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Abstract: Timely and accurate change detection on satellite images by using computer vision
techniques has been attracting lots of research efforts in recent years. Existing approaches based
on deep learning frameworks have achieved good performance for the task of change detection
on satellite images. However, under the scenario of disjoint changed areas in various shapes on
land surface, existing methods still have shortcomings in detecting all changed areas correctly and
representing the changed areas boundary. To deal with these problems, we design a coarse-to-fine
detection framework via a boundary-aware attentive network with a hybrid loss to detect the
change in high resolution satellite images. Specifically, we first perform an attention guided
encoder-decoder subnet to obtain the coarse change map of the bi-temporal image pairs, and then
apply residual learning to obtain the refined change map. We also propose a hybrid loss to provide
the supervision from pixel, patch, and map levels. Comprehensive experiments are conducted on
two benchmark datasets: LEBEDEV and SZTAKI to verify the effectiveness of the proposed method
and the experimental results show that our model achieves state-of-the-art performance.

Keywords: change detection; deep learning; attentive; coarse-to-fine; encoder-decoder architecture;
end-to-end

1. Introduction

Timely and accurate change detection on bi-temporal satellite images that are taken at different
times in the unique geographic location, is a task with practical application significance. Basically, the
change in the bi-temporal image-pairs can be defined as the differences among attributes, positions,
ranges etc. of the objects on the land surface. Recently, research on change detection has been an active
topic with the rapid development of computer vision techniques [1–5].

There are various widely adopted methods proposed by researchers, covering variable detecting
strategies and achieving grateful performances on a range of datasets. Traditional methods extracted
low-level manual features and made decisions based on thresholds or clustering analysis. Traditional
change detection methods can be roughly divided into two strategies: pixel-based and object-based [6].
The pixel-based methods [7,8] mainly set thresholds or cluster on the comparing results from the
corresponding pixel-values directly. Generally, these simple methods often lead to certain “salt and
pepper” noise, because of their ignorance on context information [2]. To alleviate the noise, several
improved probabilistic models [9–13] are proposed. Pixel-based methods achieve far from satisfactory
results, especially when used in the scenario of very high resolution (VHR) images [2]. Object-based
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approaches [14–16] emerge accordingly mainly following this pipeline: firstly, images are divided
into targets, and then their bi-temporal relativeness is compared and analyzed. These targets contain
rich information on spectral, textual, structural and geometric, providing support for subsequent
similarity analysis.

More recently, deeply learned features with rich semantic information are introduced to replace
the low-level manually designed features. Similar to the pipelines of traditional pixel-based methods,
some of them take the deep neural networks as a robust feature extractor, instead of human designed
descriptor which require a lot of domain knowledge, followed by various decision making strategies
on those feature maps. The pre-trained Convolutional Neural Networks (CNNs) on natural image
datasets, such as VGGNet and ResNet [17–19], are well-performed in remote sensing tasks [20]. In
order to further adapt to the specific domain, Zhang et al. [21] trains a deep brief network (DBN) which
extracts feature maps from raw data, and then conducts cluster analysis on them. To keep the respective
field and feature dimensions, Zhan et al. [22] trains a Siamese network with AlexNet cutting off pooling
layers to represent two images and then generate change map on the difference of them with contrastive
loss. To enhance interclass discrimination and intraclass compactness, Zhang et al. [23] trains a Siamese
network with an improved triplet loss. Different from extracting deep features from raw images,
several approaches dealt with patches or superpixels from raw images, and then fed them into the deep
learning models to learn the association between these graphs or sub-regions. By generating superpixels
before learning, several approaches segment superpixels firstly, and then fed them into zoom out
CNN [24], ResNet [25], stacked contrastive AutoEncoder [11] and Sparse De-noising AutoEncoder
(SDAE) [26] and to generate multi-scale deep features. The Siamese CNN structure, which provides
effective feature representation ability, is also widely used in multimodal image patch based methods,
including optical images [27] and incomplete satellite images [28].

In addition, to make the change detection task end-to-end learnable, the fully convolutional
network (FCN) related methods are proposed to make full use of the contextual information. For
example, the typical FCN [29] tackles this problem by utilizing the context information and results in a
better localization, through involving the combine feature maps at multiscale convolutional layers.
Basically, there are two types of styles according to the input pattern: 2-stream and 2-channel [30].
The 2-stream means that two streams of networks share structure and weights and process images
respectively. It is one of the most common used strategies in image classification or other related
vision tasks. While 2-channel is to concatenate two images as one input of the network. It provides
more flexibility and converges faster [30]. As for performance, 2-channel methods typically perform
well on global features under the same convolutional backbones, but it is not the same effective
when the pairs involve more local high-level features [31], while 2-stream methods can focus more
on local information. Based on 2-stream architecture, Lei et al. [32] and Liu et al. [33] applies
standard U-Net [34], as an image-to-image architecture, on bi-temporal images change detection
task. Caye Daudt et al. [3] designed skip connections cross bi-temporal images on Siamese models,
named FC-Siam-diff and FC-Siam-conc. Based on these baselines, the PGA-SiamNet [4] introduces a
co-attention guide onto the bridge before decoding, to emphasize the importance of correlation among
the feature maps pairs. In Zhang et al. [1], a deep supervised fusion strategy is introduced to the
FC-Siam-conc like model, which is completed by using attention modules after on concatenated
encoding feature maps and reconstructed maps, to suppress the irrelevant samples and spatial
transformed refine the maps. By doing that, it improves the change maps boundary completeness and
internal compactness. Instead of processing bi-temporal images separately, 2-channel architectures
stack an image pair as one input to the networks. This strategy is applied in Alcantarilla et al. [35]
for street view change detection. FC-EF in Caye Daudt et al. [3] stacks bi-temporal three channels
RGB satellite images as an image with six channels feeding into a U-Net like model. Peng et al. [2]
proposed to train a Nested U-Net (UNet++) [36] on VHR satellite images, that a more powerful U-Net
like deep supervised model armed with dense skip connections, with applying a multiple fusion loss.
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This network can automatically explore and learn from low level to high level benefited by the dense
structure and generate finer map by the deep supervised fusion loss.

