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development of neurochemical systems involved in regulation 
of stress responses, mood and anxiety states during adulthood 
is susceptible to disruption by adverse experience in early-life. 
Moreover, clinical and preclinical studies suggest that perturba-
tions to these neurochemical systems during early-life appear to 
have long-lasting consequences on emotional behavior in rodents 
and on mental health in humans (Gutman and Nemeroff, 2003; 
Lapiz et al., 2003; Nemeroff, 2004; Plotsky et al., 2005; Fone and 
Porkees, 2008; Heim et al., 2008). A large body of literature sug-
gests post-weaning isolation rearing of rodents is one procedure 
that models some of the behavioral consequences of adverse early-
life experiences in humans. Therefore, the goal of this review 
is to evaluate and integrate classic and recent fi ndings of the 
consequences of post-weaning social isolation on fear and anxi-
ety-related behaviors, and potential neurobiological mechanisms 
underlying these changes in behavior, including alterations in 
neuroendocrine function and CRF/monoaminergic activity.

POST-WEANING SOCIAL ISOLATION OF RODENTS
Neural and behavioral development of rodents mirrors stages 
of human development. While the period from weaning to early 
adulthood is often referred to as adolescence for rodents, dis-
crete developmental stages based on numerous neurobiological 
and behavioral studies can be identifi ed (as recently reviewed 
by McCormick et al., 2009). For the purposes of this discus-
sion, rat postnatal day (PD) 21 (earliest day of weaning) to PD28 

INTRODUCTION
Clinical and preclinical data implicate adverse early-life experi-
ences in the later development of psychiatric and substance abuse 
disorders (Gutman and Nemeroff, 2003; Lapiz et al., 2003; National 
Clearinghouse on Child Abuse and Neglect Report, 2005; Fone 
and Porkees, 2008). Although other covariates including genetic 
predisposition should be taken into account, approximately 80% of 
young adults who report early-life neglect or abuse are diagnosed 
with at least one psychiatric disorder, including anxiety disorders, 
affective disorders, schizoaffective disorders or behavioral disorders 
(Gutman and Nemeroff, 2003; Lapiz et al., 2003; McFarlane et al., 
2005; National Clearinghouse on Child Abuse and Neglect Report, 
2005; Espejo et al., 2007; Fone and Porkees, 2008; Heim et al., 2008). 
Adverse early-life events also increase the likelihood of co-morbid 
psychiatric and substance abuse disorders in adulthood (Scheller-
Gilkey et al., 2003). Thus, severe or chronic adverse early-life experi-
ences impose serious long-term costs on the individual as well as 
health, social, and judicial systems. It is therefore of importance to 
understand the effects of adverse early-life experiences on neural 
mechanisms underlying mood and anxiety states.

In both humans and rodents, neurotransmitter systems 
implicated in modulation of emotive behaviors, such as serot-
onin (5-hydroxytryptamine: 5-HT), dopamine (DA) and cor-
ticotropin-releasing factor (CRF), do not mature fully until 
early-to-late adolescence (Insel et al., 1988; Spear, 2000; Andersen, 
2003; Vazquez et al., 2006). Therefore, it is possible that normal 
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the effects of isolation-rearing from post-weaning to adulthood 
with the effects of adult isolation of an equivalent length of time 
will serve to determine whether pre-adult isolation represents the 
critical period for this procedure (e.g. Einon and Morgan, 1977). 
While these critical comparisons have been made across studies 
(e.g. Hall, 1998), this fi eld will be signifi cantly advanced by the 
inclusion of these controls within the same study.

Literature reviewed in subsequent sections suggests that social 
isolation from weaning to early adulthood represents an experience 
that can substantially alter the expression of emotive behaviors. 
The behavioral consequences of post-weaning social isolation, par-
ticularly on expression of social behaviors during later adolescence 
and adulthood, have been attributed to post-weaning deprivation 
of play behavior (e.g. Potegal and Einon, 1989; van den Berg et al., 
1999, and as reviewed by Hall, 1998). In support of this, Einon 
and colleagues (Einon et al., 1978, 1981; Potegal and Einon, 1989) 
demonstrated that male rats isolated from PD20 or 25 to PD45 
or 50 were protected from the long-term consequences of social 
isolation on later behaviors (such as heightened aggression or 
hyper-activity in a novel environments) if rats were allowed daily 
bouts of play with a conspecifi c. In species that normally do not 
show signifi cant play behavior as juveniles and adolescents, these 
behavioral consequences of post-weaning social isolation are not 
long-lasting, and their emergence in the short-term is not alleviated 
by daily play bouts (Einon et al., 1981). Overall, play deprivation 
during the post-weaning developmental period for rats may under-
lie alterations to later social behaviors or hyper-activity in novel 
environments, but a similar relationship for anxiety-like and fear 
behaviors needs clarifi cation.

EFFECTS OF POST-WEANING SOCIAL ISOLATION ON ANXIETY 
AND FEAR BEHAVIOR
ANXIETY
Post-weaning social isolation is often but not always associated 
with increased anxiety-like behavior (as reviewed by Hall, 1998; 
Fone and Porkees, 2008). However, whether altered anxiety states 
associated with post-weaning social isolation are a long-term conse-
quence of social isolation during a critical window of development 
or simply an effect of current state of social deprivation needs to be 
considered. For example, Einon and Morgan (1977) demonstrated 
that female and male rats reared in isolation from pre- to mid-
 adolescence (PD25 to PD45) exhibited increased latency to emerge 
into an unfamiliar open-fi eld when tested at PD45. However, this 
effect appears to be a function of social deprivation at the time of 
testing, given that different age ranges of isolation produced similar 
effects but only if the rats were living in isolation at the time of test-
ing (Einon and Morgan, 1977). Furthermore, the effects of isolation 
on open-fi eld emergence of male rats in particular, were reversed 
by re-socialization prior to testing (Einon and Morgan, 1977). 
Similarly, male and female rats isolated from pre- to mid-adoles-
cence (PD26 to PD40) showed increased latency to emerge into 
an unfamiliar open-fi eld, decreased center entries and decreased 
defensive burying (indicative of reduced proactive coping) when 
tested at PD40 in a state of social deprivation (Arakawa, 2005, 2007). 
The effects of isolation-rearing initiated at PD26 did not appear 
to be due to current state of social deprivation, since the majority 
of anxiety-like behaviors exhibited by male isolation-reared rats 

 corresponds to pre- adolescence, PD28 to PD34 corresponds to 
early adolescence, PD34 to PD46 corresponds to mid-adolescence, 
PD46 to PD56 corresponds to late adolescence, and PD56 can be 
considered early adulthood (Spear, 2000; Andersen, 2003; Laviola 
et al., 2003). Studies of post-weaning social isolation in rodents 
have manipulated rearing conditions during different periods of 
this developmental window. A large number of studies employ 
chronic (>1 week continuous) post-weaning social isolation, also 
termed isolation rearing, as a rodent model of adverse early-life 
experience or social deprivation (as already discussed by Hall, 
1998; Gutman and Nemeroff, 2003; Lapiz et al., 2003; Fone and 
Porkees, 2008), and this specifi c model is the focus of this review. 
The vast majority of long-term post-weaning isolation studies 
utilize male rats, and the fi ndings reviewed below and in Tables 1 
and 2 are derived from males unless otherwise specifi ed.

