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ABSTRACT: β-Lactams represent perhaps the most important class of antibiotics yet discovered. However, despite many years
of active research, none of the currently approved drugs in this class combine oral activity with long duration of action. Recent
developments suggest that new β-lactam antibiotics with such a profile would have utility in the treatment of tuberculosis.
Consequently, the historical β-lactam pharmacokinetic data have been compiled and analyzed to identify possible directions and
drug discovery strategies aimed toward new β-lactam antibiotics with this profile.
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The discovery of Penicillin in 1928 and subsequent iden-
tification of its reactive β-lactam ring-containing structure

heralded perhaps the most successful class of medicines yet
discovered.1,2 Decades of research building on this scientific
landmark have led to the discovery of more than 100 marketed
antibiotics using only a handful of chemical templates
(Figure 1). The impact of this work on human medicine
cannot be overstated.3

Despite this unprecedented success, new β-lactam antibiotics
continue to be identified and developed.4 Furthermore,
after recent years of decline, interest in the field is re-emerging.5,6

β-Lactams disrupt bacterial cell wall synthesis by inhibiting
transpeptidases, involved in cross-linking peptides to form
peptidoglycan. Over time, bacteria have evolved resistance
mechanisms which have rendered many early drugs ineffective
and obsolete prompting a continuing need for new research.7−11

Our interest in these antibiotics is linked with the ambition
to find new drugs to kill Mycobacterium tuberculosis (M.tb), the
pathogen responsible for tuberculosis (TB). There is huge
unmet medical need in TB. Millions of people contract and die
from this appalling disease every year.12 Existing treatment
regimens are complex (requiring combinations of several
drugs), and long (typically 6 months or more).13

In common with other bacteria, M.tb utilizes transpeptidases
for peptidoglycan cross-linking essential for cell wall synthe-
sis.14−16 Historically, early β-lactams showed poor anti-TB
activity and were not pursued. For a long time this was erro-
neously attributed to poor drug penetration through the com-
plex, lipophilic outer wall of M.tb.17,18 Recent research has
demonstrated that permeability is not generally a problem and
that the lack of activity is mainly due to drug inactivation by
BlaC, a chromosomally encoded extended spectrum class A
β-lactamase produced by M.tb.19 Co-administration of class A
β-lactamase inhibitors, such as clavulanic acid20 or avibactam,21

enhance the anti-TB activity of some older penicillins and
cephalosporins, while newer drugs with stability to class A
β-lactamases, such as meropenem and other carbapenems,
display promising anti-M.tb activity in vitro both alone and in
combination with β-lactamase inhibitors.20,22 M.tb mutants, in
which BlaC is deleted, also show increased susceptibility to
β-lactams23 and studies have demonstrated that carbapenems
and cephalosporins inactivate essential M.tb transpepti-
dases.24−29 Based on these results, new medicinal chemistry
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is emerging directed toward novel BlaC stable β-lactams able
to inactivate M.tb transpeptidases.30,31

Further encouragement for the potential of β-lactams in TB
treatment is also emerging from early clinical studies with
amoxicillin-clavulanic acid and meropenem + amoxicillin-
clavulanic acid.32−36 Carbapenems have been successfully
used to treat drug resistant patients37 and more trials with
existing TB-active β-lactams are in progress or planned.38−41

Thus, one or more of the current β-lactam antibiotics could
become part of future TB regimens.42−44 Currently, however,
it is not clear whether one of these drugs will be suitable for
general use in all TB patients where infrequent oral dosing will
be a requirement (ideally once daily with other combination
drugs). A further relevant recent study using ertapenem/
clavulanate in an in vitro hollow fiber model of TB demon-
strated that, similar to β-lactam drugs in other bacteria,45 time
of drug exposure above MIC drives pathogen killing.46 Thus,
based on all the current evidence, orally bioavailable β-lactam
antibiotics with long duration of action and potent activity vs
M.tb would be attractive candidate drugs to investigate for
universal TB treatment and, if they maintained broad spectrum
antibacterial activity, could readily find application in other
bacterial infections.47

A cursory inspection of the β-lactam pharmacopeia reveals
both oral (dosed as parent or ester prodrug) and parenteral
drugs. A small subset of the parenteral drugs have moderate
elimination half-life (7 have human t1/2 > 4 h, see Figure S1),
but most drugs in the class are rapidly eliminated (t1/2 < 3 h).
Currently, no available drug is orally bioavailable with long
duration of action. While sustained release formulations of oral
β-lactams48,49 and/or pro-drugging existing M.tb active
parenteral drugs50 may be productive, drugs with extended
half-life should be efficacious at lower doses with longer dosing
intervals.51,52 It is therefore worthwhile to consider the pos-
sibility to discover new long-acting oral drugs from the class.
In this context, a significant body of clinical and pre-clinical
intravenous (i.v.) and oral β-lactam pharmacokinetic (PK) data
has been published over many years. We have created an up to
date compilation of PK parameters53,54 and studied them to
seek insights that might prove useful for future discovery work
in the field. Specifically we investigated whether any structural
features/properties could be identified that associated with
long elimination half-life and/or oral bioavailability (human

PK data) and also for the class in general, we assessed how
effectively human PK can be predicted from pre-clinical
studies. (The PK data set compilation, literature references,
and more detailed description of the methodology used are
provided as Supporting Information.)