However, there are still some disadvantages in existing methods. In terms of object-level change
detection, especially under the scenario where disjoint changed areas that show variability in shapes are
included in one change map, most of the existing methods are able to detect the changed areas with a
promising recall rate. Furthermore, the boundaries of those areas are not detected accurately. To tackle
the above problems, we design a coarse-to-fine change detection framework to process satellite image
pairs with a boundary-aware attentive network (BA2Net), which utilizes the image-pairwise semantic
information with an attentional strategy to locate multiple changed areas correctly and represent
the boundaries of the changed areas with the refined encoder-decoder architecture progressively.
Furthermore, we train the proposed BA2Net with a hybrid loss function from pixel, patch, and map
levels. Experimental results on two public benchmark datasets LEBEDEV [37] and SZTAKI [9] show
that the proposed model achieves state-of-the-art performance.

In summary, our main contribution can be summarized as follows: (1) We propose a BA2Net,
which utilizes the image-pairwise semantic information with an attentional strategy to locate
multiple small objects correctly and represent the boundaries of the changing area with the refined
encoder-decoder architecture progressively. (2) A hybrid loss function which introduces supervisory
signals from pixel, patch, and map levels to train the proposed BA2Net model. (3) We conduct
comprehensive experiments and analysis on two public benchmark datasets LEBEDEV and SZTAKI
and achieve state-of-the-art performances.

The remainder of the paper is organized as follows: Section 2 elaborates the proposed model and
the training method. Section 3 shows the experimental results and ablation studies. Section 4 discusses
the proposed framework. In Section 5, we draw the conclusion of the paper.

2. Methodology

In this section, we elaborate the proposed method and the training process. As shown in Figure 1,
our model mainly consists of two subnets: coarse detection and refined detection. The coarse subnet
is an encoder-decoder network with attention mechanism to generate the coarse change maps of the
input image pairs. The refined subnet is a U-Net like network to refine the coarse detected map to final
change map by adding the coarse detected map and the residual.

Figure 1. Illustration of our BA2Net architecture. The whole network contains two Encoding-Decoding
subnets, each of which is composed of several convolutional blocks and skip connections. All
convolutional blocks are with unified structures as Convolutional + BatchNormalize + ReLU layers
with different parameters settings. The output of BA2Net, refined change map (RCM), is sigmoid sum
of the coarse change map (CCM) and the refined residual (R).
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2.1. Coarse Detection

For change detection tasks, it is to input a bi-temporal image pair and then output a change
map(CM) with original width and height size. This change map marks the changed and unchanged
regions by labeling each pixel in it, which is to solve detection mapping function d(·) as follows,

CM = d(It1, It2) (1)

where CM means the change map, It1 and It2 mean the bi-temporal images respectively.
Among several straightforward solutions to this function d(·), it is the FCN frameworks to

apply deep learning firstly, converting change detection task into a binary classification task on each
pixels in CM under the fully supervision ground truths, which are the true results of the change
maps provided by datasets which are typically labeled by human annotators. Based on the FCN
framework, CD-Net [35] takes up-sampling and convolutions on the feature maps generated by
continuous convolutions and down-samplings. To avoid the obvious information losing and errors
accumulation, following the encoder-decoder framework of FCN, U-Net applies skip connections on
each stage instead of directly supervising and making loss back propagation focusing on the high-level
features. The stage in Section 2 refers to a bunch of convolutional blocks fed by the features on the
same scale [34,38]. With the network going deeper, the stage ID goes higher. These skip connections
ensure that the obtained features can consider sufficient information provided by low and high-level
features. In standard U-Net, the skip connection is completed by concatenating the (n− 1)-th maps
with the up-sampled n-th maps to combine feature maps crossing blocks, where n refers to the stage
ID and the update rule for the (n− 1)-th block with the parameters Θn−1 can be presented as follows,

∂(xn
i )

∂(Θn−1)
=

∂( f (xn−1
i ; Θn−1))

∂(Θn−1)
(2)

However, U-Net based methods still maintain few weaknesses in false detection, especially when
there are multiple changed regions in one image-pair. In the encoding phase, with the networks going
deeper and consecutive stacking convolutional and pooling layers, multiscale features are generated.
Shallow high resolution features are mapped to more image details, such as textures, lines and so on.
Deep low resolution features can capture context information and highlight the category and location of
foreground objects. In the change detection task, superior detection results are reflected in two aspects:
one is to accurately detect the changed areas/objects, eliminating some semantic interference such as
seasonal appearance differences; the other is to mark the changed area clearly, especially when there
are a variety of object shapes and complex boundaries. These two points correspond to deep features
and shallow features, respectively. Though U-Net involves multiple features by skip connections, its
strategy of paying even attention to each stage may lead to the weaknesses described above.

Hence, we introduce the attention gate (AG) into our coarse detection. Benefiting from this soft
attention mechanism, the network can be trained in more effectiveness. We introduce AGs to the
change detection task by adding AGs into the skip connections of U-Net. The feature maps generated
by deeper layers Xn+1 are used as the gating to guide eliminating the irrelevance caused by unchanged
area or noise information. In the forward pass, AGs are performed right before the concatenation, and
skip connections merge only the relevant neuron activations filtered by AGs. As shown in Figure 2,
the Xn and up-sampled Xn+1 are fed into two sets of ‘Convolutional+BN’ layer, independently.
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Figure 2. Illustration of attention gate (AG) architecture. The inputs to AG are feature maps from
different stages, Xn+1 and Xn. The output of is Un = Xn · a, where a is the attention coefficients and
· refers to element-wise multiplication. The attention gated change maps are closer to the ground
truths (GTs).