Post-weaning social isolation involves rearing rats in isolation 
from the day of weaning, (which is imposed by the experimenter 
and can range from PD21 to PD28 across studies) until the day of 
testing typically in late-adolescence or adulthood. Isolation-reared 
rats are housed within the same holding room as group-reared 
control rats, with the latter typically housed in groups of three to 
fi ve rats per cage. Thus, socially isolated rats are completely deprived 
of social contact but still have access to olfactory, auditory and 
visual cues from other rats within the holding room (Lapiz et al., 
2003; Fone and Porkees, 2008). Environmental enrichment reverses 
some of the effects of post-weaning social isolation (Hellemans 
et al., 2004; Hoffmann et al., 2009), suggesting that enrichment 
should not be used for standard isolation procedures. Interestingly, 
the strain of rat used may also alter the outcome of post-weaning 
social isolation. For instance, hyper-locomotion in a novel open-
fi eld is commonly observed following social isolation of male Lister 
Hooded rats, but this fi nding is not consistently replicated with 
male Sprague-Dawley rats (Leng et al., 2004; Weiss et al., 2004; 
Lukkes et al., 2009a,c).

In the vast majority of post-weaning social isolation studies, 
rats remain in isolation for 4–6 weeks or more (as reviewed by 
Lapiz et al., 2003; Fone and Porkees, 2008) and are then tested 
while still in isolation-housed conditions. Thus, rats are tested in 
a current state of social deprivation in addition to being reared in 
isolation during post-weaning development (Potegal and Einon, 
1989; Hall, 1998). Unless otherwise specifi ed, the studies discussed 
in subsequent sections involve the testing of male isolation-reared 
rats in a current state of social deprivation. To assess the effects 
of post-weaning social isolation in the absence of current social 
deprivation, models of post-weaning social isolation have been 
developed where male rats were isolated from weaning (PD21-22) 
to mid-adolescence (PD35 or 42) and then re-housed in groups 
until testing in later adolescence or early adulthood (e.g. Potegal 
and Einon, 1989; van den Berg et al., 1999; Lukkes et al., 2009a–c). 
This approach has been very valuable in determining the long-term 
effects of isolation rearing on later behavioral and neural measures. 
However, further considerations need to be made to specify the 
effects of post-weaning social isolation. For example, comparing the 
effects of short-term (<1 week) social isolation immediately prior to 
testing vs. chronic post-weaning isolation may allow the contribu-
tions of social deprivation to the effects of chronic post-weaning 
isolation to be further elucidated. Furthermore, a comparison of 
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represent strain differences between Lister Hooded rats (Einon and 
Morgan, 1977) vs. Sprague-Dawley and Wistar rats (van den Berg 
et al., 1999; Arakawa, 2005, 2007; Lukkes et al., 2009a,c). By compar-
ing across studies that have used the same behavioral end-measure, 
such as the EPM, the effects of isolation onset and duration on later 
anxiety measures can be better evaluated. Overall, regardless of 
rat strain and isolation duration, isolation-rearing initiated during 
pre-adolescence (PD21–PD28) appears to decrease time and entries 
into open arms of the EPM for male rats, indicative of increased 
anxiety-like behaviors. For example, Weiss et al. (2004) isolated 
rats from PD21 until day of EPM testing in adulthood (PD91), and 
found the male but not female rats exhibited increased  anxiety-like 
behaviors. Wright et al. (1991) similarly showed that social isolation 
from pre- to late adolescence (PD21–PD51) resulted in increased 
anxiety-like behaviors in the EPM, which was not alleviated by re-
socialization for 30 days. Shorter periods of isolation also appear 
to increase anxiety states if initiated in pre-adolescence, with male 
rats exposed to 3 weeks of isolation from PD22 to PD43 showing 
decreased exploration in the EPM, albeit tested while in social isola-
tion (Parker and Morinan, 1986). In contrast, Brenes et al. (2009) 
initiated isolation at a later age and isolated male rats from early 
adolescence to early adulthood (PD28 to PD60). These investigators 
found no effect of isolation-rearing on anxiety-like behavior in the 
EPM when tested on PD62 (Brenes et al., 2009). Similarly, a shorter 
isolation period that only encompassed early to mid-adolescence 
(PD30–35) did not affect male rat anxiety behavior when tested 
on the EPM at PD36, but did reduce time spent in open arms 
for female rats (Leussis and Andersen, 2008). Like Arakawa (2005, 
2007), Thorsell et al. (2006) highlight an apparent anxiolytic effect 
of social isolation-rearing for male rats in the EPM and open-fi eld 
when social isolation is initiated in later adolescence (PD45, mid-
adolescence). Combined, it appears that a common factor shared 
by studies where isolation rearing of male rats is associated with 
increased anxiety-states, which are not reversed by re-socialization, 
is the earlier initiation of isolation (typically PD21–PD26, pre-ado-
lescence). In contrast, studies that initiate isolation-rearing later (in 
most cases PD28 – early adolescence, or later) show no alterations 
or decreased anxiety-related behavior. Thus, the initiation of social 
isolation in pre-adolescence could be important for later emergence 
of long-term anxiety-like states for male rats. Interestingly, play 
behavior of rats is initiated at this pre-adolescence stage (PD18–28) 
and peaks at PD32–40 (Panksepp, 1981). This suggests that the 
deprivation of play behavior at the time this behavior normally 
emerges may relate to increased anxiety states in male rats, which 
warrants further testing. The limited number of studies that have 
used female rats precludes similar comparisons, but one common 
fi nding is that isolation rearing and/or social deprivation appears 
to increase anxiety-like behavior of female rats regardless of onset 
of isolation (e.g.; Arakawa, 2007; Leussis and Andersen, 2008). 
Therefore, whether male and female rats share a similar critical 
period for the impact of social isolation on anxiety-like behaviors 
needs further investigation.

