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Introduction
Diabetes mellitus is a chronic condition that is characterized by 
an absolute insulin deficiency (Type 1 diabetes mellitus, 
T1DM) or relative insulin deficiency from insulin resistance 
and decreasing insulin output (Type 2 diabetes, T2DM).1,2 
The presence of additional chronic conditions including car-
diovascular disease and hypertension as well as mental health 
issues have a significant impact on the clinical presentation and 
treatment options of T2DM. Inflammation and oxidative 
stress have been implicated in diabetes disease progression. 
However, there is a paucity of knowledge on the relationship 
between diabetes comorbidities with inflammation and 

oxidative stress. There are novel therapies that act not only on 
diabetes, but also on other components of metabolic syndrome, 
including hypertension, obesity, and hepatic steatosis. Innovative 
diabetes therapies like exenatide long-acting release and liraglu-
tide are enhancing glycemic control and targeting metabolic 
syndrome factors like obesity and lipid abnormalities.3-5 
Liraglutide improves pancreatic beta-cell function and lipid 
profile, potentially mitigating atherosclerosis and cardiovascu-
lar risk.5,6 Glucagon-Like Peptide-1 Receptor Agonists 
(GLP-1 Ras) optimize glucose control and may prevent car-
diovascular events, promoting holistic cardio-metabolic health 
in diabetes care.6,7 The development of cardiovascular disease 
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ABSTRACT

BACkgRounD: Type 2 diabetes mellitus (T2DM) are 90% of diabetes cases, and its prevalence and incidence, including comorbidities, 
are rising worldwide. Clinically, diabetes and associated comorbidities are identified by biochemical and physical characteristics including 
glycemia, glycated hemoglobin (HbA1c), and tests for cardiovascular, eye and kidney disease.

oBjeCTIveS: Diabetes may have a common etiology based on inflammation and oxidative stress that may provide additional information 
about disease progression and treatment options. Thus, identifying high-risk individuals can delay or prevent diabetes and its complications.

DeSIgn: In patients with or without hypertension and cardiovascular disease, as part of progression from no diabetes to T2DM, this 
research studied the changes in biomarkers between control and prediabetes, prediabetes to T2DM, and control to T2DM, and classified 
patients based on first-attendance data. Control patients and patients with hypertension, cardiovascular, and with both hypertension and 
cardiovascular diseases are 156, 148, 61, and 216, respectively.

MeTHoDS: Linear discriminant analysis is used for classification method and feature importance, This study examined the relationship 
between Humanin and mitochondrial protein (MOTSc), mitochondrial peptides associated with oxidative stress, diabetes progression, and 
associated complications.

ReSulTS: MOTSc, reduced glutathione and glutathione disulfide ratio (GSH/GSSG), interleukin-1β (IL-1β), and 8-isoprostane were signifi-
cant (P < .05) for the transition from prediabetes to t2dm, highlighting importance of mitochondrial involvement. complement component 
5a (c5a) is a biomarker associated with disease progression and comorbidities, gsh gssg, monocyte chemoattractant protein-1 (mcp-1), 
8-isoprostane being most important biomarkers.

ConCluSIonS: Comorbidities affect the hypothesized biomarkers as diabetes progresses. Mitochondrial oxidative stress indicators, 
coagulation, and inflammatory markers help assess diabetes disease development and provide appropriate medications. Future studies will 
examine longitudinal biomarker evolution.
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(CVD) is significantly influenced by both diabetes mellitus 
(DM) and hypertension (HT).8-12 Epidemiological studies 
have estimated that the presence of T2DM leads to an approxi-
mately 2.3 times higher risk of developing CVD compared to 
controls with a one-third to two-thirds higher mortality asso-
ciated with CVD compared to T2DM patients without CVD. 
Thus a more encompassing biomarker protocol for assessment 
of the complex heterogeneity of T2DM in the presence of 
comorbidities in addition to screening glucose or glycated 
hemoglobin (HbA1c) is required for clinical practice and iden-
tifying effective treatment options.1,2,13

Traditional biomarkers for diabetes progression and 
comorbidities

Traditional biomarkers for diabetes and associated complica-
tions include screening glucose, glycated hemoglobin 
(HbA1c), low-density lipoprotein (LDL), and total choles-
terol (TC). In an oral glucose tolerance test (OGTT), screen-
ing glucose is used to define diabetes and pre-diabetes. More 
recently HbA1c as a clinical test has found popularity, 
although research has shown inconsistencies.14-16 Similarly, in 
T2DM, the low-density lipoprotein (LDL) cholesterol levels 
vary but often are at similar levels to non-diabetes and hence 
are not ideal markers for diabetes with or without complica-
tions. The most typical LDL cholesterol level in diabetes is 
“borderline high” (130-159 mg/dl), which may increase if not 
addressed.17,18 LDL cholesterol, however, is still a factor in 
cardiovascular risk for those with T2DM but LDL choles-
terol readings may underestimate the cardiovascular risk asso-
ciated with diabetes.18-20 As for triglycerides (TG), even after 
adjusting for body mass index (BMI) and all other common 
risk factors, elevated serum TG levels are a risk factor for 
T2DM incidence.21 From a clinical standpoint, elevated TG 
levels may be seen up to 10 years prior to T2DM diagnosis.22 
High-density lipoprotein (HDL) has also been identified as 
an important biomarker in diabetes progression and pathol-
ogy as epidemiological research has shown that low HDL 
cholesterol levels are consistently linked to a higher risk of 
type 2 diabetes.23,24 Extending the possible clinical biomark-
ers to assess diabetes progression may provide a more com-
prehensive assessment.