■ OBSERVATIONS FROM THE β-LACTAM PK DATA
SET

Compounds and PK Data Retrieved. A total of 122
marketed β-lactam antibiotics and development compounds
were identified and classified according to their sub-family and
ionization class (Table 1). Unsurprisingly, penicillins and

cephalosporins make up the bulk of the set. Many drugs are
monoacids due to the presence of the ubiquitous carboxyl-
ate critical to penicillin binding protein (PBP) inhibition.
In some drugs these acids are modified to prodrug esters, and
across the class an extensive range of additional basic, quater-
nary, and acidic groups have been appended (X,Y in Figure 1)
populating the other ionization classes.
Searches of the primary literature were conducted by drug

name and structure to locate references with in vivo PK data,
focusing specifically on i.v. and oral studies in human and
relevant pre-clinical species (rat, mouse, dog and monkey).
(Table 1 and Tables S1 and S2). In silico physicochemical
properties were calculated on all the drugs utilizing commercial
software (Table S3).55

Human i.v. Data: Factors and Properties Associated
with Long Half-Life Drugs. Except for a very small subset of
neutral pro-drugs, all the β-lactam antibiotics possess functional
groups which are ionized at physiological pH. The majority are

Figure 1. Sub-families of β-lactam antibiotics.

Table 1. Dataset Content and Classificationa

di-/triacid monoacid
neutral/
basic Z/A zwitterionic total

carbaceph 1 1
carbapenem 2 6 (3b) 7 15
cephalosporin 9 (1b) 28 6 (6b) 10 9 62
monobactam 2 2
oxaceph 1 1
oxapenem 1 1
penem 4 1 (1b) 5
penicillin 4 22 3 (3b) 3 3 35
total 16 57 16 14 19 122

Records for 108 Parent Compounds and 14 Prodrugs

PK parameters compiledc

Vd Cl fu MRT i.v. t1/2 oral F oral t1/2

human 82 80 93 51 102 78 24
rat 37 40 39 16 53 19 9
dog 43 43 36 15 56 16 11
monkey 26 29 24 16 34 8 6
mouse 23 29 28 − 34 10 5

aThe ionization classification used reflects the predominant species
predicted in aqueous solution at pH 7.4. Di-/triacid predominant
species charge < −1; monoacid predominant species charge = −1;
neutral/basic predominant species is either neutral (uncharged)
or net positively charged (includes 13 oral prodrug esters); Z/A
indicates two major species predicted to be present (mixture
of monoanion and zwitterion); zwitterionic major species is ionized
but overall charge is neutral. bProdrugs. cSee Abbreviations for
definitions.
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negatively charged or zwitterionic (Table 1). The influence of
ionizable groups on PK properties has been well docu-
mented.56,57 In general, anionic groups improve aqueous solu-
bility, but simultaneously reduce passive membrane permeability.
Acidic drugs generally have low volumes of distribution (typically
driven by their poor permeability and/or high plasma protein
binding to serum albumin). Renal clearance of unchanged drug
also frequently predominates over hepatic metabolism (β-lactam
clearance data in Tables S1 and S2). Since t1/2 = 0.693 Vd/CL
it follows that most of the β-lactams (which generally have low
Vd) would be expected to be short-acting. Additionally, since
many of the drugs are largely excreted unchanged in urine,
increasing plasma protein binding would also be anticipated to
reduce renal clearance and thus extend the elimination half-life.
In line with this, all of the longer acting β-lactams do have
higher human plasma protein binding (Figure 2a). Mono- and
diacidic drugs generally show the highest plasma protein binding
(Figure 2b). By contrast, few zwitterionic drugs are highly
bound, and almost all have short human half-life (Figure 2c).
Across the data set there is a trend toward longer t1/2 for di-/
triacids (mean human t1/2 for di-/triacids 3.0 h, all other classes
1.4 h).
In addition to ionization, the impact of other global physi-

cochemical properties on half-life was also assessed. A cursory
inspection confirmed all the β-lactam drugs with longest t1/2 to
be highly polar (log D < −1, PSA > 150) with high numbers of
rotatable bonds, H-bond donors and acceptors. To probe more
deeply, in silico molecular descriptors were calculated and a
principal component analysis (PCA-XY) undertaken to look
for possible correlations with the experimentally determined
human half-life (see Tables S3−S5).58
The PCA scores showed that the set of drugs defines

a homogeneously populated molecular property space
(see Figure 3, below). Compounds at the boundaries include
small drugs such as sulbactam and clavulanic acid (lower right
quadrant) and drugs with high molecular weight (upper and
lower left quadrants). Interestingly, the 10 drugs with the

longest human t1/2 (>3 h) cluster in a specific area of the PCA
score plot suggesting that the set of calculated molecular
properties used could provide a way to capture the molecular
property profile associated with extended half-life. The PCA
loadings (Figure S3) highlighted how the experimentally
derived human in vivo PK parameters correlated with the
calculated molecular descriptors. In the analysis we were
interested in identifying properties that showed the strongest
correlation with human t1/2 and, for each descriptor, optimal
values that could be used to inform medicinal chemistry
optimization (Table 2 and Figure S4 for linear correlation
scatter plots). Compound flexibility (expressed as number of
rotatable bonds or fraction of rotatable bonds) showed a
strong correlation with human half-life with more than 95% of
the compounds with t1/2 > 2 h displaying 5−10 rotatable
bonds or a fraction of rotatable bonds between 0.17 and 0.29.
Similarly, compounds with t1/2 > 2 h are characterized by a
total number of oxygen and nitrogen atoms ranging between 9
and 15 and a large polar surface area.The partition coefficient
cyclohexane/water also correlates well (most favorable
compounds value <−4).
The set of 101 compounds for which human half-life data

were available was used to develop a statistical quantitative
structure−activity relationship model for predicting the human
half-life of new compounds. Initially the collection was
randomly divided so that a training set (80% of the total)
could be used for model learning to predict the half-life for the
test set (20% of the total).
To assess the robustness and utility of the consensus model

as a predictive tool, compounds in the test set were evaluated
and a goodness of fit of R2 = 0.64 was obtained between
predicted and experimental values (Figure 4, Table S6).
Although built with a relatively small data set, the model
correctly classified 85% of compounds with very short half-life
(11 out of 13 compounds with t1/2 < 1.5 h) and 78% of com-
pounds with t1/2 > 1.5h (7 out 9 compounds). An expanded
computational model for predicting human t1/2 has been built