Then the results are added as an input to ‘ReLU + BN + Convolutional + Sigmoid’ layers to learn
the attention coefficients ai ∈ [0, 1]. Then the output of AG is un

i = xn
i · ai. While the update rule for

encoding convolutional functions f (·) with parameters Θ in block n− 1 can be formulated as follows,

∂(un
i )

∂(Θn−1)
= an

i
∂( f (xn−1

i ; Θn−1))

∂(Θn−1)
+

∂(an
i )

∂(Θn−1)
xn

i (3)

It can be observed that, compared with Equation (2), the first gradient term in right side is scales
with ai ∈ [0, 1]. The weight of the features obtained by shallower layers is reduced. At the same time,
the features from deeper layers are more involved in the gradient updating. This design allows the
network guided by deeper features which can capture context information and reduce the gradients of
the weights from the unchanged pixels.

As shown in Figure 1, the coarse detection consists of several convolutional blocks,
connecting by pooling operations or skip connections. Each block contains a Convolutional
layer, a batch normalize (BN) layer and a rectified linear unit (ReLU) layer. Image pairs
Imaget1 : [256× 256× 3], Imaget2 : [256× 256× 3] are concatenated as one input X : [256× 256× 6]
to the network. It firstly encodes input X by sets of convolutional blocks, that is {X → X1 → X2 →
X3 → X4 → X5}, with the output feature map channel number Cn

p of the n-th convolutional blocks,
Xn and Dn as Cn

p = {64, 128, 256, 512, 1024}, n ∈ [1, 5]. The scale of Xn is gradually reduced by pooling
operation with the increase of stage ID n. In the decoding phase, feature maps are broadcasting
along with {X5 → D4 → D3 → D2 → D1}, each Dn is the convoluted concatenation from two
paths of information, Xn+1 after up-sampled and Xn transmitted by the skip connection. The size of
convolution kernel of all convolutional layers is set to 3× 3, and all MaxPooling layers kernel sizes and
strides are set as [2, 2], each UpSampling layer scale factor equals 2. A Convolutional layer is applied
on D1 to obtain the single channel coarse map. In standard U-Net, the skip connection is completed by
concatenating the n-th maps with the up-sampled (n + 1)-th maps to combine feature maps crossing
blocks. In our coarse detection, we introduce an attention mechanism into each connection.

2.2. Refined Detection

In general, compared with ground truths (GTs), the change maps obtained by coarse detection
subnet are usually with fuzzy and noisy boundaries or unbalanced regional prediction probability [39],
which are defined as coarse change map (CCM). We use residual refined detection to measure the
difference between CCMs and GTs. The function of generating refined change map (RCM) is defined as:

RCM = CCM + R (4)

where R is the residual between CCM and GT. As shown in Figure 1, R is learned by the refined
detection. To refine both region and the boundary, the refined detection is also a standard
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encoder-decoder structure supervised by GTs, which is constructed by convolutional blocks and
standard skip connections. It has fewer blocks and channels than the previous coarse detection, with
all Cn

r = 64, n ∈ [1, 5].

2.3. Hybrid Loss

We adopt a hybrid loss function for the training of our proposed network, which is calculated as:

Lhybrid = λ f L f ocal + λtLtversky + λsLssim (5)

where L f ocal , Ltversky, Lssim denote focal loss [40], Tversky loss [41] and Structural SIMilarity (SSIM)
loss [42], respectively, with [λ f , λt, λs] as their coefficients.

Focal Loss can enforce the model to automatically focus on those hard samples, alleviating the
class imbalance problem. From the perspective of classification tasks, cross entropy (CE) is a commonly
used loss function. However, its mechanism of focusing on classes evenly during gradient backward
makes it less effective when the distributions are imbalanced. The strategy of focal loss is reducing the
value of well classified samples and increasing the value of samples that are not classified correctly.
It is calculated by adding a modulating factor (1− pi)

γ, also a balance coefficient. For our task, we
adopt binary focal loss which can be formulated as,

L f ocal = −
1
N

N

∑
i
(α f gi(1− pi)

γ log pi + (1− α f )(1− gi)pγ
i log(1− pi)) (6)

where α f denotes the balance coefficient, N is the total number of pixels in the output image, pi refers
to the ith pixel is predicted as a changed pixel, gi means the ith pixel in ground truth is a changed pixel.

Tversky Loss is designed following the Tversky coefficient Equation (7).

T(A, B) =
|A ∩ B|

|A ∩ B|+ αt|A− B|+ βt|B− A| (7)

where A and B represents the set of predicted positives and ground truth positives. Then |A− B|
represents the set of false positive (FP), |B− A| represents the set of false negative (FN), αt and βt

controls the penalties to them, respectively. It can be observed that Tversky equals to Dice coefficients
when αt = βt = 0.5, equals to Jaccard coefficients when αt = βt = 1. Basing on this coefficient, the
Tversky loss is presented as

Ltversky =
∑N

i=1 piyi

∑N
i=1 pigi + αt ∑N

i=1 pi(1− gi) + βt ∑N
i=1(1− pi)gi

(8)

This design can adjust the recall of pixel classification in the case of loss a certain degree of
accuracy when dealing with the imbalance distribution of the classification results.