Oxidative stress markers for diabetes progression 
and comorbidities

Increased levels of reactive oxygen species (ROS), lipid per-
oxidation, protein carbonylation, the synthesis of nitro-tyros-
ine, and DNA damage are signs of increased oxidative stress 
in T2DM.25-27 Hydrogen peroxide, hypochlorous acid, singlet 
oxygen, and radical oxygen species including superoxide anion 
and hydroxyl radicals can damage oxidatively crucial biologi-
cal macromolecules.28 These oxidants target unsaturated 
fatty acid double bonds, and lipid peroxides are produced.29 

Apolipoproteins and other plasma proteins can also be oxi-
dized by oxygen radicals, these byproducts are more persistent 
than lipid peroxides for the study of diabetes progression.30 In 
diabetes increased levels of inflammation, hypercholester-
olemia and increased levels of LDL-cholesterol are observed 
that when associated with free radicals may lead to changes 
oxidative metabolism and CVD.31 The cardiovascular system 
is one of the first systems affected by the dysglycemia in the 
prediabetes stage.32,33 Increased free radicals from glucose 
metabolism disrupt autonomic nervous system modulation of 
the heart leading to cardiac autonomic neuropathy.34 Free 
radicals also play an important part in lipid metabolism, 
inflammation and oxidative stress.35,36

The adaptor protein p66Shc, reduced glutathione (GSH), 
glutathione disulfide (GSSG), the GSH/GSSG ratio, 
8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-isoprostane 
(8-iso-PGF2α) are oxidative stress markers. Diabetic patients 
with high baseline levels of p66Shc have been shown to have a 
greater than threefold higher risk of diabetes associated com-
plications during a 5 year follow-up compared to patients with 
lower p66Shc expression levels, particularly macroangiopa-
thy.37 However, p66shc has also been shown to decrease in pre-
diabetes when combined in a regression model with 8-OHdG 
and monocyte chemo-attractant protein-1 (MCP-1), with a 
predictive accuracy of 89.5%.16 But no relation between p66Shc 
and cardiovascular outcomes have yet been reported.37,38 This 
suggests that the activity of p66shc changes during disease pro-
gression, which may be linked to the up or down regulation of 
other inflammatory and oxidative stress biomarkers during dis-
ease progression. 8-iso-PGF2α is considered a reliable bio-
marker of oxidant stress in humans39 and increases in the 
plasma of diabetic patients. A positive correlation between 
8-iso-PGF2α concentration and the risk of CVD has been 
observed.39,40 In addition levels of 8-iso-PGF2α are correlated 
with TC.41 GSH levels decrease in patients with T2DM, with 
GSSG levels increasing due to the reduced GSH being oxi-
dized.42 Reduced synthesis and greater irreversible reactions by 
non-glycemic processes is a possible mechanism for the 
observed decrease in GSH levels.42,43 However GSH levels 
vary depending on diabetes progression, presence of comor-
bidities and presence of other inflammatory and oxidative 
stress markers.16 The findings of these previous studies imply 
that the de novo synthesis of GSH has been affected by CVD 
or HT in the presence of T2DM. Oxidative stress rises signifi-
cantly in HT associated with a decrease in GSH and an 
increase in 8-iso-PGF2α especially when T2DM is present.41 
Finally, 8-OhdG, a DNA base alteration formed by the oxida-
tion of deoxyguanosine, is a marker for oxidative stress in 
endothelial cells.44 Compared to healthy patients, patients with 
prediabetes and T2DM as well as T2DM with HT have been 
shown to have higher urine 8-OHdG levels, which is thought 
to be a valuable diagnostic marker for the early diagnosis of 
micro- and macrovascular complications in T2DM.45,46
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Mitochondrial peptide markers for diabetes 
progression and comorbidities

Increased screening glucose and impaired glucose metabolism 
also directly affects oxidative stress in mitochondria. Humanin 
(HN), a mitochondrial synthesized oxidative stress marker has 
been shown to be decreased in prediabetes and T2DM com-
pared to control consistent with an adaptive cellular response 
by HN to a slight increase in screening glucose as well as being 
inversely linked to HbA1c.47-50 Humanin increases insulin 
sensitivity, improves the survival of pancreatic beta cells, and 
delays the onset of diabetes.1,50 Another mitochondrial protein, 
MOTSc, has also been shown to increase beta-oxidation and 
insulin sensitivity while directly controlling nuclear gene 
expression of mitochondrial biogenesis, dynamics, and func-
tion, after nuclear translocation.49,51-53

Other biomarkers for prediabetes, diabetes, and associated 
complications including inflammatory markers are C-Reactive 
Protein (CRP), Interleukin 6 (IL-6), Insulin-Like Growth 
Factor 1 (IGF-1), and Monocyte Chemoattractant Protein-1 
(MCP-1).41 In patients with T2DM, CRP, a sensitive measure 
of systemic inflammation, is elevated. In addition CRP is also 
elevated in CVD.54 IL-6 is a proinflammatory cytokine that, 
by regulating cell differentiation, migration, proliferation, and 
apoptosis, generates inflammation and subtly promotes the 
development of insulin resistance and pathogenesis of 
T2DM.55 IGF-1 is a multifunctional growth factor with 50% 
of the same amino acids as insulin. However, insulin resistance 
and abnormalities in beta cell insulin production are brought 
on by changes in circulating IGF-1 levels.56 Interleukin-10 
(IL-10) is an immune cell-produced anti-inflammatory 