Figure 2. Impact of protein binding and ionization on human elimination half-life. Long-acting drugs tend to be di-/triacids with high plasma
protein binding.
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utilizing the full set of available human half-life data as training
set (101 t1/2 values) and is available on request.59

Human Oral Data: Factors Impacting Oral Bioavail-
ability. As highlighted above, the physicochemical properties
of parent β-lactam drugs generally lead to poor membrane
permeability and many consequently have low human oral

bioavailability. There are, however, exceptions to this (Figure 5a).
Orally bioavailable β-lactam parent drugs utilize active
transport mechanisms for absorption.60 Drugs are initially
sequestered into epithelial cells lining the intestinal lumen,
frequently through the proton coupled peptide transporter
PepT1 (SLC15A1) in the apical membrane.61−64 PepT1 is a
prominent member of an emerging group of transporters of
clinical importance.65 The structural similarity of the β-lactam
cores to the natural substrate tripeptides is believed to be critical
for PepT1 recognition.66 However, since not all β-lactam drugs
are transporter substrates, it is clear that the nature of the
pendant substituents attached to the β-lactam ring is also
important for binding and uptake. For cephalosporins and
penicillins, many of the orally bioavailable drugs possess a basic
amine in the 7- or 6-amide side chains, respectively. Further-
more, most of the orally bioavailable cephalosporin parent
drugs possess a small 3-substituent (≤3 heavy atoms) suggest-
ing that overall size may be important (Figure 5b, parent
drugs).
The remaining orally active β-lactam drugs are ester

prodrugs. Bioavailability data were retrieved for only a small
number of these (Figure 5b, prodrugs). Interestingly, however,
the examples with the highest human oral bioavailability fall
within physicochemical property space where good oral
bioavailability is frequently observed (Figure 5: log D = 0−2,
MW < 550, HBD = 0−2).67

Pre-clinical Data. We analyzed the historical pre-clinical
i.v. PK data to look for possible retrospective insights for
predicting human PK that might inform future pre-clinical
profiling strategies. Simple plots comparing animal and human
PK parameters across the entire data set (Figure S5) suggested
only weak correlations between human and monkey PK
parameters (CL and t1/2), with no correlations apparent in

Figure 3. PCA scores defining the molecular property space of the β-lactam data set. The drugs named on the plot have the longest human
t1/2 (>3 h).

Table 2. Favorable Molecular Descriptor Ranges Capturing
>95% of the β-Lactam Drugs with Human t1/2 > 2 h

molecular descriptor favorable range

no. of rotatable bonds 5−10
fraction of rotatable bonds 0.17−0.29
molecular polar surface area >190 A2

O and N atoms count 9−15
fraction of sp3 carbons <0.5
no. of sp3 carbons 4−10
cyclohexane/water partition coefficient <−4

Figure 4. Correlation between calculated and experimental
human t1/2.
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other species. Several historical publications have detailed
successful application of allometry to predict human PK for
specific β-lactams.68−71 We therefore assessed the general
applicability of this approach to the class. The xenologic open-
access allometry PK tool was utilized in this work.72 A total of
43 compounds in the data set were available with PK
parameters for human and at least one other preclinical species.
Utilizing this software, extrapolations based on monkey data

delivered the best human predictions (Table 3 and Table S7. >
80% of compounds predicted within the 2-fold cut off,
irrespective of parameter predicted). The next best species in
accuracy of prediction was dog (77−79% of Clearance and
half-life predictions were within 2-fold of experimental values,
slightly less accurate for Vd ss (64%)). Human predictions based
on mouse or rat PK were generally less accurate, a trend noted
by other researchers with a more diverse set of drugs.73,74 Similar
accuracy of prediction (80−84%) was also obtained using a
multi-species allometry approach with variable exponents on
compounds for which PK data were available in at least three
species.75

■ POTENTIAL DIRECTIONS FOR FUTURE RESEARCH
AND PROSPECTS FOR FINDING NEW
LONG-ACTING ORAL Β-LACTAM ANTIBIOTICS

Compilation of the historical β-lactams and analysis of their PK
data confirmed the ubiquitous highly polar and ionized nature
of these drugs. It also highlighted ionization class and protein

binding as key parameters to consider in future efforts targeting
new long-acting drugs. Existing drugs from the class with low
clearance and the longest human half-life are polar (di)acids
with high plasma protein binding. By contrast, drugs with low-
to-moderate human plasma protein binding (<75%) are
generally shorter acting with higher clearance (Figure 2 and
Figure S2).
The observed PK profile of β-lactams arises from the

interplay of many in vivo processes (see Figure S7). In addition
to normal drug discovery considerations stability of the
β-lactam ring to hydrolysis needs to be taken into account.76

To minimize clearance, future long-acting drugs will require
excellent plasma stability (and to avoid susceptibility to other
hydrolytic enzymes such as DHP-I77,78). Based on our analysis,
synthetic efforts aimed at finding new plasma stable (di/tri)
acidic analogues, targeting and prioritizing compounds with
higher human plasma protein binding for in vivo evaluation
would be expected to maximize the likelihood of delivering
drug candidates with low clearance and extended half-life.
The computational model we have developed could also be
utilized. Although built from a limited data set, it reliably iden-
tifies compounds characterized by a very low t1/2. Hence
potential new targets for synthesis predicted in that range
could be deprioritized (or redesigned). Extending the duration
of action by increasing protein binding to slow the elimination
of unchanged parent drug clearly needs to be balanced with the
requirement to deliver and sustain drug levels in target tissues
sufficient for anti-bacterial activity79−81(Figure S7). While our
analysis takes no account of possible metabolism or non-
linearity in protein binding (seen with some β-lactam drugs),82

or consideration of specific mechanisms potentially involved in
drug elimination,78 the historical data suggest that a reasonable
starting point for balancing these considerations would be to
prioritize new compounds for in vivo evaluation with human
fub in the range 6−25% (Figure 2d and Figure S2).
An alternative approach to finding new β-lactams with

extended half-life would be to design and synthesize derivatives

Figure 5. Orally bioavailable β-lactams. (a) Oral bioavailability vs
t1/2 showing ionization classification of the oral drugs. (b) Size and
lipophilicity of actively transported parent drugs with good oral
bioavailability are similar. Prodrugs with highest oral bioavailability
tend to be smaller and less lipophilic.