SSIM Loss was originally designed to measure the structural similarity between two images.
It is similar to the human visual system (HVS) and is sensitive to structural changes. Different from
those methods measuring the difference between two images pixel by pixel, SSIM focuses more on the
structural similarity. Let x = {xj : j = 1, . . . , M2} and y = {yj : j = 1, . . . , M2} be the pixel values of
two corresponding patches with size of M×M, this loss compares the similarity of images from three
dimensions: brightness, contrast and structure, presenting as:

Lssim = 1−
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(9)

where µx and µy is the average brightness of x and y, σx and σy is the variance of two images to
present the change of contrast, C1 and C2 are the parameters preventing zero denominator. The
structural similarity is different from the former two parts, which can be present by scalar. Therefore,
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the relationship between vectors composed of all pixels in two images should be normalized, that is,
the covariance comparison. Then the loss function is presented as above after reduction of a fraction.

The Hybrid loss function can supervise the training process from the following aspects. Focal
loss with great training stability focuses on the map pixel level detection, and considers the uneven
distribution of positive and negative samples in training data, reduces the focus on the negative
samples which are easy and well predicted, while increasing the focus on the positive samples.
However, it ignores the information between pixels in their neighborhood. SSIM with good structure
similarity comparison ability focuses on patches from the change map, and also gives higher attention
to boundaries. Especially in the late training period when the focal loss trends are flat, SSIM can still
ensure certain gradients to encourage the learning progression and polish the detection clearer. The
introduction of Tversky loss can adjust the detection result distribution at the map level, that is, the
global image level of the RCM. Combining these three loss functions, we can supervise the training
process from three levels: pixels, patches, maps.

3. Experiments and Results

3.1. Datasets and Settings

Limited by manual labeling labor, the satellite image change detection datasets which can be
used for deep learning are not so abundant. We implement our models on two benchmark datasets:
LEBEDEV and SZTAKI.

The dataset provided by LEBEDEV [37] is one of the suitable datasets. There are two types of
images in this dataset: composite images with small target offset or not, and real optical satellite images
with seasonal changes, obtained by Google Earth. We apply our models on the real images, which
are 11 pairs of optical images, including seven pairs of seasonal variation images of 4725× 2200 pixels
without additional objects and four pairs of 1900× 1000 pixels with additional objects. For convenience
of training, the original image sets are clipped into subset with about 16,000 image sets of real-temporal
seasonal images with size of 256× 256, distributed with 10000 train sets, 3000 test sets also validation
sets. The results in Tables 1–4 are performed on the 3000 test sets.

Table 1. Ablation study on coarse-to-fine detection framework.

BA2Net Precision Recall F1

Coarse Detection 85.09 93.79 88.99
Refined Detection 88.12 95.28 91.36

Table 2. Ablation study on attention gates of BA2Net.

BA2Net Precision Recall F1

without AGs 88.52 91.57 89.86
with AGs 88.12 95.28 91.36

Table 3. Ablation study on hybrid loss of BA2Net.

Losses Precision Recall F1

BCE 82.86 96.12 88.39
Focal 83.12 96.83 89.17
Focal + Tversky 86.24 94.75 90.13
Focal + Tversky + SSIM 88.12 95.28 91.36



Sensors 2020, 20, 6735 8 of 21

Table 4. Quantitative results on LEBEDEV of BA2Net and other SOTA methods.

Methods Precision(%) Recall(%) F1-Score(%) OA(%)

CD-Net [35] 73.95 67.97 68.82 91.05
DSCN [22] 79.18 55.74 65.07 94.04
FC-EF [3] 81.56 76.13 77.11 94.13

FC-Siam-conc [3] 84.41 82.50 82.50 95.72
FC-Siam-diff [3] 85.78 83.64 83.73 95.75

FCN-PP [32] 82.64 80.60 80.47 95.36
DSMS-FCN [5] 88.60 84.85 86.61 96.20

UNet++ MSOF [2] 89.54 87.11 87.56 96.73
IFN [1] 94.96 86.08 90.30 97.71
BA2Net 88.12 95.28 91.36 98.94

The spatial resolution is 3 cm to 10 cm per pixel. As shown in Figure 3, this dataset is quite
challenging due to its largely seasonal differences. The manually labeled change maps only consider
the appearance or disappearance of objects as the changed area, while the visual differences caused by
seasonal or brightness difference are defined as the unchanged.

Figure 3. Illustration of samples from LEBEDEV. The selected bi-temporal image pairs with GT show
the change including cars, buildings, surface uses, etc. The seasonal appearance difference is not
considered as change. The changed area/object is marked with white pixels in GTs. It can be observed
that, generally, the positive pixels are less than the negative pixels. The numbers and shapes of the
changed regions are various, distributing loosely or densely, also with noises sometimes.

The SZTAKI AirChange Benchmark dataset contains three sets of registered optical aerial images
provided by the Hungarian Institute of Geodesy cartography and Remote Sensing (FÖMI). (1) SZADA
consists of seven pairs of 952× 640 pixels images marked manually, which were captured in 2000 and
2005, covering about 9.5 square kilometers at a resolution of 1.5 m per pixel. (2) TISZADOB consists of
five pairs of images taken in 2000 and 2007 with similar resolution and size with SZADA. (3) ARCHIVE
is an image obtained by FÖMI in 1984 and Google Earth in 2007, respectively. Due to the large time
span and low image quality, the experiment is mainly carried out on SZADA and TISZADOB, pairs of
bi-temporal pairs from each are shown in Figure 4.
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Figure 4. Illustrations of samples from SZTAKI. The change highlighted by white pixels contains new
built up regions, building operations, planting forests, fresh plough-lands and also groundwork before
building completion.