FEAR
Fewer studies have examined the effects of post-weaning social iso-
lation on fear-related behavior. Isolation-rearing of male Sprague-
Dawley rats from pre- to mid-adolescence (PD21–42) followed 

were not reversed by 25, 40 or 90 days of re-socialization (Arakawa, 
2005, 2007). There was no effect of the same length (15 days) of 
isolation-rearing on male behavior if isolation was initiated in late 
adolescence (PD51; Arakawa, 2005), suggesting an earlier critical 
window for the effects of social isolation on anxiety-like behav-
iors. Furthermore, initiating isolation-housing in adulthood (PD66 
or PD116) actually increased both open-fi eld center entries and 
defensive burying (Arakawa, 2005, 2007), suggesting that adult 
social isolation may result in decreased anxiety-like behaviors. In 
contrast, social isolation of female rats at both earlier (pre- to mid-
adolescence) and later times (adulthood, e.g. P66 to P80) reduced 
defensive burying (Arakawa, 2007). Overall, these latter studies 
suggest social isolation rearing of male rats must occur during a 
critical window (pre- to mid-adolescence) to result in long-last-
ing increases in anxiety-like behaviors that are not reversed by re-
socialization. In contrast, a critical period may not apply for female 
rats. Instead, social isolation at any age may enhance anxiety states 
in female rats, which requires further testing.

Further support for pre-adolescence as an important period 
for post-weaning social isolation of male rats has been suggested 
by studies assessing the long-term impact of post-weaning social 
isolation on later social interaction. Similar to Arakawa’s fi ndings, 
male rats isolated from pre- to mid-adolescence (PD21 to PD42) 
and re-socialized until testing in early adulthood (PD59) exhibited 
increased latency to enter the center of a familiar but brightly-
lit open-fi eld when compared to group-reared rats (Lukkes et al., 
2009a). These rats also exhibit decreased social interaction and 
increased freezing behavior during a social interaction test with an 
unfamiliar conspecifi c (Lukkes et al., 2009a,c), indicative of higher 
anxiety-like behavior (Lowry et al., 2005). Likewise, van den Berg 
et al. (1999) found that male rats reared in isolation from pre-
 adolescence to the onset of mid-adolescence (PD22 to PD35) and 
then re-socialized until testing in mid-adolescence (PD42) exhib-
ited decreased social approach, although it should be noted that 
these rats did not show altered anxiety-like behavior in the elevated 
plus-maze (EPM). Like Arakawa (2005), the fi ndings of greater 
anxiety states in social and sometimes non-social environments 
(van den Berg et al., 1999; Lukkes et al., 2009a,c) could not be 
attributed to current state of social deprivation given that rats were 
socially housed for 1 or 2 weeks prior to testing. Therefore, there is 
evidence that post-weaning social isolation has long-term effects 
on anxiety-like behaviors. However, the caveat should be made that 
re-socialization in the studies described above has involved isolates 
re-socialized with other isolates, which may result in quite different 
social group dynamics as compared to re-socialized group-reared 
rats. Thus, the effects of social isolation and then re-socialization 
with group-reared rats on anxiety-like behaviors needs to be deter-
mined to fully clarify the impact of isolation-rearing on later social 
behavior and related anxiety states.

As previously mentioned, not all studies show that post-weaning 
social isolation alters anxiety-like behaviors, and there have been 
reports of re-socialization reversing heightened anxiety states fol-
lowing social isolation (e.g. Einon and Morgan, 1977; Hall, 1998; 
Fone and Porkees, 2008). The differing fi ndings in relation to the 
expression of heightened anxiety states may be a result of varying 
adversities inherent in the different test paradigms (Hall, 1998; 
Hall et al., 2000), differing isolation onset and duration, or may 
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by re-socialization for 2 weeks did not alter unconditioned fear 
behavior (freezing) in response to repeated mild foot-shock (Lukkes 
et al., 2009a). Longer isolation periods that were also initiated at 
PD21 similarly revealed no effect of social isolation on uncon-
ditioned fear behavior when male or female rats were tested in a 
current state of social deprivation (Fulford and Marsden, 1998a,b; 
Weiss et al., 2004). Therefore, social isolation that is initiated in pre-
adolescence and encompasses early or entire adolescence appears 
to have little effect on unconditioned fear behavior in response to 
mild foot-shock.

Contrasting results have been obtained regarding the effects of 
social isolation on conditioned fear behaviors. Lukkes et al. (2009a) 
show that male Sprague-Dawley rats reared in isolation (PD21–42) 
and re-socialized prior to testing (PD42–56) exhibited elevated 
conditioned fear behavior to a tone previously paired with foot-
shock when compared to group-reared rats. However, other studies 
observed no differences in fear behavior in response to a condi-
tioned tone between isolation- and group-reared male or female 
Sprague-Dawley and Lister Hooded rats (Fulford and Marsden, 
1998a,b; Weiss et al., 2004), although Weiss et al. (2004) do report 
that female isolates show greater conditioned-context fear behavior 
compared to group-reared rats. When isolation period, state of 
social deprivation, foot-shock and conditioning procedures, and 
strain are all taken into account, the only difference between Lukkes 
et al. (2009a) and the studies showing no effect of isolation-rearing 
on conditioned fear behavior for male rats is that the latter studies 
tested rats in a current state of social deprivation. Clearly, further 
work will be needed to clarify the relationship between isolation-
rearing and conditioned fear behavior.

EFFECTS OF POST-WEANING SOCIAL ISOLATION ON 
HYPOTHALAMIC-PITUITARY-ADRENAL (HPA) AXIS FUNCTION
Adverse early-life experiences in humans have lasting effects on 
the neuroendocrine stress axis, which are thought to increase the 
risk for the development of mood and anxiety disorders (Agid 
et al., 2000; Charney and Manji, 2004; Nemeroff, 2004). Chronic 
elevations in glucocorticoid release during early-life, resulting from 
stress-induced dysregulation of the hypothalamic-pituitary-adrenal 
(HPA) axis, may also have deleterious effects on neural physiology 
and behavior in adulthood (see Sapolsky et al., 2000). Interestingly, 
components of HPA axis and its neural regulators develop into the 
adult-like state from pre-weaning through adolescence (as recently 
reviewed by McCormick et al., 2009). Therefore, the study of HPA 
axis function during and following post-weaning social isolation 
may address whether post-weaning social isolation could be con-
sidered a stressor.