cytokine distinguished by its capacity to prevent macrophage 
activation.57 Inflammation is caused by IL-10 or IL-10 
Receptor (IL-10R) signaling defects, which may be a valid 
link in the development of T2DM.58 In people with T2DM, 
interleukin-1beta (IL-1β) is a significant inflammatory 
agent.59 Diabetes complications such as diabetic retinopathy, 
diabetic nephropathy, and diabetic neuropathy lead to a rise in 
another chemokine, MCP-1 levels in T2DM.60 IGF-1 and 
MCP-1 are also involved with the pathogenesis of HT. Both a 
decline in IGF-1 and a rise in MCP-1 are biomarkers for 
inflammatory associated increases in HT patients.41 
Coagulation and fibrinolytic changes may also be associated 
with diabetes and diabetes progression. Complement compo-
nent 5a (C5a) is an inflammatory marker and increases in dia-
betic patients.41 However, plasma d-Dimer levels have not 
been discussed extensively but higher levels may be a positive 
sign of diabetic peripheral neuropathy (DPN) in T2DM 
patients and correlate with disease progression in pre-diabetes 
to cardiovascular complications associated with T2DM.61,62 
Typical ranges of the afore mentioned biomarkers from the 
literature in control (NC), prediabetes (PreDM), and T2DM 
(T2DM) groups are shown in Table 1.

Aim of this study

In the context of T2DM, it is acknowledged that there exists a 
plethora of potential biomarkers for investigation.66 This study 
focuses on biomarkers like HbA1c, C5a, d-Dimer, IL-6, 
Triglyceride, TC, HDL, LDL, 8-isoprostane, 8-OHdG, GSH/
GSSG, IL-1β, IL-10, MCP-1, IGF-1, Humanin, MOTSc, and 
p66Shc. This emphasis is due to the study’s focus on these 

Table 1. Changes in several biomarkers types between normal (Control), prediabetes (PreDM), and type 2 (T2DM) groups based on literature.

BIOMARKER SAMPlE TyPE CONTROl PREDM T2DM REFERENCES

Il-6 (pg/ml) Blood Inflammatory 58.56 ± 12.66 60.92 ± 12.82 60.39 ± 10.28 Wang et al63

Il-1β (pg/ml) Blood Inflammatory 139.22 ± 23.23 - 153.26 ± 8.20 Mo et al59

MCP-1(pg/ml) Blood Inflammatory 39.98 ± 15.00 - 65.30 ± 22.00 Randeria et al64

IGF-1 (pg/ml) Blood Inflammatory 199.57 ± 40.03 124.79 ± 27.39 102.03 ± 22.70 Gupta et al56

Il-10 (pg/ml) Blood Anti-inflammatory 229.23 ± 46.54 244.03 ± 53.34 265.04 ± 40.42 Wang et al63

8-OHdG (pg/ml) Blood Oxidative Stress 177.80 ± 91.10 516.50 ± 260.00 1926.90 ± 1197.00 Al-Aubaidy and Jelinek45

8-isoprostane 
(mg/mmol)

Urine Oxidative Stress 0.21 ± 0.16 0.23 ± 0.19 - Maschirow et al65

GSH (mmol/l) Blood Oxidative Stress 0.85 ± 0.20 - 0.50 ± 0.15 lutchmansingh et al42

p66Shc (pg/ml) Urine Oxidative Stress 52.30 ± 2.90 42.30 ± 2.30 - Jelinek et al16

Humanin (pg/ml) Blood Mitochondrial 1292.80 ± 56.40 783.70 ± 620.20 565.30 ± 460.50 Ramanjaneya et al49

MOTSc (pg/ml) Blood Mitochondrial 235.30 ± 181.60 154.30 ± 66.30 186.30 ± 130.00 Ramanjaneya et al49

Abbreviations: GSH, reduced glutathione; 8-OHdG, 8-hydroxy-2-deoxyguanosine; Il-6, interleukin-6; Il-10, interleukin-10; Il-1β, interleukin-1β; MCP-1, monocyte chemo-
attractant protein-1; IGF-1, insulin-like growth factor 1; MOTSc, mitochondrial protein; p66Shc, adaptor protein.
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biomarkers and diabetes progression, particularly in the context 
of comorbidities. The study also uses established oxidative stress 
and inflammation biomarkers.41,45,50,65 Additionally, the study 
includes age, cholesterol profile, and clinical characteristics. These 
additional variables controlled for covariates and helped identify 
associations. This comprehensive approach allows for a thorough 
analysis of the many factors that shape T2DM pathophysiology.

Materials and Methods
Recruitment of participants

Data from 581 people attending the Diabetes Health Screening 
Clinic (DiabHealth) at Charles Sturt University, Albury, 
Australia, were chosen for analysis of blood and urine samples. 
This study received ethical approval from the University Human 
Ethics Committee, with Protocol Number 2006-042, and all 
participating patients provided written informed consent, which 
included consent for publication of results. The preparation of 
this manuscript adhered to the STROBE (Strengthening the 
Reporting of Observational Studies in Epidemiology) 
Guidelines, ensuring comprehensive and standardized reporting 
of our observational cross-sectional study.67 There were no 
requirements for exclusion from this study as patients attended a 
diabetes complications progression research initiative clinic and 
hence any clinical data relevant to patient health was collected. 
All participants had their age, gender, HbA1c, C5a, d-Dimer, 
IL-6, Trigs, TC, HDL cholesterol, LDL cholesterol, 8-isopros-
tane, 8-OHdG, GSH, GSSG, GSH:GSSG ratio, IL-1β, IL-10, 
MCP-1, IGF-1, Humanin, MOTSc, and p66Shc recorded. A 
control group with a screening glucose of <5.6 mmol/l, a predia-
betes group with a screening glucose of 5.6 to 6.9 mmol/l, and a 
type 2 diabetes group with screening glucose ⩾7 mm/l were 
compared. The study’s nature was to focus on oxidative stress 
biomarkers and diabetes progression, particularly in the context 
of comorbidities, over a 10 year period, utilizing data only from 
the patients’ first admission. To determine the sample size, an 
ANOVA power analysis was conducted, with 3 groups repre-
senting “no comorbidities,” “preDM,” and “T2DM.” We assumed 
an effect size of f = 0.5, a significance threshold of α = .05, and a 
desired statistical power of 0.8. As a result, the calculated sample 
size for each group was determined to be 13.

