration for the CP+Clinical dataset. The CPOnly Coefficient and CP+Clinical Coefficient indicate the mean coefficient for the feature as learned

by the logistic regression classifier for the CPOnly and CP+Clinical datasets, respectively. Positive coefficients (bold text) indicate features for which positive values are

associated with an increase in the predicted sepsis probability. Negative coefficients (italics text) indicate features for which positive values are associated with a decrease in

the predicted sepsis probability. The “difference” variables are positive when the value has increased compared to the patient’s average over the previous 24 hours.

CPOnly CP+Clinical

Feature Count Coefficient Coefficient

Central venous line 10 1.85 1.28

Heart rate difference 9 -0.42 -0.13
Systolic blood pressure 10 -0.38 -0.26
Platelet count 9 -0.36 -0.11
Immature to total neutrophil (I/T) ratio 9 0.25 0.16

Diastolic blood pressure 9 0.16 -0.06
Mean arterial pressure 10 -0.13 0.28

https://doi.org/10.1371/journal.pone.0212665.t007
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predictive value (PPV), and the remaining features which appear to improve specificity with-

out affecting sensitivity.

Learning curves for the SVM and logistic regression models are shown in Fig 7. The y-axis

indicates the F1 score (harmonic average of sensitivity and PPV) for which the optimal value is

1.0. The asymptotic difference in performance between the training and validation curves for

the SVM model indicates variance is present on both datasets. A similar result was observed

for all models other than the logistic regression model, which is likely due to its lower relative

capacity as the only linear model. The learning curves also suggest model bias exists as indi-

cated by failure of the training score to approach the optimal metric value. A similar result was

observed for all models.

Fig 6. Density estimates of continuous valued and distribution of binary valued features. Only features where the mean magnitude of the logistic regression

coefficient was� 0.1 and the feature was selected by the univariate feature selection process more than half of the cross-validation iterations for the CPOnly

dataset are shown. Dashed lines indicate controls, solid lines indicate cases. The horizontal axis indicates the normalized feature value. The vertical axis

indicates the proportion of samples with the feature value.

https://doi.org/10.1371/journal.pone.0212665.g006

Table 8. SVM with radial basis kernel performance when removing input features. Features are removed cumulatively, that is each row represents performance when

removing all features indicated in the rows up to and including the current row. Metric values are computed as the mean over 10 iterations of cross-validation. Bold text

indicates best performance in each column.

Features Removed AUC Sensitivity Specificity PPV NPV

None 0.86 0.74 0.79 0.57 0.90

Age, Gestational Age 0.85 0.74 0.81 0.57 0.90

�Missing above 50% 0.84 0.74 0.77 0.52 0.90
+Comorbidities 0.84 0.75 0.77 0.53 0.90
xClinical assessments / indwelling lines / support 0.84 0.75 0.77 0.53 0.90

PPV: positive predictive value; NPV: negative predictive value

�Hemoglobin, I/T Ratio, platelet count, white blood cell count
+congenital heart disease, chronic lung disease, necrotizing enterocolitis, intraventricular hemorrhage/ventriculo-peritoneal shunt, other surgical conditions
xapnea/bradycardia/desaturation events, lethargy, poor perfusion, central venous line, umbilical artery catheter, extracorporeal membrane oxygenation, mechanical

ventilation

https://doi.org/10.1371/journal.pone.0212665.t008
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Discussion

We found that machine learning models that utilize input features derived from data collected

in most EHRs can predict sepsis in infants hospitalized in the NICU hours prior to clinical rec-

ognition. Perhaps surprisingly, we found that of the eight models considered, six (AdaBoost,

gradient boosting, logistic regression, Naïve Bayes, random forest, and SVM) performed well,

with no statistically significant pairwise differences in AUC, on both the CPOnly and CP+-

Clinical datasets. The logistic regression model was tied with AdaBoost for the highest mean

AUC on the CPOnly dataset. On the CP+Clinical dataset, the logistic regression model mean

AUC was only 0.02 less (not statistically significant) than that of the gradient boosting model

which had the highest mean AUC. Additionally, the logistic regression model had mean PPV,

NPV and sensitivity scores that were within 0.01 of the highest scores obtained by other mod-

els on both the CPOnly and CP+Clinical datasets. Importantly, learning curve analysis sug-

gests the logistic regression model is the only model not meaningfully affected by data sample

variance (i.e. overfitting). This is likely because it is a linear model whereas the five other high

performing models are non-linear with greater capacity and therefore are likely more suscepti-

ble to overfitting. From this, one may conclude that, in the absence of additional training data,

which could help reduce variance in the other models, the logistic regression model will best

generalize to other datasets using the same input features.