Table 3. Allometric Scaling Predictions of Human PK
Parameters from Pre-clinical Experimental Data, Accurate
to within 2-fold

Human Clearance Prediction

monkey rat mouse dog
multi-species
allometry

n 25 34 23 35 25
no. within 2-fold 20 20 15 27 21
% accuracy 80 59 65 77 84
% under-predicted 16 9 17 6 16
% over-predicted 4 32 17 17 −

Human t1/2 Prediction
n 23 34 20 33 23
no. within 2-fold 22 17 14 26 19
% accuracy 96 50 70 79 83
% under-predicted 4 38 20 18 −
% over-predicted − 9 10 3 17

Human Vd ss Prediction
n 23 33 20 33 23
no. within 2-fold 20 21 15 21 22
% accuracy 87 64 75 64 96
% under-predicted 9 15 20 18 −
% over-predicted 4 21 5 18 4
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with the explicit aim of reducing renal clearance (maintaining
low hepatic clearance and good plasma stability). This could be
envisaged, for example, via the judicious introduction of meta-
bolically stable lipophilic groups, compatible with anti-bacterial
activity, onto the β-lactam cores. Although this approach would
clearly not be without significant challenges (e.g., given the
inherent highly polar nature of the β-lactams it may be neces-
sary to increase molecular weight significantly and other
favorable properties of these drugs such as their excellent aqueous
solubility could be compromised) it would represent a departure
from the past where drug discovery in this field was mainly driven
by consideration of anti-bacterial profile (many of the drugs were
discovered in an era where pre-clinical PK evaluation was not
routinely performed). Applying the tools of modern drug
discovery this approach warrants serious consideration.
Whichever approach is employed, conducting early pre-

clinical i.v. PK studies will be important to gain understanding
around the hepatic/renal clearance routes of new compounds
and inform the ensuing medicinal chemistry.
The overall polar and charged properties of most β-lactams,

including all the long-acting parenteral drugs, are generally
associated with poor oral bioavailability. Despite this, both
active uptake and pro-drug strategies have historically delivered
oral drugs. Considering the active transport approach, expanding
SAR for PepT1 transport in an appropriate in vitro assay could
assist in finding new orally bioavailable β-lactam parent drugs.83

In silico models for PepT1 recognition have been developed
and structural studies are now emerging which will potentially
facilitate the rational design of further substrates.84−90 However,
since PepT1 is only one of several transporters utilized by
β-lactams and only mediates the first step in absorption, such
data may not correlate well with oral bioavailability. (Published
data indicate that some β-lactam drugs are accumulated
intracellularly and metabolized, suggesting that SAR for the
basolateral membrane transporters and PepT1 may not be
identical.) In light of this, utilizing in vitro permeability/flux
assays in cell lines expressing relevant transporters offers a
more pragmatic way forward. A study with 23 β-lactam drugs
demonstrated a good correlation between the overall net flux
of intact β-lactams through a Caco-2 monolayer and human
oral bioavailability.91 Permeation across rat jejunum also
correlated well with human bioavailability for a small set of
β-lactams.92 In future discovery work, early profiling of new
molecules in a suitable cell permeability assay should rapidly
identify actively transported parent drugs with potential to
show good oral bioavailability.
Within the di-/triacid group (highlighted with highest poten-

tial for long t1/2) only cefixime and ceftibuten are orally active
(via active transport).93,94 Multiple transporters have been
implicated in the uptake of these two drugs so finding future oral
di-/triacids utilizing similar mechanisms is likely to rely on seren-
dipity. Alternatively, synthesis of orally bioavailable prodrugs of
long-acting (di-/triacid) β-lactams unable to utilize active trans-
port mechanisms can also be envisaged. Since historic prodrugs
with the highest human oral bioavailability fall within property
space where orally bioavailable drugs are frequently found, it
follows that carefully controlling physicochemical properties
should produce prodrug candidates with good passive perme-
ability. Thus, minimizing the size and polarity of the parent
β-lactam pendant substituents (X,Y in Figure 1) as far as
possible (within the constraints required for anti-bacterial
activity and moderate-high plasma protein binding) should
maximize space to introduce pro-drugging ester substituents

and, by implication, the likelihood of finding orally bioavailable
prodrugs.95,96