To obtain the learning clips, we crop out the upper left corner with a size of 784× 448 of each
image as the test part. For the rest part, we apply 113× 113 sliding windows clipping with overlap
as the training set. The training set is augmented by rotation of 90◦, 180◦, 270◦, horizontal flip and
vertical flip. Following other benchmark methods [3], we choose the SZADA/1 and TISZADOB/3
from subsets as two testing sets and the rest of each as training sets, independently. The results
in Table 5 are performed on these two subsets. The adopted evaluation protocols are the same as
the compared methods. We implement our proposed method under PyTorch on GPU environment.
During the training process, the network is optimized with a learning rate of 3× 10−4. Based on our
GPU memory, the batch size is set to 4. Furthermore, we apply auto augmentation during the training.
The data loader will automatically augment the batch of images with transformations according to
the random augmentation probability value, including random rotation clipping, rotation, flip and
brightness, contrast, saturation changing. For loss functions, the coefficient {λ f , λt, λs} of Lhybrid is set
to {0.3, 0.6, 0.1}. Parameters for L f ocal are set to: α f = 0.75, γ = 2. For Lssim, the sliding window size is
11, C1 = 0.01 and C2 = 0.03.

3.2. Evaluation Metrics

We evaluate the output maps and GT from four evaluation metrics: overall accuracy (OA), recall,
precision and F1-score (F1). A higher recall ratio shows the less missed detection and a higher precision
represents less false alarms. Thus, higher F1 shows better overall performance. These metrics can be
represented as:

OA =
TP + TN

TP + TN + FP + FN
(10)

Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)

F1 =
2× Recall × Precision

Recall + Precision
(13)

where TP, TN, FP, FN denote true positive, true negative, false positive, false negative, respectively.
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3.3. Ablation Study

In this part, we will discuss the effectiveness of coarse-to-fine detection framework, AGs, hybrid
loss, by implementing ablation networks on LEBEDEV with quantitative and qualitative comparison,
respectively. For quality discussion, we select 10 sets of challenging samples with obvious seasonal
differences, showing in Figures 5–7. Quantitative discussion revolves around the precision, recall
and F1 scores in Tables 1–3 and Figure 8. The changed areas include: slender pathway change in
wide background; multiple objects change in complex sizes and shapes; dense and piece like irregular
shaped change instead of compact changed area; change disturbed by seasonal differences of plants,
also the largely difference of brightness etc.; complex change situation with large area. The proportion
of positive and negative samples in each row of each group increases gradually.

3.3.1. Effectiveness of Coarse-to-Fine Detection Framework

To observe and verify the effectiveness of our coarse-to-fine framework, we compare the change
maps obtained by coarse detection and refined detection. The quantitative comparison showing in
Table 1 indicates that the refined detection can obviously improve all evaluation scores. Though the
score improvements are not significant, the qualitative comparison showing in Figure 5 illustrates that
refined detection leads to clearer boundaries which are closer to GTs. These visual enhancements at
the boundary may not be sensitive to quantitative measurements.

Figure 5. Qualitative comparison between coarse detection and refined detection.

It can be observed that, through the quality comparison illustrated in Figure 5, the coarse detection
framework can locate most of the changed areas with the help of AGs, but there are obvious interior
parts vanishing, inaccurate boundary and imperfect interior compactness. In addition, when hybrid
loss is used without refined learning, few of missed detection appear in extreme small areas. After
the refined detection, the above mentioned problems have been mainly solved, including visually
GT-closer boundary and rich details accurate description on all showing samples, especially on samples
(5), (6) and (8). Furthermore, the missing parts are complemented on samples (1), (2), (7), (9) and (10).
These comparisons clearly show the effectiveness of the refined detection framework.

3.3.2. Effectiveness of Attention Gates

The quantitative comparison is shown in Table 2. It can be observed that the introduction of
AGs significantly enhances the recall (3.71%) with a slight reduction of 0.4% in precision, so F1 score
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improves by 1.5%. Such quantitative comparison shows that AGs can help improve recall and F1 score
obviously on the basis of slight fluctuation in precision. This indicates that AGs allow the network
to have stronger ability of detecting more changed areas. It benefits from the guidance from deeper
features that capture more contextual information.

Qualitative comparison in Figure 6 can strongly prove the effectiveness of AGs. It can be observed
that the change maps generated by the BA2Net cutting off AGs, have accurate shape and visually
closer boundary to GTs but also obvious false detection. The falseness is mainly about false negative
detection (samples (3)–(8)) and a few of false positive detection (samples (1), (8)). The reason for
this phenomenon may be that the network without AGs gives almost equally attention to low-level
and high-level features, which leads to obvious false detection in several samples, such as extremely
unbalanced positive and negative patches and multiple changed areas patches. Change maps obtained
under the guidance of AGs involving more high level features are more semantically accurate and are
able to locate more changed areas accurately.

Figure 6. Qualitative comparison of applying AGs under coarse detection and coarse-to-fine detection.

3.3.3. Effectiveness of Hybrid Loss

To prove the effectiveness of hybrid loss, we perform ablation study on losses with the same
experimental setup (batch size = 4 and epoch is set to at least 60, the training process will stop when
F1 score does not improve for 20 continuous epochs). As shown in Table 3, by equipping hybrid loss
onto BA2Net, the precision and F1 scores increase largely. Hybrid loss can make an increase of 5.26%
on precision while just a reduction of less than 1%. These show that hybrid loss can significantly
improve the detection precision while losing a few detection rates, also help improve the best F1 score
of 91.36%.

The qualitative comparison is illustrated in Figure 7.
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Figure 7. Qualitative comparison of applying hybrid loss (HL).

It can be observed that without using hybrid loss, BA2Net can mainly detect and describe the
changed areas accurately. However, there are a few missing detection for extreme small changed areas
(sample (8)), and the boundary description of the densely gathered piece like areas (sample (5), (6))
is not clear and explicit enough. Under supervision of hybrid loss, the elongated changed area in
the upper part of change map (8) is correctly detected; the dense boundary in the map (5) and (6) is
clearer and distinguishable; the changed area boundary of all shown maps is closer to GTs based on
original detection.