Apparatus. Accu-Chek® (Roche Australia Pty Ltd.) measured 
screening blood glucose. Blood preparation centrifugation was 
done with a UNIVERSAL 32R (Hettich Zentrifugen). The 
photometric analysis of biomarkers in urine was carried out 
with the assistance of a Thermo Scientific Multiskan FC 
(Fisher, China).

Sample preparation

Midflow urine samples were collected to measure all oxida-
tive stress and inflammatory markers. Screening glucose, 

HbA1c and cholesterol profile was determined by the local 
pathology laboratory.

Measurement of oxidative stress

The Glutathione EIA Kit (Cayman Chemical, USA) meas-
ured erythrocyte GSH and GSSG using glutathione reductase. 
The formation of yellow 5-thio-2-nitrobenzoic acid (TNB), 
which is directly proportional to the total GSH concentration 
in the sample, is caused by the reaction of 5,5′-dithio-bis-
2-nitrobenzoic acid, also known as DTNB. Before the experi-
ment, samples and standards were treated with 1% of 1 M 
2-vinylpyridine for 60 minutes at room temperature to deri-
vatize free GSH and detect GSSG exclusively. GSH and 
GGSG concentrations and deproteination were calculated 
using the End Point Method. Northwest (USA)’s urinary iso-
prostane ELISA kit uses a competitive ELISA strategy to 
measure the amount of 8-isoprostane in samples and stand-
ards. After adding the horseradish peroxidase substrate, 8-iso-
prostane in samples and standards inversely correlates with the 
blue color development, which turns yellow after acid termi-
nation. About 450 nm is absorbance.The Human SHC-
Transforming Protein 1 ELISA kit (CUSA-BIO; Flarebio 
Biotech LLC) was used to measure p66shc because, according 
to the kit’s creators, it primarily detects Shc1 and its isoform 
p66shc. A commercially available extraction-free EIA kit was 
used to measure MOTS-c concentrations in accordance with 
the manufacturer’s suggested procedure. As for Humanin, the 
Elisa analysis (Lot No. K11064644) was utilized from Elisakit.
com (Adelaide, Australia).

Measurement of endothelial dysfunction

An 8-hydroxy-2-deoxy guanosine EIA Kit (Cayman Chemical, 
USA) measured urine 8-OHdG. An anti-mouse IgG-coated 
plate and an 8-OHdG-acetylcholinesterase conjugate tracer 
increased sensitivity and decreased variability in this competi-
tive test. 8-OHdG-enzyme conjugate (tracer) and sample 
8-OHdG compete for monoclonal antibody. After the tracer-
antibody complex binds to the pre-coated anti-mouse IgG, 
AChE-substrate (acetylcholine and 5,5′-dithio-bis-2-ni-
trobenzoic acid) is added to produce a yellow 5-thio-2-ni-
trobenzoic acid that can be detected spectrophotometrically at 
412 nm and is inversely proportional to the amount of 8-OHdG 
in the sample. To standardize 8-isoprostane and 8-OHdG 
results, Albury’s Dorevitch Pathology Laboratory quantified 
urine creatinine. The automated AxSYM® system (Abbott 
Laboratories, USA) measured plasma homocysteine with a 
2-step reaction: (1) dithiothreitol reduction of protein-bound 
homocysteine and (2) enzymatic conversion of free homocyst-
eine to S-adenosylhomocysteine with adenosine. Fluorescence 
polarization immunoassay detects reaction 2 product 
S-adenosylhomocysteine.
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Measurement of inflammation

Plasma IL-6 was tested using a double-antibody sandwich 
ELISA Interleukin-6 (human) EIA Kit that was manufac-
tured by Cayman Chemical in the United States. An 
acetylcholinesterase:IL-6 Fab′ combination binds to a particu-
lar epitope on the IL-6 molecule, whereas a pre-coated mono-
clonal antibody binds to free IL-6 in samples. Both of these 
bindings are carried out by the IL-6 molecule. The AChE-
substrate, which is composed of acetylcholine and 5,5′-dithio-
bis-2-nitrobenzoic acid, is responsible for initiating the 
enzymatic synthesis of the yellow 5-thio-2-nitrobenzoic acid, 
which has an absorption peak at 412 nm. IL-6 levels determine 
color development. The serum CRP concentrations were 
obtained by the Dorevitch Pathology Laboratory in Albury, 
New South Wales.

Measurement coagulation and f ibrinolysis

The Human C5a ELISA Kit II (BD Biosciences, USA) meas-
ured plasma C5a using a sandwich ELISA test using a human 
C5a-specific monoclonal antibody pre-coated on microplates. 
The second antibody that binds to immobilized C5a is strepta-
vidin horseradish peroxidase conjugate, which reacts with 
TMB to create blue. Phosphoric acid inhibits the process and 
makes it yellow. Absorbance at 450 nm determines C5a con-
tent in the first sample. The Albury-based Dorevitch Pathology 
Laboratory provided d-Dimer readings.