Prioritizing active compounds for in vivo profiling and
generating data to build confidence early in discovery that the
desired human PK profile will ultimately be attained is critical
in drug discovery. Our analysis emphasizes a further challenge
in the β-lactam field which is that rodent and human PK
frequently do not correlate well. In general, i.v. PK studies in
monkey appear to offer reasonable predictions for human, but
it is not feasible to conduct such studies routinely at an early
stage of drug discovery. Based on the historical data, a pragma-
tic approach would be to apply the simple allometry from
mouse i.v. PK data (65−75% of predictions within 2-fold of the
actual human values) but interpret the results with caution and
rapidly advance the most promising compounds into a second
PK species to increase confidence.
In summary, new orally bioavailable β-lactam antibiotics

with long elimination half-life have the potential for wide-
spread use in the treatment of TB and other bacterial diseases.
Historical β-lactam PK data have been compiled and used to
suggest pragmatic drug discovery strategies which could be
pursued in future research efforts. Based on our analysis, and
given the lack of current drugs with this profile, it is clear that
combining together the features needed for long half-life and
good oral bioavailability along with the desired anti-bacterial
profile is very challenging, and it remains to be seen if this goal
is ultimately achievable. However, since much of the early
medicinal chemistry in this field was empirically driven, it is
possible that utilizing future strategies with more emphasis on
PK properties could yet deliver new antibiotics with the potential
to be transformational in TB and other bacterial infections.
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(28) Dhar, N., Dubeé, V., Ballell, L., Cuinet, G., Hugonnet, J. E.,
Signorino-Gelo, F., Barros, D., Arthur, M., and McKinney, J. D.
(2015) Rapid Cytolysis of Mycobacterium tuberculosis by Farope-
nem, an Orally Bioavailable β-Lactam Antibiotic. Antimicrob. Agents
Chemother. 59 (2), 1308−1319.
(29) Jaganath, D., Lamichhane, G., and Shah, M. (2016)
Carbapenems against Mycobacterium tuberculosis: a review of the
evidence. Int. J. Tuberc Lung Dis 20 (11), 1436−1447.
(30) Iannazzo, L., Soroka, D., Triboulet, S., Fonvielle, M., Compain,
F., Dubee, V., Mainardi, J. L., Hugonnet, J. E., Braud, E., Arthur, M.,

ACS Infectious Diseases Perspective

DOI: 10.1021/acsinfecdis.8b00160
ACS Infect. Dis. 2018, 4, 1439−1447

1445

http://www.who.int/tb/publications/global_report/en/
http://www.who.int/tb/publications/global_report/en/
http://dx.doi.org/10.1021/acsinfecdis.8b00160


and Etheve-Quelquejeu, M. (2016) Routes of Synthesis of
Carbapenems for Optimizing Both the Inactivation of l,d-Trans-
peptidase LdtMt1 of Mycobacterium tuberculosis and the Stability
toward Hydrolysis by β-Lactamase BlaC. J. Med. Chem. 59 (7), 3427−
3438.
(31) Kumar, P., Kaushik, A., Lloyd, E. P., Li, S.-G., Mattoo, R.,
Ammerman, N. C., Bell, D. T., Perryman, A. L., Zandi, T. A., Ekins, S.,
Ginell, S. L., Townsend, C. A., Freundlich, J. S., and Lamichhane, G.
(2017) Nat. Chem. Biol. 13 (1), 54−61.
(32) Diacon, A. H., van der Merwe, L., Barnard, M., von Groote-
Bidlingmaier, F., Lange, C., Garcia-Basteiro, A. L., Sevene, E., Ballell,
L., and Barros-Aguirre, D. (2016) Beta lactams against tuberculosis −
New trick for an old dog? N. Engl. J. Med. 375 (4), 393−394.
(33) Chambers, H. F., Kocagoz, T., Sipit, T., Turner, J., and
Hopewell, P. C. (1998) Activity of amoxicillin/clavulanate in patients
with tuberculosis. Clin. Infect. Dis. 26, 874−877.
(34) Donald, P. R., Sirgel, F. A., Venter, A., et al. (2001) Early
bactericical activity of amoxicillin in combination with clavulanic acid
in patients with sputum smear positive pulmonary tuberculosis. Scand.
J. Infect. Dis. 33, 466−469.
(35) Nadler, J. P., Berger, J., Nord, J. A., Cofsky, R., and Saxena, M.
(1991) Amoxicillin-Clavulanic Acid for Treating Drug-Resistant
Mycobacterium tuberculosis. Chest 99 (4), 1025−1026.
(36) Keener, A. B. (2014) Oldie but goodie: Repurposing penicillin
for tuberculosis. Nat. Med. 20 (9), 976−978.
(37) Sotgiu, G., D’Ambrosio, L. D., Centis, R., Tiberi, S., Esposito,
S., Dore, S., Spanevello, A., and Migliori, G. B. (2016) Carbapenems
to treat Multidrug and extensively drug resistant Tuberculosis: A
systematic review. Int. J. Mol. Sci. 17, 373−382.
(38) ClinicalTrials.gov NCT01730664, PK/PD of Ertapenem In
Patients With TB.
(39) ClinicalTrials.gov NCT03174184, Early Bactericidal Activity of
Rifampin + Meropenem + Amoxicillin/Clavulanate in Adults With
Pulmonary TB.
(40) ClinicalTrials.gov NCT02381470, Early Bactericidal Activity
Study of Faropenem (With Amoxicillin/Clavulanic Acid) in Patients
With Pulmonary Tuberculosis.
(41) van Rijn, S. P., van Altena, R., Akkerman, O. W., van Soolingen,
D., van der Laan, T., de Lange, W. C., Kosterink, J. G., van der Werf,
T. S., and Alffenaar, J. W. (2016) Pharmacokinetics of ertapenem in
patients with multidrug-resistant tuberculosis. Eur. Respir. J. 47,
1229−1234.
(42) Ramon-Garcia, S., del Rio, R. G., Villarejo, A. S., Sweet, G. D.,
Cunningham, F., Barros, D., Ballell, L., Mendoza-Losana, A., Ferrer-
Bazaga, S., and Thompson, C. J. (2016) Repurposing clinically
approved Cephalosporins for tuberculosis therapy. Sci. Rep. 6, 34293.
(43) Rullas, J., Dhar, N., McKinney, J. D., Garcia-Perez, A., Lelievre,
J., Diacon, A. H., Hugonnet, J. E., Arthur, M., Angulo-Barturen, I.,
Barros-Aguirre, D., and Ballell, L. (2015) Combinations of beta
lactam antibiotics currently in clinical trials are efficacious in a DHP-I-
Deficient Mouse Model of Tuberculosis Infection. Antimicrob. Agents
Chemother. 59 (8), 4997−4999.
(44) Kurz, S. G., and Bonomo, R. A. (2012) Reappraising the use of
beta lactams to treat tuberculosis. Expert Rev. Anti-Infect. Ther. 10 (9),
999−1006.
(45) Auckenthaler, R. (2002) Pharmacokinetics and pharmacody-
namics of oral beta lactam antibiotics as a two dimensional approach
to their efficacy. J. Antimicrob. Chemother. 50 (T1), 13−17.
(46) van Rijn, S. P., Srivastava, S., Wessels, M. A., van Soolingen, D.,
Alffenaar, J. W., and Gumbo, T. (2017) The sterilizing effect of
ertapenem-clavulanate in a hollow fiber model of tuberculosis and
implications on clinical dosing. Antimicrob. Agents Chemother. 61 (9),
e02039 DOI: 10.1128/AAC.02039-16.
(47) Potel, G., Chau, N. P., Pangon, B., Fantin, B., Vallois, J. M.,
Faurisson, F., and Carbon, C. (1991) Single daily dosing of
antibiotics: Importance of in vitro killing rate, serum half-life and
protein binding. Antimicrob. Agents Chemother. 35 (10), 2085−2090.
(48) Hoffman, A., Danenberg, H. D., Katzhendler, I., Shuval, R.,
Gilhar, D., and Friedman, M. (1998) Pharmacodynamic and