As our AUC results in Table 4 indicate, most models performed nearly the same on both

datasets, but some performed better on the CP+Clinical dataset as compared to the CPOnly

Fig 7. Learning curves (LC) for: (A) SVM on the CPOnly dataset; (B) SVM on the CP+Clinical dataset; (C) logistic

regression on the CPOnly dataset; (D) logistic regression on the CP+Clinical dataset. Performance was evaluated by

10-fold cross validation. Symbols indicate the mean value over the 10 folds and the shaded region indicates one

standard deviation. Optimal F1 score (y-axis) is 1.0.

https://doi.org/10.1371/journal.pone.0212665.g007
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dataset. We had anticipated that the models would perform better on the CPOnly dataset

because the CP+Clinical dataset likely includes cases that were treated as sepsis by clinicians

even though they may have actually been sepsis negative. Conceptually, such samples act as

noise in the training data because they may be mislabeled relative to the true, unobservable,

decision boundaries in the input space. In contrast, all cases in the CPOnly data set are

expected to represent sepsis given their association with positive blood cultures. We hypothe-

size that two factors are at play. The first is that it is likely the majority of the clinically positive
cases are indeed positive for sepsis. If so, the models in turn benefit from a decrease in class

imbalance relative to the CPOnly dataset. It is well established that class imbalance generally

degrades machine learning model performance and remains challenging despite development

of methods designed to counter its impact [57,58]. A second factor is likely the limited number

of cases available for learning in the CPOnly dataset.

The KNN model had notably poor performance compared to the other models on the

CPOnly dataset. In fact, it and the Gaussian process model, were the only models to have sta-

tistically significant lower pairwise mean AUC compared to the best performing models. This

is most likely attributable to the small number of cases. The KNN model is based on a voting

scheme wherein the predicted class of the input is taken to be that of majority class of the

input’s closest neighbors in feature space. For sparse data, particularly when one class is signifi-

cantly underrepresented as is the case here, the KNN model will generally perform poorly sim-

ply because there are few available samples to populate the region of input space that correlates

to the minority class (culture positive sepsis in this case).

The ROC curves in Fig 5 indicate that some tuning of the decision threshold is possible to

increase specificity or sensitivity as warranted by the intended application. For example, if the

prediction model is used as a screening tool, wherein avoiding false negatives is critical, the

decision threshold can be lowered. There are limitations however; as indicated by Fig 5, arbi-

trarily increasing the sensitivity to 100% (i.e. no false negatives) can drastically decrease speci-

ficity which may not be acceptable. For example unnecessary antibiotic exposure in non-

infected infants may worsen clinical outcomes and contribute to the development of antibiotic

resistance [59–61]. These studies underscore the importance of developing novel, improved

methods for sepsis detection in infants with potentially life-threatening illness while minimiz-

ing the overtreatment of non-infected infants. Nevertheless, due to the severity of sepsis out-

comes with delays in diagnosis and treatment, particularly in infants, greater importance is

placed on identifying positive cases (high sensitivity), often at the expense of assessing a large

number of negative cases (low PPV). When we considered model performance for a high,

fixed sensitivity value of 80%, we found that the models properly screened at least 68% of the

negative cases. Although the PPV was lower (23% and 53% on our two datasets), the overall

results imply that machine learning models can provide significant benefit by reducing clini-

cian burden and cost by lowering the number of false positive cases reviewed by care provid-

ers. At the same time, the models provide early recognition of sepsis that may facilitate earlier

treatment and potentially improve patient outcomes.

The few previous studies that also considered methods for early sepsis recognition are

detailed in Table 9. Only one study used input features limited to those commonly found in

the EHR; however it was conducted for an adult cohort [31]. Similarly, only one previous

study considered an infant cohort; however it included high frequency vital sign measure-

ments as inputs and the reported results do not include an explicit description of model sepsis

prediction time relative to clinical recognition [28]. Although it is difficult to draw direct com-

parisons because of dataset differences, population differences, and limited reporting of out-

come metrics, we did find that the best models in our study compared favorably in terms of

area under the receiver operating characteristic (AUC). The best models in this study achieved
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a mean AUC of 0.80–0.82 and 0.85–0.87 (see Table 4) on the CPOnly and CP+Clinical data-

sets, respectively, which are on par with the values of 0.74 and 0.72 reported for these two prior

studies. We caution, however, that because we excluded data within 10 days of any sepsis eval-

uation from our analysis, it is possible that our models will not perform as well in a real-world

setting in which data are evaluated during these time periods. The remaining two studies were

both performed in adults and included high frequency vital sign data [22,24] which are not

typically available in most EHRs. Additionally, the reported results for one of these are based

on a nearly balanced test set (3:2 ratio of cases to controls) and therefore may be optimistic