Statistical analysis

Microsoft Excel (Office 365, Microsoft) was used to analyze 
descriptive data and is presented as mean ± standard deviation 
(x ± SD). Statistical analysis was carried out with Python with 
the Pingouin, which is an open-source statistical package.68 A 
Kruskal-Wallis test was conducted to evaluate whether there 
were any notable variations in biomarker levels between the 
groups.69 Additionally, a Mann-Whitney post hoc test was uti-
lized to compare differences between any 2 groups.70 Significant 
data was defined as a P < .05. In this study, linear discriminant 
analysis (LDA) was employed to identify the most significant 
biomarkers and predict the outcomes. Data from a D dimen-
sional feature space was projected using LDA into a D′ 
(D > D′) dimensional space in order to increase variability 
across classes while minimizing variability within classes.71 
Standard scaling was a crucial preprocessing step in LDA to 
guarantee robust, interpretable, and unaffected analysis based 
on the input feature scale. In terms of feature importance, we 
assessed it by considering the features with higher absolute 
coefficient values in the LDA model. Important features were 
compared with the P-values of Kruskal-Wallis and Mann-
Whitney tests. LDA classifications of various populations 
using varying degrees of k-fold cross-validation were used. 
Accuracy estimations were made of the LDA area under the 

curve (AUC) of the receiver operating characteristic (ROC) 
curves between the 2 classes without and with HbA1c, as well 
as the accuracies between the 3 classes without HbA1c, and 
with HbA1c.

Results
This section is divided into 4 parts. The first part is focused on 
the healthy control group compared to prediabetes and diabe-
tes without comorbidities, the second part includes patients 
with HT and CVD, the third is devoted to patients with HT 
only, and the fourth part shows results of patients with CVD 
only. Each part shows the main significant biomarkers of the 3 
groups; control/no diabetes, prediabetes (preDM), and type 2 
diabetes (T2DM). Kruskal-Wallis and Mann-Whitney analy-
ses were used to estimate the difference between multiple 
groups and between 2 groups, respectively (the expanded 
Tables with the results of the analyses are in the Appendix). In 
each part, by using LDA, the most critical biomarkers are 
shown for 2 groups (at least absolute normalized eigenvector 
0.1). Area under the curve (AUC) of receiver operating charac-
teristic (ROC) curves are provided, and the accuracies for all 
classes. The detailed ROC curves are included in the Appendix. 
In feature importance and LDA, the classes studied were: A.1.) 
Control/no diabetes—preDM without HbA1c, A.2.) Control/
no diabetes—preDM with HbA1c, B.1.) preDM—T2DM 
without HbA1c, B.2.) preDM—T2DM with HbA1c, B.1.) 
Control/no diabetes—T2DM without HbA1c, C.2.) Control/
no diabetes—T2DM with HbA1c, and D.1.) Control/no dia-
betes - preDM—T2DM without HbA1c, D.2.) Control/no 
diabetes—preDM—T2DM with HbA1c.

Important features in the healthy population

Table A1 in the Appendix summarizes the clinical variables 
measured in the different healthy groups. Significant differ-
ences between the 3 groups (using the Kruskal-Wallis test) 
were observed for HbA1c, d-Dimer, Triglycerides, HDL, 
GSSG, IL-1β, IL-10, IGF-1, Humanin, MOTSc, and p66Shc. 
MCP-1, and 8-isoprostane showed differences between con-
trol and T2DM groups, but they were not significant based on 
the Kruskal-Wallis analysis. Comparing the 3 groups further it 
can be observed that IL-10, IGF-1, and Humanin were high-
est in the control group. Patients with preDM had the highest 
HDL, IL-1β, and MOTSc levels. Lastly, HbA1c, d-Dimer, 
Triglycerides, and p66Shc levels were greater in T2DM group 
compared to control and preDM. Before proceeding to the 
classification, biomarker importance with respect to 2 and the 
3 groups without HbA1c (A) or with HbA1c (B) are included 
in Figure 1.

The most dominant biomarkers with respect to absolute 
normalized eigenvector ⩾0.1, were also the most significant as 
shown in Figure 1A.1. to D.2. The only difference is IL-6, 
which is the most dominant biomarker for the control group 
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with T2DM (Figure 1C.1. and C.2.), and with preDM and 
T2DM (Figure 1D.1. and D.2.).

LDA classifications with different k-fold cross-validation 
are plotted in the ROC curves in Figure A1 in the Appendix. 

The AUC of the ROC curves between 2 classes without and 
with HbA1c were above 0.98 for fivefold cross validation, and 
the accuracies between the 3 classes without HbA1c, and with 
HbA1c are both equal to 0.94 ± 0.02. Thus, classification can 

Figure 1. Important features in the healthy population with the use of lDA.
Abbreviations: C5a, complement component 5a; 8-OHdG, deoxyguanosine; GSH, glutathione; GSSG, oxidized glutathione; HbA1c, hemoglobin A1C; HDl, high-
density lipoprotein; Il-6, interleukin-6; Il-1β, interleukin-1β; Il-10, interleukin-10; lDl, high-density lipoprotein; MCP-1, monocyte chemoattractant protein-1; MOTSc, 
mitochondrial protein; p66Shc, adaptor protein; TC, total cholesterol.
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be achieved successfully between 2 groups, and 3 groups as the 
accuracies were high with or without HbA1c.

Important features in the population with HT and 
CVD

Table A2 in the Appendix lists the clinical parameters that 
were evaluated for the 3 groups in with HT and CVD. The 
demographic factors for HbA1c, C5a, d-Dimer, Triglycerides, 
TC, HDL, LDL, 8-isoprostane, GSSG, GSH/GSSG, IL-10, 
MCP-1, Humanin, and MOTSc showed significant differ-
ences according to the Kruskal-Wallis and Mann-Whitney 
tests. The levels of d-Dimer, HDL, MCP-1 of the no diabetes 
group compared to the other 2 groups were higher. PreDM 
patients had higher levels of LDL, and GSH/GSSG compared 
to no diabetes and T2DM groups. Finally, the levels of HbA1c, 
C5a, Triglycerides, 8-isoprostane, GSSG, IL-10, Humanin, 
and MOTSc were higher in T2DM patients compared to no 
diabetes and preDM groups. HbA1c, and triglycerides were 
elevated in T2DM patients of both the healthy group (Table 
A1) and the group with HT and CVD (Table A2).