pharmacokinetic rationales for the development of an oral
controlled-release amoxicillin dosage form. J. Controlled Release 54,
29−37.
(49) Extended release formulation of beta-lactam antibiotics, Int.
Patent Appl. WO 2005030178.
(50) Teitelbaum, A. M., Meissner, A., Harding, R. A., Wong, C. A.,
Aldrich, C. C., and Remmel, R. P. (2013) Synthesis, pH-dependent,
and plasma stability of Meropenem prodrugs for potential use against
drug-resistant tuberculosis. Bioorg. Med. Chem. 21 (17), 5605−17.
(51) Gunaydin, H., Altman, M. D., Ellis, J. M., Fuller, P., Johnson, S.
A., Lahue, B., and Lapointe, B. (2018) Strategy for Extending Half-life
in Drug Design and its Significance. ACS Med. Chem. Lett. 9, 528.
(52) Smith, D. A., Beaumont, K., Maurer, T. S., and Di, L. (2018)
Relevance of Half-Life in Drug Design. J. Med. Chem. 61, 4273.
(53) The present data set was extended from several previous
literature compilations: Bergan, T. (1984) Pharmacokinetics of beta-
lactam antibiotics. Scand. J. Infect. Dis. 42 (Suppl), 83−98. Obach, R.
S., Lombardo, F., and Waters, N. J. (2008) Trend Analysis of a
Database. Drug Metab. Disposition 36 (7), 1385−1405. Kwan, K. C.,
and Rogers, J. D. (1983) Pharmacokinetics of beta lactam antibiotics,
Antibiotics, Chap. 15, pp 247−270, Springer. Bergan, T. (1987)
Pharmacokinetic properties of the Cephalosporins. Drugs 34 (Suppl
2), 89−104.
(54) Additional data without primary literature sources from the
Pharmapendium database (https://www.pharmapendium.com) were
also included in the compilation along with some unpublished GSK
data (for details, see Supporting Information).
(55) The analyses and plots presented used subsets of the 122
compounds where all the relevant experimental data were retrieved.
Commercial software: PipelinePilot, version 9.1.0.13, BIOVIA (http://
accelrys.com/products/collaborative-science/biovia-pipeline-pilot/).
Stardrop, version 6.0, Optibrium (www.optibrium.com/stardrop/).
VolSurf+, version 1.0.7.l, Molecular Discovery (www.moldiscovery.
com/software/vsplus/). Simca, version 14.0.0.1359, Umetrics
(http://umetrics.com/products/simca).
(56) Manallack, D. T., Prankerd, R. J., Yuriev, E., Oprea, T. I., and
Chalmers, D. K. (2013) The Significance of Acid/Base Properties in
Drug Discovery. Chem. Soc. Rev. 42 (2), 485−496.
(57) Charifson, P. S., and Walters, W. P. (2014) Acidic and Basic
Drugs in Medicinal Chemistry: A Perspective. J. Med. Chem. 57 (23),
9701−9717.
(58) Prodrugs were converted into the correspondent drug molecule
(see Supporting Information).
(59) The authors can be contacted for a copy of the model. Software
licenses required: PipelinePilot, Stardrop, Volsurf (see ref 55).
(60) Sinko, P. J., and Amidon, G. L. (1988) Characterisation of the
oral absorption of beta lactam antibiotics I. Cephalosporins:
Determination of Intrinsic membrane absorption parameters in the
rat. Pharm. Res. 5 (10), 645−650.
(61) Herrera-Ruiz, D., Wang, Q., Cook, T. J., Knipp, G. T.,
Gudmundsson, O. S., Smith, R. L., and Faria, T. N. (2001) Spatial
Expression Patterns of Peptide Transporters in the Human and Rat
Gastrointestinal Tracts, Caco-2 In vitro cell culture model, and
multiple human tissues. AAPS Pharm. Sci. 3 (1), 100.
(62) Brandsch, M., Knutter, I., and Bosse-Doenecke, E. (2008)
Pharmaceutical and pharmacological importance of peptide trans-
porters. J. Pharm. Pharmacol. 60 (5), 543−85.
(63) Brandsch, M. (2013) Drug Transport via the Intestinal peptide
transporter PepT1. Curr. Opin. Pharmacol. 13, 881−887.
(64) Brandsch, M. (2009) Transport of Drugs by proton-coupled
peptide transporters: pearls and pitfalls. Expert Opin. Drug Metab.
Toxicol. 5 (8), 887−905.
(65) Hillgren, K. M., Keppler, D., Zur, A. A., Giacomini, K. M.,
Stieger, B., Cass, C. E., and Zhang, L. (2013) Emerging Transporters
of Clinical Importance: An Update from the International Trans-
porter Consortium. Clin. Pharmacol. Ther. 94 (1), 52−63.
(66) Bailey, P. D., Boyd, C. A. R., Bronk, J. R., Collier, I. D.,
Meredith, D., Morgan, K. M., and Temple, C. S. (2000) How to Make