The effects of post-weaning social isolation on the HPA axis 
have produced mixed fi ndings, with the majority of results sug-
gesting little long-term effect of isolation-rearing (often combined 
with a state of social deprivation) on HPA axis functioning (as 
reviewed by Hall, 1998; Fone and Porkees, 2008). Specifi cally, 
Weiss et al. (2004) isolated Sprague-Dawley rats from PD21 and 
measured basal plasma adrenocorticotrophic hormone (ACTH) 
and corticosterone levels in early adulthood (PD70) in a state of 
current social deprivation. Male isolates showed increased basal 
ACTH levels, while basal corticosterone levels for both male and 
female rats was unaffected by isolation/deprivation (Weiss et al., 

2004). A lack of effect of isolation-rearing on basal corticosterone 
levels in the presence of social deprivation was also observed by 
Schrijver et al. (2002) using an almost identical isolation protocol 
with Lister Hooded males. Additionally, Lukkes et al. (2009a) found 
no effect of isolation-rearing on basal corticosterone when male 
Sprague-Dawley rats were isolated from PD21 until PD42 and re-
socialized until testing in early adulthood (PD56). Thus, social 
isolation from pre-adolescence does not appear to have any effect 
on basal corticosterone levels regardless of rat strain or whether 
rats are sampled in current state of social deprivation. However, 
ACTH was not measured by Lukkes et al. (2009a), and it is possible 
that the heightened ACTH levels observed by Weiss et al. (2004) 
refl ect increased HPA axis tone (Weiss et al., 2004). This has been 
supported indirectly by fi ndings where male isolates show greater 
ACTH and corticosterone responses to acoustic startle stimuli 
(Weiss et al., 2004) or lower corticosterone levels 2 h after 10 min 
of restraint stress, indicative of greater negative feedback (Lukkes 
et al., 2009a). However, social isolation/deprivation did not alter 
adrenal weights or glucocorticoid or mineralocorticoid receptors 
in the hippocampus (Weiss et al., 2004), which is not consistent 
with the idea that social isolation is accompanied by greater HPA 
axis tone. Furthermore, in contrast to the effects of acoustic star-
tle (Weiss et al., 2004), Schrijver et al. (2002) found that restraint 
stress did not reveal a difference in stress-induced ACTH or cor-
ticosterone between isolation-reared rats (PD21–PD84) tested in 
social deprivation vs. group-reared rats. This implies that the dif-
ferential effects of stressors on HPA axis reactivity in isolates and 
group-reared rats may be stressor dependent. Overall, it is not clear 
whether isolation-rearing results in alterations to HPA axis activity 
and/or reactivity that could be indicative of chronic stress, and this 
area requires further experimentation. Furthermore, gender, isola-
tion timing, state of social deprivation, plasma sampling times and 
stressor type should be considered as important variables.

EFFECTS OF POST-WEANING SOCIAL ISOLATION ON 
MONOAMINERGIC SYSTEMS
DEVELOPMENT OF MONOAMINERGIC SYSTEMS
Signifi cant remodeling of the human brain continues throughout 
childhood and adolescence, with cortical and subcortical structures 
showing peak increases in gray matter growth at approximately 8–
11 years of age (Lenroot and Giedd, 2006) before declining to adult 
volumes. These changes in brain volume during childhood and 
adolescence are refl ected in the increased production and progres-
sive elimination of synapses and receptors (pruning), particularly 
in the monoaminergic pathways of the limbic system (Dinopoulos 
et al., 1997; Andersen, 2003) that infl uence emotional behavior. In 
rats, noticeable changes in the activity of DA and 5-HT systems 
are apparent from weaning to adolescence, with progressively 
increasing concentrations of 5-HT and its metabolite 5-hydrox-
yindoleacetic acid (5-HIAA) evident in the cortex, hippocampus, 
striatum and brainstem until mid-adolescence (PD45), from which 
they decline to pre-adolescent levels during adulthood (PD90; 
Chen et al., 1997). Similarly, striatal concentrations of DA and 
its metabolite 3,4- dihydroxyphenylacetic acid (DOPAC) increase 
until mid-adolescence (PD45; Chen et al., 1997), and DA release is 
also heightened in the basal ganglia during mid- adolescence rela-
tive to adulthood (Knoll et al., 2000). During these developmental 
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 periods, expression of DA receptors within specifi c terminal fi elds 
also changes markedly, with DA D

1
 and D

2
 receptors in the striatum 

and nucleus accumbens (NAc) progressively increasing in number 
up to early adolescence (PD28), prior to pruning to adult levels 
(Tarazi et al., 1998; but see Teicher et al., 1995). Similar patterns 
in increased production and subsequent decreased expression of 
these receptors in the medial prefrontal cortex (mPFC) have also 
been described, with peaks again seen in the pre- to mid-ado-
lescent periods (Andersen et al., 2000; Brenhouse et al., 2008). 
Related developmental alterations in mPFC DA D

2
 autoreceptor 

function have also been demonstrated (Andersen et al., 1997), 
which, together with the increased numbers of DA D

1
 receptors, 

may assist in maintaining an enhanced DA tone in this area as 
needed for effective acquisition of salience and appropriate mod-
ulation of goal-directed behaviors (Steketee, 2003; Grace et al., 
2007; Brenhouse et al., 2008). Combined, these changes within 
monoaminergic systems from post-weaning onwards appear to 
help in preparing young animals for the expression of adoles-
cent-typical behaviors (Spear, 2000), and as mentioned earlier, 
this developmental period is when play behavior emerges for rats 
(Panksepp, 1981). Furthermore, as suggested earlier, the pre- to 
mid-adolescent time period in which marked developmental 
alterations to monoamine systems occurs appears to be a critical 
period for the effects of post-weaning social isolation on male rat 
anxiety-related behavior.