Figure 2A.1. to D.2. depict the importance of biomarkers 
divided into 2 or 3 groups without HbA1c (A) or with (B) 
HbA1c before classifying the population of both HT and 
CVD. The most prevalent biomarkers (P < .05 in Table A2 in 
the Appendix) were the most significant using Kruskal-Wallis 
and Mann-Whitney analyses. Only GSH, and IGF-1 were the 
2 additional features which showed an importance in the HT 
and CVD population independent from Kruskal-Wallis and 
Mann-Whitney analyses. The decreased GSH, emerged as a 
significant biomarker when the preDM group was compared 
to the T2DM group (Figure 2B.1. and B.2.). In addition, when 
the preDM group was compared to individuals who had 
T2DM, IGF-1 declined, and emerged as a relevant biomarker 
(Figure 2B.1. and B.2.).

LDA classifications of the HT and CVD population with 
different k-fold cross-validation were plotted in Figure A2 of 
the Appendix. The LDA achieved AUC of the ROC curves 
between 2 classes without and with HbA1c were above 0.83 
for fivefold cross validation, and the accuracies between the 3 
classes without HbA1c, and with HbA1c are both equal to 
0.85 ± 0.03.

Important features in the population with HT only

Table A3 in the Appendix lists the clinical parameters that 
were evaluated in the various groups in the population that had 
only HT. The demographic factors for HbA1c, C5a, 
Triglycerides, TC, LDL, 8-isoprostane, 8-OHdG, GSH, 
GSSG, GSH/GSSG, IL-1β, IL-10, MCP-1, IGF-1, 
Humanin, and MOTSc showed significant differences accord-
ing to the Kruskal-Wallis and Mann-Whitney tests (P < .05). 
The no diabetes group showed an increased TC, LDL, GSH, 

GSSG, IL-1β, IL-10, and MCP-1 compared to the other 
groups. Patients with preDM showed increased 8-isoprostane, 
8-OHdG, and IGF-1 values compared to the no diabetes and 
T2DM groups. Finally, T2DM patients had increased levels of 
HbA1c, C5a, Triglyceride, GSH/GSSG, Humanin, and 
MOTSc. Triglycerides and HbA1c remained elevated, similar 
to those of the T2DM patients in the healthy group in Table 
A1 and the group with HT and CVD in Table A2.

Figure 3A.1. to D.2. depict the importance of biomarkers 
for 2 and the 3 groups without (A) or with (B) HbA1c before 
classifying the population with both HT and CVD. The most 
prominent biomarkers were the most different in both Kruskal-
Wallis and Mann-Whitney analyses (Table A3 in the 
Appendix). The only difference is in IL-6, and HDL which 
were the most dominant biomarkers due to their lower and 
maximum values, respectively for the comparison of the no dia-
betes group with the other groups. LDA classifications with 
different k-fold cross-validation are plotted in Figure A3. The 
LDA successfully classified the groups as this method achieved 
AUC of the ROC curves between 2 classes without and with 
HbA1c above 0.83 for fivefold cross validation, and the accura-
cies between the 3 classes without HbA1c, and with HbA1c 
were both equal to 0.87 ± 0.04.

Important features in the population with CVD 
only

The clinical features evaluated in the various CVD groups are 
summarized in Table A4 in the Appendix. The Kruskal-Wallis 
test identified significant differences in the demographic fac-
tors for HbA1c, IL-6, TC, HDL, LDL, 8-OHdG, GSH, 
GSSG, and IL-10. The levels of TC, HDL, and LDL were 
significantly higher in the no diabetes group compared to 
preDM and T2DM patients. In contrast, preDM patients had 
higher levels of IL-6 compared to the no diabetes and T2DM 
groups (P < .05). Finally, the levels of HbA1c, GSH, and 
GSSG were higher in T2DM patients (P < .05). These differ-
ences in levels of biomarkers substantiate a dynamic, fluid rep-
resentation of the disease progression.

Figure 4A.1. to D.2. illustrate the importance of biomarkers 
for no diabetes, preDM and T2DM without HbA1c (A) or 
with (B) HbA1c. Only MCP-1 (Figure 4A.1. and A.2.), 8-iso-
prostane (Figure 4B-D.1.-2.) and GSH/GSSG (Figure 4 
A.1.-2 , C.1.-2, and D.1.-2) show a discernible difference and 
increase from no diabetes to T2DM.

Figure A4 displays the LDA classifications with various 
k-fold cross-validations. The LDA achieved AUC of the ROC 
curves between 2 classes without and with HbA1c were above 
0.83 for fivefold cross validation, and the accuracies between 
the 3 classes without HbA1c, and with HbA1c are both equal 
to 0.85 ± 0.09. Because the accuracy rates were high with or 
without HbA1c, classification between the 2 groups and 3 
groups can be conducted accurately.
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Discussion
The overall objective of this research was to study the changes 
in a set of measurable biomarkers between control and predia-
betes, prediabetes to T2DM and control to T2DM and to 
classify patients based on their first-attendance data at the 

clinic. Diverging from previous analysis, this study presents 
the importance of biomarkers at specific stages of T2DM pro-
gression and allows visualization of possible changes in the 
metabolic pathways and interactions. More precisely, our anal-
ysis (1) uses biomarker measurements from the first 

Figure 2. Important features in the HT and CVD population with the use of lDA.
Abbreviations: C5a, complement component 5a; 8-OHdG, deoxyguanosine; GSH, glutathione; GSSG, oxidized glutathione; HbA1c, hemoglobin A1C; HDl, high-
density lipoprotein; Il-6, interleukin-6; Il-1β, interleukin-1β; Il-10, interleukin-10; lDl, high-density lipoprotein; MCP-1, monocyte chemoattractant protein-1; MOTSc, 
mitochondrial protein; p66Shc, adaptor protein; TC, total cholesterol.
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attendance of the patient, (2) considers the importance of the 
biomarkers at each stage of the disease progression, (3) consid-
ers patients with CVD, and HT comorbidity, and (4) predicts 
the clinical T2DM stage outcome with high accuracy. Our 
study aligns with the ongoing efforts for improving the 

diagnosis of T2DM, assessing advanced prediction schemes 
and finally, for realistic and optimized disease treatment, 
which is the next step in this research area.