ACS Infectious Diseases Perspective

DOI: 10.1021/acsinfecdis.8b00160
ACS Infect. Dis. 2018, 4, 1439−1447

1446

http://dx.doi.org/10.1128/AAC.02039-16
https://www.pharmapendium.com
http://pubs.acs.org/doi/suppl/10.1021/acsinfecdis.8b00160/suppl_file/id8b00160_si_001.pdf
http://accelrys.com/products/collaborative-science/biovia-pipeline-pilot/
http://accelrys.com/products/collaborative-science/biovia-pipeline-pilot/
http://www.optibrium.com/stardrop/
http://www.moldiscovery.com/software/vsplus/
http://www.moldiscovery.com/software/vsplus/
http://umetrics.com/products/simca
http://pubs.acs.org/doi/suppl/10.1021/acsinfecdis.8b00160/suppl_file/id8b00160_si_001.pdf
http://dx.doi.org/10.1021/acsinfecdis.8b00160


Drugs Orally Active: A Substrate Template for Peptide Transporter
PepT1. Angew. Chem., Int. Ed. 39 (3), 505−508.
(67) Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J.
(1997) Experimental and computational approaches to estimate
solubility and permeability in drug discovery and development
settings. Adv. Drug Delivery Rev. 23, 3−25.
(68) Sawada, Y., Hanano, M., Sugiyama, Y., and Iga, T. (1984)
Prediction of the disposition of beta lactam antibiotics in humans
from pharmacokinetic parameters in animals. J. Pharmacokinet.
Biopharm. 12 (3), 241−261.
(69) Richter, W. F., Heizmann, P., Meyer, J., Starke, V., and Lave, T.
(1998) Animal pharmacokinetics and interspecies scaling of Ro-25−
6833 and related (Lactamylvinyl)Cephalosporins. J. Pharm. Sci. 87
(4), 496−500.
(70) Wajima, T., Yano, Y., Fukumura, K., and Oguma, T. (2004)
Prediction of human pharmacokinetic profile in animal scale up based
on normalizing time course profiles. J. Pharm. Sci. 93 (7), 1890−1900.
(71) Kurihara, A., Naganuma, H., Hisaoka, M., Tokiwa, H., and
Kawahara, Y. (1992) Prediction of human pharmacokinetics of
panipenem-betamipron, a new carbapenem, from animal data.
Antimicrob. Agents Chemother. 36 (9), 1810−1816.
(72) This tool applies fixed exponents for Clearance (0.75) and Vdss
(1.0). Development of the software was funded by the Bill and
Melinda Gates Foundation for use in neglected diseases and is
available as free download from the MMV website or at https://www.
dropbox.com/s/6bxicyac5kjils1/PKTool.pdf?dl=0.
(73) Imam, M. T., Venkateshan, M. D., Tandon, M., Saha, N., and
Pillai, K. K. (2011) Comparative Evaluation of US Food and Drug
Administration and Pharmacologically Guided Approaches to
Determine the Maximum Recommended Starting Dose for First-in-
Human Clinical Trials in Adult Healthy Men. J. Clin. Pharmacol. 51,
1655−1664.
(74) Caldwell, G. W., Masucci, J. A., Yan, Z., and Hageman, W.
(2004) Allometric scaling of pharmacokinetic parameters in drug
discovery: Can human CL, Vss and t1/2 be predicted fromin-vivo rat
data? Eur. J. Drug Metab. Pharmacokinet. 29 (2), 133−143.
(75) Kang, H. E., and Lee, M. G. (2011) Approaches for predicting
human pharmacokinetics using interspecies pharmacokinetic scaling.
Arch. Pharmacal Res. 34, 1779−88.
(76) β-Lactam hydrolysis mechanisms reviewed in the following:
Deshpande, A. G., Baheti, K. G., and Chatterjee, N. R. (2004)
Degradation of beta lactam antibiotics. Curr. Sci. 87 (12), 1684−1695.
(77) Drusano, G. L. (1986) An overview of the pharmacology of
imipenem/cilastatin. J. Antimicrob. Chemother. 18 (Suppl E), 79−92.
(78) Kropp, H., Sundelof, J. G., Hajdu, R., and Kahan, F. M. (1982)
Metabolism of Thienamycin and Related Carbapenem Antibiotics by
the Renal Dipeptidase, Dehydropeptidase-I. Antimicrob. Agents
Chemother. 22, 62−70.
(79) Honeybourne, D. (1994) Antibiotic penetration into lung
tissues. Thorax 49, 104−106.
(80) Muller, M., dela Pena, A., and Derendorf, H. (2004) Issues in
Pharmacokinetics and pharmacodynamics of anti-infective agents:
Distribution in Tissue. Antimicrob. Agents Chemother. 48, 1441−1453.
(81) While β-lactam antibiotics work through an irreversible
mechanism, in vitro studies with Ertapenem demonstrate that free
concentration drives efficacy: Nix, D. E., Matthias, K. R., and
Ferguson, E. C. (2004) Effect of Ertapenem Protein Binding on
Killing of Bacteria. Antimicrob. Agents Chemother. 48, 3419−3424.
(82) Zeitlinger, M. A., Derendorf, H., Mouton, J. W., Cars, O., Craig,
W. A., Andes, D., and Theuretzbacher, U. (2011) Protein Binding: Do
we ever learn ? Antimicrob. Agents Chemother. 55, 3067−3074.
(83) Snyder, N. J., Tabas, L. B., Berry, D. M., Duckworth, D. C.,
Spry, D. O., and Dantzig, A. H. (1997) Structure-Activity relationship
of CarbaCephalosporins and Cephalosporins: Antibacterial Activity
and Interaction with the Intestinal Proton-Dependent Dipeptide
Transport Carrier of Caco-2 cells. Antimicrob. Agents Chemother. 41
(8), 1649−1657.
(84) Foley, D. W., Rajamanickam, J., Bailey, P. D., and Meredith, D.
(2010) Bioavailability through PepT1: the role of computer