EFFECTS OF POST-WEANING SOCIAL ISOLATION ON LIMBIC 
SEROTONERGIC FUNCTION
Serotonergic systems modulate anxiety-like behavior, and altera-
tions to 5-HT pathways are thought to lead to the development of 
anxiety disorders (Lucki, 1998; Millan, 2003; Lowry et al., 2005). 
For instance, increased levels of 5-HT release and activity within 
the limbic system of rats are associated with heightened anxiety-like 
behavior in the EPM (Rex et al., 2004). Unlike the behavioral stud-
ies, there are few studies that either compare the effects of different 
post-weaning social isolation periods or compare the effects of 
social isolation with the effects of current state of social depriva-
tion on the activity of monoamine systems. In fact, the majority of 
studies have assessed 5-HT function during chronic post-weaning 
social isolation (i.e. in current state of social deprivation). Thus, 
further studies are needed to ascertain whether isolation-rearing 
alone has long-term effects on 5-HT systems related to anxiety or 
fear behaviors.

For the most part, post-weaning social isolation affects 5-HT 
levels and activity in terminal regions of the rodent limbic sys-
tem (Table 1). Rather than social isolation/deprivation producing 
global changes in limbic 5-HT levels or activity, region-specifi c 
effects can be observed. For example, although variance exists in 
the timing and duration of isolation, post-weaning social isola-
tion generally appears to increase markers of serotonergic activ-
ity in the mPFC (Table 1). This includes increased 5-HT

1A
 and 

5-HT
2A

 receptor binding (Gunther et al., 2008), enhanced 5-HT 
turnover (Brenes et al., 2008) and elevated tissue concentrations 
(Rilke et al., 1998a; Miura et al., 2002a,b). In contrast, 5-HT lev-
els and release in the hippocampus appear to be reduced during 
post-weaning social isolation (with a presumptive compensatory 
increase in 5-HT

1A
 receptors), particularly when isolation was 

 initiated in the pre- adolescent period (PD21–28; Table 1). Reduced 
serotonergic function in the hippocampus may relate to increased 
anxiety-like behavior observed during and following post-weaning 
social isolation (Lapiz et al., 2003). Studies of serotonergic activ-
ity in the rat amygdala are required following post-weaning social 
isolation, given that serotonergic activity in the central nucleus 
of the amygdala (CeA) may relate to heightened anxiety states by 
promoting behavioral, emotional and endocrine responses to stres-
sors (see Mo et al., 2008). Post-weaning social isolation of other 
species, albeit in time periods outside of pre-adolescence (Table 1), 
increased serotonergic activity particularly in the CeA. Interestingly, 
administration of selective 5-HT reuptake inhibitors (SSRIs) dur-
ing adulthood reverses many of the changes described in Table 1 
(Rilke et al., 2001; Miura et al., 2005; Gunther et al., 2008; Brenes 
and Fornaguera, 2009), suggesting that SSRIs could be an effec-
tive pharmacotherapy for reversing anxiety-like behavioral defi cits 
induced by isolation-rearing.

EFFECTS OF POST-WEANING SOCIAL ISOLATION ON 
DOPAMINERGIC FUNCTION
Alterations to DA activity during post-weaning social isolation are 
seen in many of the same anxiety-related limbic regions where 
5-HT activity is also affected, as shown in Table 2. In the mPFC, 
DA innervation and turnover are generally decreased during post-
 weaning social isolation, particularly when the isolation procedure 
was applied in pre-adolescence (PD21-28; Table 2). Also, dopamin-
ergic activity or turnover appears to be generally increased in the 
NAc during post-weaning social isolation (Table 2). Interestingly, 
stress-evoked accumbal DA release is potentiated by decreased 
mPFC DA activity (Doherty and Gratton, 1996; Pascucci et al., 
2007; Del Arco and Mora, 2008). Male rats reared in isolation from 
PD21 show greater foot-shock and conditioned stimulus-induced 
DA release in the NAc when tested in early adulthood (PD63, 
in a current state of deprivation; Fulford and Marsden, 1998b). 
Given the inverse relationship between mPFC and NAc DA activity 
(Doherty and Gratton, 1996; Pascucci et al., 2007; Del Arco and 
Mora, 2008), it is possible that reduced mPFC DA activity in iso-
lated rats permits stronger stress-induced potentiation of accum-
bal DA release. Like the current state of the relationship between 
limbic 5-HT and isolation-rearing in rats, further work is required 
to determine the long-term consequences of isolation-rearing on 
DA systems by re-socializing rats prior to testing. Furthermore, 
critical windows of vulnerability need to be determined, and the 
precise relationship between isolation-induced DA alterations and 
behavior require clarifi cation.

Defi cits in adult behavioral states associated with post-weaning 
social isolation may emerge as a consequence of altered interac-
tions between 5-HT and DA function within the limbic system. 
For example, approximately 20% of serotonergic terminals from 
the dorsal raphe nucleus (dRN; the source of serotonergic projec-
tions to the NAc) to NAc shell and core contact pre-synaptic DA 
terminals (Van Bockstaele et al., 1993; Broderick and Phelix, 1997), 
and 5-HT perfused into the NAc dose-dependently increases DA 
release via pre-synaptic mechanisms (Chen et al., 1991; Parsons and 
Justice, 1993). Post-weaning social isolation results in enhanced 
stress-induced or stress neuropeptide-induced 5-HT release in the 
NAc (Fulford and Marsden, 1998a; Lukkes et al., 2009b). Increased 
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Table 1 | Effects of isolation rearing on serotonergic function within anxiety-related neural circuits.

Brain region Length of Isolation Species/strain Effect

mPFC PD30-PD110 Gerbils Overshoot of 5-HT innervations in the entorhinal, insular, and

   cingulate (layers II and III) cortices (Neddens et al., 2003)

 PD21-PD70 Sprague-Dawley rats ↑ 5-HT turnover but no effect on 5-HT levels (Brenes et al., 2008;   

   Brenes and Fornaguera, 2009)

 PD42-PD126 NMRI mice ↓ 5-HT concentrations (Rilke et al., 1998a)

 PD49-PD77 F344 rats ↑ 5-HT levels (Miura et al., 2002a,b)

 PD42-PD105 NMRI mice ↑ 5-HT1A and 5-HT2A receptor binding, attenuated by citalopram

   (Gunther et al., 2008)

 PD1-PD45 Degus ↑ 5-HT fi ber densities in the infralimbic cortex (Braun et al., 2000)

 PD28-PD56 Lister-hooded rats No effect on 5-HT levels (Dalley et al., 2002)