Our results suggest in agreement with others that HbA1c 
may not be a good marker for identifying diabetes progression 

Figure 3. Important features in the HT population with the use of lDA.
Abbreviations: C5a, complement component 5a; 8-OHdG, deoxyguanosine; GSH, glutathione; GSSG, oxidized glutathione; HbA1c, hemoglobin A1C; HDl, high-
density lipoprotein; Il-6, interleukin-6; Il-1β, interleukin-1β; Il-10, interleukin-10; lDl, high-density lipoprotein; MCP-1, monocyte chemoattractant protein-1; MOTSc, 
mitochondrial protein; p66Shc, adaptor protein; TC, total cholesterol.
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if comorbidities including CVD and/or HT are present. 
HbA1c when included in the analysis tended to play a minor 
role in terms of contributing to the model. However, the con-
sistently greater increase of HbA1c in the CVD/HT 

comorbidity highlights its association with increased risk of 
CVD morbidity and mortality.72,73

Our results revealed some novel and clinically useful asso-
ciations for diabetes progression in the presence or absence of 

Figure 4. Important features in the CVD population with the use of lDA.
Abbreviations: C5a, complement component 5a; 8-OHdG, deoxyguanosine; GSH, glutathione; GSSG, oxidized glutathione; HbA1c, hemoglobin A1C; HDl, high-
density lipoprotein; Il-6, interleukin-6; Il-1β, interleukin-1β; Il-10, interleukin-10; lDl, high-density lipoprotein; MCP-1, monocyte chemoattractant protein-1; MOTSc, 
mitochondrial protein; p66Shc, adaptor protein; TC, total cholesterol.
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CVD and HT as comorbidities. Several of the significant 
markers were expected including triglycerides, HDL, IL-1β, 
IL-10, and IGF-1. d-Dimer has not been investigated exten-
sively. However, previous work of ours has shown a relationship 
between diabetes progression in the presence of macrovascular 
disease and more recently d-Dimer has been shown to be a 
promising marker for peripheral neuropathy.61,62 GSSG is a 
sensitive oxidative stress marker, which reflects possible 
decreasing synthesis of GSH and increased irreversible utiliza-
tion by reactive oxygen species reactions.42

Of interest are the results for Humanin and MOTSc, which 
are mitochondrial peptides associated with oxidative stress that 
have not been investigated together with reference to diabetes 
progression and associated complications.74 In agreement with 
Ramanjaneya et al,49 we observed changes in both Humanin 
and MOTSc with diabetes progression and correlations with 
HbA1c and HDL. In addition, p66Shc, which is coded for in 
the nucleus but also associated with oxidative stress by modu-
lating the mitochondrial electron transport chain.16,75 However, 
for the CVD/HT patients C5a, TC, LDL, 8-isoprostane, 
GSH/GSSG, and MCP-1 became important indicating sig-
nificant changes in the pathophysiology and associated bio-
markers with disease progression and the influence of CVD 
and HT. As for the patients with HT only, the importance of 
C5a, 8-OHdG, GSH/GSSG, IGF-1, became significant in 
the model in addition to the well documented role of choles-
terol. Gouaref et al76 reported similar results between a control 
group and patients with T2DM, hypertension, and hyperten-
sion. In contrast patients with CVD differed significantly only 
in TC, HDL, LDL, 8-OHdG, GSH, GSSG, and IL-10 indi-
cating the much more prominent role of cholesterol in cardio-
vascular disease.

Diabetes progression without comorbidity

The dynamics of the biomarkers at different transitions in the 
group with no comorbidities indicated a strong association 
with oxidative stress markers rather than cholesterol or inflam-
matory markers. MOTSc, and GSH/GSSG as well as IL-1β 
were significant for the transition from control to preDM, 
agreeing with previous research.77 For the transition from 
preDM to T2DM GSH/GSSG, MOTSc, and 8-isoprostane 
were significant and highlighting the importance of mitochon-
drial involvement.78 When the control group was compared to 
the T2DM group, IL-6 appeared in the model as an inflamma-
tory marker.79 In addition to a switching from MOTSc to 
Humanin, which indicates their possible different roles in the 
pathophysiology of complex disease and may reflect the spe-
cific functions and hormone-type activity of these mitochon-
drial peptides.80 MOTSc stimulates cellular glucose uptake 
and may be an early response to increased screening glucose at 
the prediabetes phase. In contrast Humanin reduces inflamma-
tory markers, interacts with IGF-1 and has been shown to 
decrease with disease progression.81

Diabetes progression with comorbidity

In the group with both HT and CVD, a change in biomarkers 
with disease progression was again observed. For the change 
from no diabetes to preDM apart, from cholesterol, MOTSc 
was the most important marker, whereas GSH/GSSG, IL-1β, 
and IL-10 became associated with further disease progression 
if HbA1c was included in the model. Otherwise, 8-isopros-
tane was an additional oxidative stress marker. This results 
also indicates the variability of HbA1c with T2DM and pres-
ence of comorbidities.82 Kim et al showed that MOTSc 
improves beta-oxidation and plasma GSSG was lower in a 
MOTS-c injected animal model providing further evidence 
for the complex interaction of biomarkers with disease pro-
gression highlighted in the current study.74,83 Thus, at the 
prediabetes stage identification of a battery of risk factors 
including oxidative stress markers may provide an optimal 
opportunity for successful multifactorial intervention includ-
ing life-style factors, and polypharmacy if required.84 MOTSc 
inhibits inflammation and blocks cellular apoptosis amongst 
other functions.