To discuss sub-items of hybrid loss, we train BA2Net under weighted combinations of these
sub-items and quantitatively compare them in Table 3. Due to the extremely slow convergence of
training with Tversky or SSIM loss individually, we neglect the comparison of these two situations.
Compared with BCE loss, by introducing the modulating factor (1− pi)

γ, focal loss concentrates on
the foreground, which makes its all scores increase slightly compared with BCE. It reaches 83.12%,
96.83% (top), 89.17% in precision, recall and F1. However, it is obvious that the recall scores of the two
loss functions based on cross entropy are much higher than (about 13% difference) precision scores,
which indicates that the learning on unchanged area pixels may be ignored while emphasizing the
changed pixels. After involving Tversky loss, the difference between precision and recall is reduced to
8.51% (precision increased by 3.12% and recall reduced by 2.08%) and F1 score increased slightly. With
the introduction of SSIM loss, all scores improve on previous a basis, among which the precision and
F1 reach the highest values in our experiments.

To select the value of α f from focal loss, we implement the BA2Net when α f = {0.25, 0.5, 0.75}
while γ = 2 and visualize the quantitative comparison in Figure 8. Based on this comparison, we set
the α f = 0.75 to maintain an effective performance.

To sum up, sufficient ablation experiments have respectively proved the effectiveness of designs of
our BA2Net. The introduction of coarse-to-fine detection framework can boost network performance in
several aspects, including more correct detection and more accurate boundary labeling. The application
of AGs greatly improves the detection rate, which can be observed in terms of quality and quantity.
Hybrid loss is also obvious for quantitative enhancement, and allows our model to work well for some
challenging to identify boundaries.
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Figure 8. Quantitative comparison of α f for focal loss.

3.4. Result Comparisons

To verify the effectiveness and superiority of our proposed BA2Net, we compare it with some
SOTA methods, introducing briefly as:

1. CD-Net [35] is a pixel-wise change detection net, which is constructed on the structure of a typical
Siamese network with contraction blocks and expansion blocks. The change map is generated by
a Softmax layer.

2. DSCN [22] trains AlexNets sharing parameters and cutting off the pooling layers as the streams
of Siamese network. By discarding pooling operations, it keeps the respective field and feature
maps dimensions.

3. FC-EF [3] refers to fully convolutional early fusion. It stacks an image pair as one input and feeds
it into a standard U-Net. This network is structurally simple and effective.

4. FC-Siam-conc [3] processes each image by the encoder part of U-Net, separately. Furthermore,
then concatenates each feature map pair in encoding connecting into the decoder part by skip
connections.

5. FC-Siam-diff [3] is a network similar to FC-Siam-conc. The different point is its skip connections
link with the difference of encoding feature map pairs, instead of concatenating directly.

6. FCN-pp [32] is an FCN applied with pyramid pooling which can capture a wider receptive field
and overcome the drawbacks of global pooling.

7. DSMS-FCN [5] proposes a unit that is able to extract multiscale features in the same layer. Based
on the proposed unit, deep Siamese multiscale fully convolutional network is designed for
supervised change detection. The structure is similar to the FC-Siam-diff.

8. UNet++MSOF [2] is a 2-channel network introducing multiple dense intermediate nodes and skip
connections into standard U-Net. The advantage of this structure is that it can learn from multiple
scale feature maps more automatically. While using deep supervised strategy by obtaining
four output maps supervised by multiple side-outputs fusion (MSOF) loss. It has excellent
performance on LEBEDEV, but for the boundary accuracy and multiple small objects, it still can
be improved.

9. IFN [1] utilizes a feature extraction network with shared parameters to encode the original images,
which is similar to the FC-Siam-conc. In the decoding process, it implements discrimination
learning on the difference between the features of each layer in the former streams. Different from
the FC-Siam-conc, it applies the deep supervision strategy to enhance the performance on the
boundary integrity and internal compactness. However, it still misses a few objects when images
contain multiple objects.

For quantitative comparisons, the evaluation metrics were calculated and summarized as shown
in Tables 4 and 5, on LEBEDEV and SZTAKI, respectively. The best scores are highlighted with bold
and red, while green and blue indicate the second best and the third best, respectively.
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Table 5. Quantitative results on SZTAKI of BA2Net and other SOTA methods.

Methods
SZADA/1 TISZADOB/3

Precision(%) Recall(%) F1-Score(%) Precision(%) Recall(%) F1-Score(%)

CD-Net [35] 40.35 41.81 40.42 82.37 87.28 79.70
DSCN [22] 41.20 57.40 47.90 88.30 85.10 86.70
FC-EF [3] 43.57 62.65 51.40 90.28 96.74 93.40

FC-Siam-conc [3] 40.93 65.61 50.41 72.07 96.87 82.65
FC-Siam-diff [3] 41.38 72.38 52.66 69.51 88.29 77.78

FCN-PP [32] 42.97 69.39 51.91 85.11 89.89 86.57
DSMS-FCN [5] 72.31 44.77 55.30 80.09 53.77 62.66

UNet++MSOF [2] 41.67 69.54 51.01 93.61 85.80 87.56
IFN [1] 42.55 53.01 45.92 81.58 89.86 84.94
BA2Net 40.53 79.82 52.33 87.19 97.13 91.61

As can be observed from the Table 4, CD-Net and DSCN scores are the lowest and far lower than
other methods. CD-Net operates decoding directly on the features obtained by encoding layers to
generate original sized change maps, while DSCN abandons the pooling operations in the common
process of convolutional encoding to maintain the respect fields and the feature maps sizes. These
simple strategies without design of cross-scales features learning result in a certain amount of error
accumulation, which leads to their low scores in all measurement metrics. Besides these two networks,
all methods are designed to build on the encoder-decoder structure with cross-scale designs. By
using skip connections with different fusion strategies, FC-EF, FC-Siam-conc and FC-Siam-diff achieve
higher scores. Among them, FC-EF using the early fusion strategy boosts F1 scores by about 10%
than the previous two networks. On the basis of that, by applying late fusion strategy, FC-Siam-conc
and FC-Siam-diff improve their F1 scores by about another 5%, achieving at around 83%. In order to
further utilize the multiscale features, FCN-PP introduces pyramid pooling on the FCN framework.
Compared with FC-EF, which has a similar framework, FCN-PP improves the F1 score by about 3%
but is still lower than FC-Siam-conc and FC-Siam-diff. Instead of conventional convolution units,
DSMS-FCN designs a multiscale convolution unit to utilize features in multiple scales. Compared to
its backbone framework FC-Siam-diff, it enhances all evaluation scores obviously.