Hippocampus PD21-PD105; PD21-PD63 Lister-hooded rats ↓ 5-HT release (Jones et al., 1992; Muchimapura et al., 2002)

 PD28-PD100;PD21-PD70 Sprague-Dawley rats ↓ 5-HT levels or no effect, but ↑ 5-HT turnover

   (Brenes et al., 2008; Brenes and Fornaguera, 2009)

 PD21-PD51;PD42-84 Wistar rats; NMRI mice ↑ gene expression of 5-HT1A receptors (Del-Bel et al., 2002; 

   Schiller et al., 2006)

 PD22-PD64 Sprague-Dawley rats ↓ 5-HT fi ber innervation from the dRN (Whitaker-Azmitia et al., 2000)

 PD49-PD77 F344 rats ↑ 5-HT levels (Miura et al., 2002a)

 PD42-PD126; PD42-  NMRI mice ↓ 5-HT concentrations (Rilke et al., 1998a) and ↑ 5-HT1A receptor

 PD105  binding in CA1 and DG, attenuated by citalopram (Gunther et al., 2008)

NAc PD49-PD77 F344 rats ↑ 5-HT levels and turnover in response to novelty (Miura et al., 2002a)

 PD42-PD126 NMRI mice ↓ 5-HT concentrations (Rilke et al., 1998a)

 PD28-PD100 Sprague-Dawley rats ↑ 5-HT concentrations, restored by fl uoxetine

   (Brenes and Fornaguera, 2009)

 PD21-PD63 Lister-hooded rats ↑ NAc shell 5-HT release during unconditioned and conditioned

   foot-shock (Fulford and Marsden, 1998a)

 PD21-PD105 Lister-hooded rats ↓ 5-HT release (Jones et al., 1992)

 PD42-PD105 NMRI mice ↑ 5-HT2A receptor binding in NAc core, attenuated by citalopram

   (Gunther et al., 2008)

 PD21-PD105 Wistar rats ↓ 5-HT turnover (Heidbreder et al., 2000)

 PD30-PD110 Gerbils No alterations in 5-HT innervation (Lehmann et al., 2003)

 PD21-PD42; re-socalized  ↑ 5-HT release stimulated by corticotrop in-releasing factor

 until testing (PD56)  (Lukkes et al., 2009b)

Amygdala PD42-PD105 NMRI mice ↑ 5-HT1A receptor binding in the cortical amygdala, 

   not attenuated by citalopram (Gunther et al., 2008)

 PD30-PD110 Gerbils ↑ 5-HT innervation of the CeA and BLA (Lehmann et al., 2003)

 PD1-PD45 Degus ↑ density of 5-HT fi bers in CeA (Gos et al., 2006)

Animals were tested on the last day of isolation-rearing unless otherwise stated.
Control groups comprised group-reared animals.

NAc 5-HT release may then facilitate NAc DA release in isolated rats, 
providing another mechanism by which stress-evoked DA release 
in the NAc is enhanced by post-weaning social isolation.

Further examples of relevant interactions between 5-HT and 
DA may be found within the mPFC. Pharmacological activation of 
5-HT

1A
 receptors in the mPFC decreases mPFC DA release (Diaz-

Mataix et al., 2005). The increased 5-HT
1A

 receptor binding and 
enhanced 5-HT turnover observed in the mPFC of isolation-reared 
rodents could inhibit DA release in the mPFC, presumably due to 
direct inhibition of cortical pyramidal neurons that typically excite 
dopaminergic neurons of the ventral tegmental area, that in turn 
project to the mPFC (Diaz-Mataix et al., 2005). Interactions between 
5-HT and DA also appear to be critical for the postnatal  maturation 

of DA projection fi elds (Ferre et al., 1994; Moukhles et al., 1997; 
Mendlin et al., 1999). To illustrate, 5-HT has been shown to inhibit 
DA innervation of the mPFC during development (Neddens et al., 
2003). Since 5-HT activity is generally increased in the mPFC dur-
ing post-weaning social isolation (Table 1; albeit confounded with 
social deprivation), alterations to 5-HT activity in this region could 
account for the decreased DA innervation/activity observed in the 
mPFC of isolation-reared rodents (Table 2). Thus, the future chal-
lenges are to determine whether social isolation induces disrup-
tion of dopaminergic and serotonergic development within the 
extended limbic system, whether interactions between these systems 
are altered in the long-term by post-weaning social isolation, and 
which of these are related to subsequent changes to behavior.
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Table 2 | Effects of isolation rearing on dopaminergic function within anxiety-related neural circuits.

Brain region Length of Isolation Species/strain Effect

mPFC PD42-PD49 NMRI mice ↑ DA metabolism (Rilke et al., 1998b)

 PD1-PD45 Degus ↓ DA fi bers in the precentral medial cortex, anterior cingulate cortex, 

   and prelimbic cortex (Braun et al., 2000)

 PD49-PD77 F344 rats No effect on DA levels (Miura et al., 2002a,b)

 PD28-PD56 Lister-hooded rats No effect on DA levels (Dalley et al., 2002)

 PD30-PD90 Gerbils ↓ DA innervation (Winterfeld et al., 1998; Neddens et al., 2001)

 PD21-PD105 Lister-hooded and Wistar rats ↓ DOPAC, HVA, DA turnover, but ↑ DA levels and concentrations 

   (Weinstock et al., 1978; Crespi et al., 1992; Jones et al., 1992; Hall  

   et al., 1998; Heidbreder et al., 2000)

 PD21-PD111 Nerr1-NULL mice ↓ DA and DOPAC levels (Eells et al., 2006)

 PD21-PD385 Sprague-Dawley rats No effect on DA release (Leng et al., 2004)

Hippocampus PD49-PD77 F344 rats No effect on DA levels (Miura et al., 2002a,b)

 PD28-PD100 Sprague-Dawley rats ↑ DA turnover (Brenes and Fornaguera, 2009)

NAc PD21-PD40 Lister-hooded rats ↑ D2 DA receptors (King et al., 2009)

 PD49-PD77 F344 rats ↑ DA levels (Miura et al., 2002a,b)

 PD21-PD63 Lister-hooded rats ↑ NAc shell DA release during unconditioned and conditioned

   foot-shock (Fulford and Marsden, 1998b)

 PD21-PD105 Lister-hooded rats ↑ amphetamine-induced release of DA (Jones et al., 1992)

 PD21-PD105 Lister-hooded and Wistar rats ↑ DA turnover (Hall et al., 1998; Heidbreder et al., 2000)