modelling in intelligent drug design. Curr. Comput.-Aided Drug Des.
6 (1), 68−78.
(85) Wanchana, S., Yamashita, F., Hara, H., Fujiwara, S. I.,
Akamatsu, M., and Hashida, M. (2004) Two- and Three-dimensional
QSAR of carrier mediated Transport of β-Lactam antibiotics in Caco-
2 cells. J. Pharm. Sci. 93 (12), 3057−3065.
(86) Biegel, A., Gebauer, S., Hartrodt, B., Brandsch, M., Neubert, K.,
and Thondorf, I. (2005) Three-dimensional Quantitative Structure
Activity relationship analyses of β-lactam antibiotics and tripeptides as
substrates of the mammalian H+/Peptide cotransporter peptide
PEPT1. J. Med. Chem. 48, 4410−4419.
(87) Samsudin, F., Parker, J. L., Sansom, M. S., Newstead, S., and
Fowler, P. W. (2016) Accurate prediction of ligand affinities for a
proton dependent oligopeptide transporter. Cell Chem. Biol. 23, 299−
309.
(88) Beale, J. H., Parker, J. L., Samsudin, F., Barrett, A. L., Senan, A.,
Bird, L. E., Scott, D., Owens, R. J., Sansom, M. S., Tucker, S. J.,
Meredith, D., Fowler, P. W., and Newstead, S. (2015) Crystal
structure of the extracellular domain from PepT1 and PepT2 provide
novel insights into mammalian peptide transport. Structure 23, 1889−
1899.
(89) Boggavarapu, R., Jeckelmann, J. M., Harder, D., Ucurum, Z.,
and Fotiadis, D. (2015) Role of electrostatic interactions for ligand
recognition and specificity of peptide transporters. BMC Biol. 13, 58.
(90) Newstead, S. (2017) Recent advances in understanding proton
coupled peptide transport via the POT family. Curr. Opin. Struct. Biol.
45, 17−24.
(91) Bretschneider, B., Brandsch, M., and Neubert, R. (1999)
Intestinal Transport of β-lactam antibiotics: Analysis of the affinity at
the H+/Peptide Symporter (PEPT1), the Uptake into Caco-2 Cell
Monolayers and the Transepithelial Flux. Pharm. Res. 16 (1), 55−61.
(92) Saitoh, H., Aungst, B. J., Tohyama, M., Hatakeyama, Y.,
Ohwada, K., Kobayashi, M., Fujisaki, H., and Miyazaki, K. (2002) In
vitro permeation of beta-lactam antibiotics across rat jejunum and its
correlation with oral bioavailability in humans. Br. J. Clin. Pharmacol.
54 (4), 445−8.
(93) Sugawara, M., Iseki, K., Miyazaki, K., Shiroto, H., Kondo, Y.,
and Uchino, J. I. (1991) Transport characteristics of Ceftibuten,
cefixime and cephalexin across human jejunal brush-border
membrane. J. Pharm. Pharmacol. 43 (12), 882−884.
(94) Iseki, K., Sugawara, M., Sato, K., Naasani, I., Hayakawa, T.,
Kobayashi, M., and Miyazaki, K. (1999) Multiplicity of the H
+-Dependent Transport Mechanism of Dipeptide and Anionic β-
Lactam Antibiotic Ceftibuten in Rat Intestinal Brush-Border
Membrane. J. Pharmacol. Exp. Ther. 289, 66−71.
(95) Recently published work on Ertapenem prodrugs, which lie
outside this optimal property space for good oral bioavailability, also
identified very few derivatives with good oral bioavailability in dog:
Singh, S. B., Rindgen, D., Bradley, P., Suzuki, T., Wang, N., Wu, H.,
Zhang, B., Wang, L., Ji, C., Yu, H., Soll, R. M., Olsen, D. B., Meinke, P.
T., and Nicoll-Griffith, D. A. (2014) Design, synthesis, structure-
function relationship, bioconversion, and pharmacokinetic evaluation
of ertapenem prodrugs. J. Med. Chem. 57 (20), 8421−44.
(96) Active transport routes can also be utilized by some β-lactam
prodrugs and has been observed with tebipenem pivoxil: Kato, K.,
Shirasaka, Y., Kuraoka, E., Kikuchi, A., Iguchi, M., Suzuki, H.,
Shibasaki, S., Kurosawa, T., and Tamai, I. (2010) Intestinal
Absorption mechanism of Tebipenem Pivoxil, a Novel Oral
Carbapenem: Involvement of OATP Family in Apical Membrane
Transport. Mol. Pharmaceutics 7 (5), 1747−1756.

ACS Infectious Diseases Perspective

DOI: 10.1021/acsinfecdis.8b00160
ACS Infect. Dis. 2018, 4, 1439−1447

1447

https://www.dropbox.com/s/6bxicyac5kjils1/PKTool.pdf?dl=0
https://www.dropbox.com/s/6bxicyac5kjils1/PKTool.pdf?dl=0
http://dx.doi.org/10.1021/acsinfecdis.8b00160