The top three scores are concentrated in UNet++MSOF, IFN and our BA2Net which further
enhance the evaluation scores compared to the previous methods. For the multi-scale issue,
UNet++MSOF adopts UNet++ as the detection model. This fully and densely design of automatically
learning strategy can take fully use of multiple features at all scales. At the same time, through the
combination of four shallow outputs supervised by its multiple fusion loss, UNet++MSOF reaches
superior results than previous methods. Based on the framework of FC-Siam-conc, IFN introduces
spatial and channel attentions and gradually carries out supervised fusion in the process of decoding.
IFN achieves the current highest precision (94.96%) due to its design for sufficient depth and parameters
on multiple scales.

These two networks have rich designs for multiple scale features, which ensures good precision.
However, they pay nearly even attention to multiple scales and weakly to help the detection rate of
changed areas. Our proposed BA2Net reaches the current highest recall, under the premise of the third
precision, which is attributed to the introduction of attention mechanism guided by deeper features
into our network. Such a mechanism allows a higher ability to locate more changed areas under the
guidance of more semantic context information.

To qualitatively compare with other SOTA methods, we select top-2 methods (UNet++MSOF,
IFN) other than our proposed method and a classic framework (FC-EF) as the quality comparison. As
illustrated in Figure 9, the proposed BA2Net is obviously superior to other methods in quality.
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Figure 9. Qualitative comparison between our proposed BA2Net with other benchmark SOTA methods.
Five rows are five sets of ‘It1, It2, FC-EF, UNet++MSOF, IFN, BA2Net’, arranging the samples are
becoming more and more challenging. The bi-temporal images in the first two rows are samples
with multiple small regions changing and enclosing walls, land surface changes. These samples are
not quite challenging pairs. Both SOTA and proposed maps perform well, but there are missing
detection and false alarms in the SOTA maps, highlighted by the red boxes, while our model labeling
correctly. The third sample is more challenging due to the region covered by seasonal appearance
changes of trees. Our model is more accurate when representing the changes in the above challenging
regions. The fourth and fifth samples contain largely seasonal appearance changes, multiple areas with
various shapes. In the highlighted boxes, our results outperform the SOTA maps from correctness of
localization and the accuracy of boundary depicting.

As the showing samples shown in Figure 9, five sets illustrate the effectiveness of our model with
positive areas from less to more. In the first set, there are certain false positive detection for FC-EF,
and minimal false positive for UNet++MSOF and IFN. Furthermore, for the upper right region of
change with jagged detail, other comparing methods are weaker in describing edges than our model.
The second set contains multiple variation changed regions, FC-EF and IFN appear obvious regional
missed detection and false positive. UNet++MSOF is more accurate, but the shape errors in the lower
left corner are obvious. The third group has various changed regions with smooth shapes. On the
basis of basically locating the variation areas, our model is superior to other methods in the accurate
description of shapes. The fourth group is similar to the third group but more challenging, with
smaller, more shapes-rich regions. FC-EF and IFN miss detection on multiple small pieces of changed
regions, and the shape description is less accurate. UNet++MSOF has no obvious mistake locating in
detection, but the edges are not exact enough. Comparatively, our model performs particularly well
on this type of data, being able to basically locate all the various regions and to describe shapes exactly.
The variation areas in the fifth set are characterized by multiscale and multi-shape. It can be observed
from the highlighted boxes that our model is obviously superior to other methods.

On the dataset of SZTAKI quantitative summarization Table 5, the subsets SZADA/1 and
TISZADOB/3 are treated as two test-sets separately. It can be observed that the top three scores
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are not concentrated in a few methods, but are scattered in various methods. At the same time, though
both subsets belong to one dataset, except for the proposed model, none of the other comparing
methods can simultaneously be ranked in the top three on F1 scores.

The two methods with weak performance in the LEBEDEV, CD-Net and DSCN are also relatively
weak in SZADA/1, while the DSCN reaches a third precision on TISZADOB/3 and a good F1 score.
The three models (FC-EF, FC-Siam-conc, FC-Siam-diff) that perform well on LEBEDEV work still well
on these subsets, with FC-Siam-diff reaching SZADA/1’s second best F1 score and FC-EF ranking
first on TISZADOB/3. FCN-PP, which introduces pyramid pooling, is similar to FC-EF on SZADA/1
and surpasses some other complex frameworks. Although DSMS-FCN reaches the top F1 score and
precision on SZADA/1, it is the lowest F1 score and recall on TISZADOB/3. UNet++MSOF, which
has an advantage in precision, has the highest precision on TISZADOB/3. IFN, on the other hand, is
relatively weak on both these subsets. Our model ranks the third and the second best F1 scores and
reaches the highest recall on these subsets.

In general, there is hardly a method with absolute superior performance over the SZTAKI.
By utilizing more multi-scale features, DSMS-FCN and UNet++MSOF obtain the highest precision
in these two subsets, respectively. However, neither of them can guarantee excellent effectiveness
on both subsets, especially DSMS-FCN’s performance on TISZADOB/3 ranks much lower than on
SZADA/1. Benefit from high-level features guided attention mechanism, our model shows a stable
and excellent performance in recall, and is the highest model on both datasets. In addition, it ranks
second and third in F1-score, respectively, and the robustness of the proposed method is obviously
superior to the compared methods. In terms of F1 scores, the models with the highest scores have no
obvious commonality except that both are based on the FCN framework. Though proposed model
have no obvious advantage in precision may due to the limited training data, it still shows stable and
promising recall and competitive F1 score.