 PD21-PD105 Lister-hooded rats ↓ DOPAC, HVA, and DA turnover, but ↑ DA levels (Weinstock et al.,   

   1978; Jones et al., 1992)

 PD28-PD100 Sprague-Dawley rats No effect on DA levels (Brenes and Fornaguera, 2009)

 PD21-PD105 Lister-hooded rats ↓ D2 DA receptors (Hall et al., 1998)

 PD21-PD105;  Lister-hooded, Sprague-Dawley,  No alterations in D1 or D2 DA receptors (Wilmot et al., 1986; Jones   

 PD21-PD81 and Fawn-Hooded rats et al., 1992; Del Arco et al., 2004; Djouma et al., 2006)

 PD21-PD111 Nerr1-NULL mice ↓ DA levels and ↑ DA turnover (Eells et al., 2006)

 PD42-PD126 NMRI mice No effect on D2 DA receptors or DA metabolism (Rilke et al., 1998b)

Amygdala PD21-PD105 Lister-hooded and Wistar rats ↑ DA turnover (Hall et al., 1998; Heidbreder et al., 2000)

Animals were tested on the last day of isolation-rearing.
Control groups comprised group-reared animals.

LONG-LASTING EFFECTS OF SOCIAL ISOLATION ON CRF 
INTERACTIONS WITH 5-HT SYSTEMS
CRF INTERACTIONS WITH 5-HT SYSTEMS AND EMOTIONAL BEHAVIOR
Corticotropin-releasing factor is a neurotransmitter involved 
in integrating multiple components of the stress response (e.g. 
Dunn and Berridge, 1990a,b). Unlike the monoaminergic systems 
described above, the peak development of CRF systems appears to 
occur for the most part prior to weaning (Insel et al., 1988). For 
instance, CRF binding sites, CRF stimulation of adenylate cyclase 
activity, and CRF protein concentrations throughout the brain 
peak on PD8 and then decrease to adult levels by early adolescence 
(PD28) (Insel et al., 1988). Furthermore, CRF mRNA expression 
in the hypothalamic paraventricular nucleus reaches adult levels 
by PD8 and glucocorticoid negative feedback starts to affect CRF 
gene expression by PD8 as well (Korosi and Baram, 2008). In the 
hippocampus, CRF-immunoreactive neurons reach adult levels by 
PD18 (Chen et al., 2001). In the amygdala, specifi cally the CeA, CRF 
mRNA levels are detected as early as PD6 and continue to increase 
throughout development until adulthood (Vazquez et al., 2006). 
While occurring earlier than monoaminergic systems, these devel-
opmental trajectories do afford the opportunity for post-weaning 

social isolation to affect some aspects of CRF system development, 
particularly if initiated at earlier pre-adolescent time-points.

During exposure to stressors, CRF is released in the central 
nervous system (Merlo et al., 1995; Merali et al., 1998) and intrac-
ranial CRF administration induces the expression of behaviors 
resembling those caused by stress (Dunn and Berridge, 1990a,b). 
Previous studies have linked CRF with changes in 5-HT neuronal 
activity and 5-HT release (Price et al., 1998; Kirby et al., 2000; Price 
and Lucki, 2001; Forster et al., 2006, 2008; Lukkes et al., 2008). 
The dRN receives CRF projections from the CeA and bed nucleus 
of the stria terminalis (Gray, 1993), and CRF dose-dependently 
modulates dRN serotonergic activity via two receptor subtypes, 
CRF

1
 and CRF

2
 (Price et al., 1998; Kirby et al., 2000; Price and 

Lucki, 2001; Lukkes et al., 2008). It appears that CRF has oppos-
ing effects on 5-HT release (Kirby et al., 2000; Pernar et al., 2004; 
Lukkes et al., 2008) as mediated by the two CRF receptor subtypes. 
For instance, lower concentrations of CRF activate high-affi nity 
CRF

1
 receptors in the dRN and result in decreased 5-HT release in 

the NAc (Lukkes et al., 2008). In contrast, higher concentrations of 
CRF infused into the dRN activate low-affi nity CRF

2
 receptors to 

increase NAc 5-HT release (Lukkes et al., 2008). These  receptors 
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likely responsible for prolonged increases in NAc 5-HT release 
observed in isolates (Lukkes et al., 2009b). These fi ndings also lead 
to the speculation that heightened CRF-mediation of 5-HT activity 
could be responsible for increased NAc 5-HT release in response to 
both foot-shock and conditioned cue presentation observed in iso-
lated rats (PD21–PD63) when compared to group-reared controls 
(Fulford and Marsden, 1998a). Overall, these studies suggest that 
post-weaning isolation-rearing causes alterations in CRF

2
 receptor 

levels and sensitizes 5-HT release to both stressors and CRF, which 
could account for the increased fear and anxiety-like behavior exhib-
ited by isolation-reared rats in adulthood. In line with this, recent 
data suggest that CRF receptor antagonism within the dRN reverses 
social anxiety-like behavior of male isolation-reared rats (PD21–42, 
re-socialized until testing at PD63), but does not affect the behavior 
of group-reared rats (Lukkes et al., 2009c). While the focus of recent 
studies has been CRF-mediation of 5-HT release in the NAc, the 
lateral wings of the dRN project to other anxiety-related circuits, 
such as the mPFC and CeA (Van Bockstaele et al., 1993). Therefore, 
increased CRF

2
 receptor levels in the lateral wings of the dRN found 

following post-weaning isolation-rearing (Lukkes et al., 2009b) are 
likely to have widespread consequences for stressor-induced 5-HT 
activity within the limbic system.