[22]. It is well known that class imbalance is a significant challenge for machine learning mod-

els. Our results reflect very imbalanced datasets (case prevalence of 9% and 25.0% for our

CPOnly and CP+Clinical datasets, respectively) that are closer to the estimated true incidence

rates that a real-world model will encounter.

A significant strength of our models is that all of the features are derived from values rou-

tinely collected in most EHRs. Further, there are several freely available software libraries that

aid implementations of the machine learning methods used in our models. Once trained, the

prediction models can generate new predictions for a given input quickly using only modest

computational resources (e.g. a single personal computer). Given these considerations, we

expect that the approach presented here is generalizable and will have the potential for adop-

tion at many institutions. We note that the models would almost definitely require retraining

for non-NICU settings, however the method should still be applicable.

There are important limitations to our current models. Most notably, the learning curves

(see Fig 7) indicate the presence of variance on all models except the logistic regression model.

It is possible that additional training samples may reduce model variance and improve overall

performance. A general challenge in machine learning, that applies here, is the difficulty in

determining the number of training examples necessary to properly fit a model. Although we

continue to collect data as part of our ongoing research, it is possible that many more samples

are needed than will be possible to collect in a reasonable timeframe. Model bias indicated in

the learning curves also suggest that our models may be improved by adding model complexity

either in the form of additional features or more complex model architectures. As part of our

future research we will investigate the use of additional input features extracted from clinical

notes and high frequency vital sign data as a potential approach to model improvement. An

additional limitation is our use of mean imputation to address missing data, which induces

bias in the relationship between variables and may not perform as well as more robust

Table 9. Selected studies applying machine learning for sepsis recognition. Prediction time indicates the time of model prediction relative to time of draw for blood

culture.

Paper Population Prediction time Data Sources� Method† AUC

Desautels 2016 [31] Adult 4-hours prior Demographics, Clinical, Vitals Proprietary (InSight) 0.74

Fairchild 2017 [28] Infant unspecified HF Vitals§ LR 0.72

Shashikumar 2017 [22] Adult 4-hours prior Demographics, Clinical,

HF Vitals§

SVM 0.8

Nemati 2017 [24] Adult 4-hours prior Demographics,

HF Vitals§, Labs

Weibull-Cox PHR 0.85

�Data sources described as “clinical” typically refer to physical exam observations (e.g. perfusion status).

†Abbreviations for methods: PHR–proportional hazard ratio; SVM–support vector machine; LR–logistic regression

‡ AUC–area under receiver operating characteristic

§High-frequency (HF) vitals: Studies that included vital sign measures every 5 seconds or more frequently were designated as “high-frequency vitals.” All other studies

that included vital signs typically used measurements that were recorded hourly.

https://doi.org/10.1371/journal.pone.0212665.t009
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methods, such as KNN and multiple imputation. As noted in the methods section, such

approaches introduce additional tuning parameters and hence the potential for increased over-

fitting and reduced generalizability. However, as we continue to collect more data, the risk of

overfitting may decrease so that more advanced imputation methods may be considered. An

additional concern about all imputation methods, including mean, is that they are based on

assumptions about the manner in which data are missing (e.g. missing at random). Alterna-

tively, Bayesian models, such as probabilistic graphical models, can typically avoid missing

data issues entirely for individual predictions by summing out the missing variables in the pos-

terior probability estimates. We intend to evaluate these methods in our continued research.

In conclusion, our results demonstrate that several machine learning methods can be used

to develop models that can help identify infant sepsis hours prior to clinical recognition while

screening a large portion of negative cases and may therefore be valuable as a clinical decision

support tool. In this study, the logistic regression model stood out in that it had nearly equiva-

lent performance to the highest performing model for all analyses, while being the most resil-

ient to overfitting. Further research is warranted to assess prediction performance

improvements through inclusion of additional input features. As previously reported, chal-

lenges may be expected in translating retrospective sepsis decision support models into effec-

tive clinical tools [21,33]. Therefore, further research that includes performance of a clinical

trial is necessary to measure the clinical utility of machine learning models for early recogni-

tion of sepsis in infants.
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