Meanwhile, we illustrate qualitative comparison with the top three quantitative methods in
Figure 10 on SZADA/1 and TISZADOB/3.

Figure 10. Illustration of our RCMs on SZTAKI with SOTA methods. Two rows show in order by
SZADA/1 and TISZADOB/3, A and B mean the bi-tempral image pair. The comparing methods are
FC-Siam-diff, DSMN-FCN, FC-EF and UNet++MSOF. In the first row, our RCM shows more accurate
multiple winding shaped small areas describing, highlighted by the boxes. In both rows, our BA2Net
represents GT-closer edges of the large range of changed areas.

In the bi-temporal image pair from SZADA/1, it contains a large number of multiple small objects
with sorts of appearances. Our model is more accurate than the other top three ranking methods in
expressing the shape form of the changed regions, especially the region with more winding boundaries.
However, there are some false positive dots in the broad background region. In the pair has large areas
of change with smooth edges, the TISZADOB/3, our model performs well. It can accurately locate the
large changed areas and clearly represent edges.

To sum up, abundant comparative experiments on LEBEDEV and SZTAKI prove the effectiveness
of our BA2Net. From the perspective of qualitative analysis, our model shows the boundary delineation
ability superior than other methods in both datasets, which can represent boundary clearer and closer
to GTs. Furthermore, our model can detect and locate multiple changed areas in excellent detection rate.
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In quantitative analysis, the promising recall on both datasets also illustrate the detection capability of
our model. However, the visually closer boundary may not be sensitive to precision, so there is no
obvious advantage in precision. In combination with the above, there are still advantages in F1 scores
of our model.

4. Discussion

Either the traditional change detection methods, or the deep learning based following the
strategies of traditional methods, such methods have a certain amount of error accumulation in
the process of extracting features, comparing features, setting thresholds or clustering. Therefore, the
image-to-image is currently considered as a superior framework. Thus, it demands to develop an
end-to-end network base on this framework to generally learn the changes of bi-temporal images.

Our proposed network was validated on two benchmark datasets. By qualitative and quantitative
comparing, we can observe that our model is superior to other models in that the image contains
multiple changed areas (from very small areas to a wide range of areas, from compactness within
regular shapes to piece like various shapes), especially when the changed area consists of densely
gathered pieces which are challenging to distinguish their boundaries. That is, it can locate each
changed area correctly, and it can clearly and accurately delineate the changed area boundary. This is
one of the significant important measures for satellite image change detection. This superiority may
benefit from the introduction of the attention mechanism and refined detection collaborative with
a hybrid loss. By using them, the BA2Net can focus on the positive samples in the case of uneven
positive and negative samples under the attention gates and modulating factors, while ensuring the
consideration to the negative samples to ensure sufficient gradient-driven training at a later stage, and
a comprehensive method of comparing structural similarity with the distribution of map classification
results. In addition, our model is designed following end-to-end, and the good flexibility of the
network ensures its applicability, whether it extends from image pairs to multiple image inputs or
changes from visible images to multimodal data with only to modify the pre-processing.

The proposed network has some limitations. First, although attention mechanism is introduced
to increase the focus in the foreground when there is less positive GT pixels, the problem is that it does
not adequately select between high-level and low-level features, which results in an unstable attention
mechanism when some of positive and negative samples are evenly distributed. The dense prediction
strategy along with multiple outputs supervision performs well in stability when processing changes in
multiple scales, thus how to combine this strategy with the multiscale guided attention can be studied.
Second, on the SZTAKI dataset, our method is not significantly superior to others. This probably be
limited by limited training data. The emergence of generative learning, weak supervised learning and
knowledge distillation in recent years probably can solve these problems. How to introduce these
mechanisms into change detection is one of the next research directions.

5. Conclusions

In this paper, we propose a BA2Net with a hybrid loss to detect changes in VHR satellite images.
The existing methods have achieved good results by introducing the encoding-decoding models
utilizing semantic information, but there are still some weaknesses when there are multiple small
changed areas, such as miss detection all the areas, false detected the changes of areas and inaccurate
description of areas boundary. In view of this, we propose to use a coarse-to-fine framework to detect
the change of image pairs, including a higher-level features guided coarse detection, and a refined
residual detection. At the same time, we use hybrid loss to supervise the training from pixel, patch,
and map levels, which ensures the stability of training and adapt the case of imbalance distribution
of positive and negative samples. Experiments on two benchmark datasets show that our model is
superior to other methods.
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Abbreviations

The following abbreviations are used in this manuscript:

SOTA state of the art
BA2Net boundary-aware attentive network
CM change map
CCM coarse change map
RCM refined change map
VHR very high resolution
SAR synthetic aperture radar
CNN convolutional neural network
DBN deep brief network
SDAE sparse de-noising autoEncoder
FCN fully convolutional network
BN batch normalize
ReLU rectified linear unit
AG attention gate
GT ground truth
TP true positive
TN true negative
FP false positive
FN false negative
OA overall accuracy
CE cross entropy
BCE binary cross entropy
SSIM structural similarity
HVS human visual system
CD-Net change detection network
FC-EF fully convolutional early fusion
FC-Siam-conc fully convolutional Siamese concatenation
FC-Siam-diff fully convolutional Siamese difference
FCN-PP fully convolutional network with pyramid pooling
DSCN deep Siamese convolutional network
DSMS deep Siamese multiScale
MSOF multiple side-outputs fusion
IFN image fusion network
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