SUMMARY AND FUTURE DIRECTIONS
In summary, a comparison of social isolation onset and duration 
suggests that for male rats, social isolation that encompasses pre-
adolescence is likely to result in increased anxiety-related behavior. 
However, a critical period of isolation for female rats is currently 
not apparent. The effects of social isolation on anxiety states do not 
appear to be masked by a current state of social deprivation at the 
time of testing, although social deprivation at the time of testing 
may affect conditioned fear responses (Lukkes et al., 2009a). Re-
socialization typically does not reverse the effects of pre-adolescent 
social isolation on anxiety behavior, suggesting the effects of this 
procedure on anxiety states are long-lasting. The proposed criti-
cal window for male social isolation (pre-adolescence) is a time 
of monoaminergic development and emergence of play behav-
ior. Thus, it may be likely that disruption of the development and 
progression of these important factors by social isolation during 
pre-adolescence results in increased anxiety states, although this 
requires direct testing. Whether the long-term consequences of 
social isolation on anxiety states are related to isolation-induced 
alterations to HPA axis activity or reactivity has not been clearly 
determined. However, recent evidence suggests that post-weaning 
social isolation may increase behavioral and neurochemical sen-
sitivity to stressors during adulthood by altering CRF-mediated 
serotonergic function in the limbic system. Overall, future research 
should consider narrowing post-weaning social isolation to a criti-
cal window of development, and should also consider whether the 
utilized procedures test the effects of post-weaning social isolation 
with or without the confound of a current state of social deprivation 
at the time of testing. Further research taking these considerations 
into account will likely elucidate some of the current discrepan-
cies in outcomes from differences in post-weaning social isolation 
timing, particularly in relation to fear behaviors and neuroendo-
crine stress function. Nevertheless, the use of post-weaning social 
isolation of rats to produce behavioral outcomes similar to those 

are located on both 5-HT and GABAergic neurons within the dRN 
(Day et al., 2004; Waselus et al., 2005), but the decrease in NAc 
5-HT release may be through activation of CRF

1
 receptors located 

on 5-HT neurons within the dRN (Day et al., 2004), whereas acti-
vation of CRF

2
 receptors may inhibit local GABAergic interneu-

rons, thereby disinhibiting 5-HT neurons within the dRN (Forster 
et al., 2008). Thus, disinhibition of 5-HT neurons could produce 
a CRF-mediated increase in NAc 5-HT release in response to the 
higher concentrations of CRF (Roche et al., 2003; Pernar et al., 
2004; Forster et al., 2008). It is thought that CRF-mediation of 
5-HT neurotransmission, in part, accounts for the anxiogenic and 
stress-related behavioral properties of CRF (Lowry et al., 2000, 
2005; Price et al., 2002; Forster et al., 2006; Lowry and Moore, 
2006; Mo et al., 2008).

While activation of central CRF
1
 receptors is associated with 

increased anxiety-like behavior in animal models (Heinrichs et al., 
1997; Skutella et al., 1998; Timpl et al., 1998; Muller et al., 2003; 
Gehlert et al., 2005), the exact role of CRF

2
 receptors in mediat-

ing anxiety-related behaviors has not been clear (Takahashi, 2001). 
Studies of CRF

2
 receptor knockout mice suggest that CRF

2
 receptors 

may help reduce behavioral stress responses and anxiety-like behav-
iors (Bale et al., 2000; Bale, 2005). However, up-regulation of CRF

2
 

receptors in the dRN is associated with an anxiogenic profi le during 
amphetamine withdrawal in rats (Pringle et al., 2008). Furthermore, 
icv. administration of the CRF

2
 receptor agonist urocortin II increases 

anxiety-like behaviors in mice (Matsumoto et al., 2004). Moreover, 
icv. administration of antisauvagine-30, a CRF

2
 receptor-specifi c 

antagonist, decreases anxiety-like behavior in the EPM, conditioned 
freezing, and defensive-withdrawal paradigms (Takahashi et al., 
2001). Antisauvagine-30 infused directly into the dRN prevents the 
behavioral effects of a learned helplessness paradigm when tested 
24 h later (Hammack et al., 2003). Likewise, CRF

2
 receptor antago-

nism within the dRN also reduces the behavioral defi cits associated 
with social defeat of adult hamsters (Cooper and Huhman, 2007). 
Overall, a role for CRF

2
 receptors in fear and  anxiety-like behaviors 

may be region, stressor or even test specifi c, but the majority of stud-
ies suggest that activity of CRF

2
 receptors in the dRN is associated 

with increased fear or anxiety-like behaviors.

EFFECTS OF POST-WEANING SOCIAL ISOLATION ON CRF-REGULATION 
OF MONOAMINERGIC SYSTEMS IN RELATION TO BEHAVIORAL DEFICITS
Given the important role of CRF and 5-HT in modulating anxiety-
like behavior, we recently explored whether elevated social anxiety-
like behaviors observed in isolates could result from increased CRF 
receptor activation in the dRN. Male rats exposed to 3 weeks of social 
isolation from weaning to mid-adolescence (PD21–42), followed by 
2 weeks of re-socialization, show enhanced intra-dRN CRF-elicited 
NAc serotonergic responses as adults (Lukkes et al., 2009b). In addi-
tion, these rats showed increased CRF

2
 receptor levels in the lateral 

wings of the dRN (Lukkes et al., 2009b), which send projections to 
the NAc (Van Bockstaele et al., 1993). In contrast, no differences 
in CRF

1
 receptor levels were observed in either the lateral wings 

or medial portion of the dRN following isolation-rearing (Lukkes 
et al., 2009b). These fi ndings support those suggesting a role for 
CRF

2
 receptors in the dRN in mediating heightened anxiety or fear 

states (e.g. Hammack et al., 2003; Pringle et al., 2008). Furthermore, 
the up-regulation of CRF

2
 receptors within the dRN of isolates is 
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of adverse early-life experiences in humans has proven fruitful, 
and has the potential to provide preclinical fi ndings that may be 
translated into clinical research. Next, the differential effects of 
post-weaning social isolation on monoamine function as related 
to anxiety-related behavior between males and females requires 
clarifi cation, given that females are more likely to suffer from affec-
tive disorders (Nestler et al., 2002; Becker et al., 2007).

The study of CRF-monoamine interactions following post-
weaning social isolation in rodents is a relatively new area that has 
promise in providing a mechanistic link between limbic monoam-
ine function and anxiety-related behaviors following post-weaning 
social isolation. Future research specifi cally with the post-weaning 
social isolation model should elucidate the relationship between 
anxiety states and the expression and function of CRF receptor sub-
types throughout the limbic system. At a more basic level, research 
is needed to fi ll the knowledge gap regarding the  developmental 

programming of the different CRF receptors in anxiety-related 
neural circuits, and the mechanisms by which post-weaning 
social isolation results in increased CRF

2
 receptors in adulthood. 

Understanding the effects of post-weaning social isolation during 
critical developmental periods on CRF and related neuropeptides, 
and their modulation of monoaminergic activity in the limbic sys-
tem, may direct novel therapeutic approaches to the treatment of 
anxiety disorders related to adverse early-life experiences.
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