When the biomarker changes in the diabetes and HT group 
was the coagulation marker C5a and the fibrinolytic marker, 
d-Dimer appeared in the models Complement C5a mediates 
pro-inflammatory responses and is elevated in diabetes as well 
as playing a role in diabetic nephropathy.85 The current study 
extends our understanding of the role of C5a as direct associa-
tions of this biomarker was observed with disease progression 
and presence of comorbidities, providing a useful timeline in 
terms of the biochemical milieu changes associated with dis-
ease progression. d-Dimer has previously been reported to be 
already elevated in prediabetes and diabetic peripheral neu-
ropathy has recently been associated with increased levels of 
d-Dimer alongside fluctuations in HbA1c.61,62

The most important biomarkers in the shift from no diabe-
tes to preDM, in the CVD comorbidity group, were GSH/
GSSG, MCP-1, GSH/GSSG, and 8-isoprostane in transition 
from preDM to T2DM, whilst for the shift from no diabetes to 
T2DM GSH/GSSG, and 8-isoprostane were the most impor-
tant biomarkers. Changes in MCP-1 were not significantly 
different either being slightly increased in the prediabetic 
group and then slightly decreased in the T2DM group. 8-iso-
prostane is a marker of lipid oxidation and onset of CVD, spe-
cifically associated with endothelial dysfunction and 
inflammation.86 However, in our study the increase in 8-iso-
prostane was not significant. Previous work of ours reported on 
the importance of d-Dimer and the correlation with GSH lev-
els associated with disease progression and including CVD as 
comorbidity.62 In the current study prediabetic and T2DM 
CVD patients had a lower GSH/GSSG ratio than healthy 
controls, indicating more oxidative stress associated with dis-
ease progression. Hypoglycemic and cardiovascular disease 
medicines’ antioxidant effects may explain the prediabetes 
group’s small GSH rise. Another possibility is that increased 
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GSSG production due to oxidative stress, likely caused by 
erythrocyte ROS levels, stimulates GSH production.65

Research into the pathophysiological mechanisms related to 
diabetes progression with CVD has shown the important role 
of oxidative stress and use of medication in preventing and 
treating diabetes associated CVD.87 Early intervention is war-
ranted for patients with CVD as changes in inflammation and 
oxidative stress are already present at the prediabetes stage and 
possibly prior to any clinical identification of any CVD risk 
including obesity.87-89

In addition, previous research has shown that CVD patients 
without diabetes, with prediabetes or diabetes had higher levels 
of GSSG and 8-isoprostane,90 and MCP-1 than healthy con-
trols91 as well as increased LDL,92,93 and TC cholesterol.60,94

Influence of medication on biomarker levels

Some of the inconsistent results with laboratory studies, stem 
form our research taking place in a diabetes complications 
screening clinic, where patients were on different types of 
medication that may influence levels of cholesterol and other 
biomarkers. Prediabetes and T2DM may have higher LDL 
and TC values and lower HDL levels than control individu-
als.95 In our group, the drop in cholesterol profile is probably 
due to medication. Depending on the type of antihyperten-
sive used, the literature has shown either beneficial effects or 
negative effects of antihypertensive use.96 Kasiske et al97 
found β-blockers with intrinsic sympathomimetic activity 
and cardioselectivity reduction of TC and LDL-C. α-blockers 
beneficially affected TC, LDL-C, TG, and in younger indi-
viduals, HDL. ACE inhibitors reduced TG in diabetics, TC. 
Direct vasodilators reduced TC and LDL, and increased 
HDL. Alternatively, diuretics increase TG and TC and have 
also a negative impact on LDL. β-1 selective and nonselective 
β-blockers may increase TG and lower HDL. Compared to 
control group, prediabetic and T2DM patients with HT may 
have lower IL-10 levels, indicating inflammation.98 T2DM 
and prediabetic patients with HT may have higher IL-6 lev-
els than control group, indicating elevated inflammation in 
advanced disease stages.99 Prediabetic and T2DM HT 
patients have been shown to have lower GSH/GSSG ratios, 
indicating increased oxidative stress.65 Similarly in the cur-
rent study with a larger sample and comorbidities, the predia-
betic patients with HT and greater 8-OHdG levels than 
control and T2DM, indicate more DNA damage in prediabe-
tes, which is reduced due to antioxidant activity of polyphar-
macy.100 Atenolol and metformin are widely used antioxidant, 
and antidiabetic medicines, respectively.101-103 T2DM patients 
with HT have lower IGF-1 levels than controls and predia-
betics, suggesting impaired growth and repair mechanisms.104 
Similarly, T2DM patients with HT and CVD have higher 
LDL and TC levels and a lower GSH/GSSG ratio than 
healthy controls and pre-diabetics. Again, the decreased LDL 

and TC levels in our groups might be due to the medication. 
The prevalence of MOTS-c may protect T2DM patients 
with HT and CVD by improving mitochondrial activity, 
insulin sensitivity, oxidative stress, inflammation, and 
endothelial function in agreement with Mohtashami et al.74 
Also, MOTS-c plays a role in lipid metabolism, blood pres-
sure management, and cardiac function.105

Our results highlight the importance of assessing disease 
progression in terms of multifactorial involvement by applying 
linear discriminant analysis and variable importance assign-
ment. The majority of our results reflect previous findings for 
studies that investigated single inflammatory or oxidative stress 
markers but highlight the importance of comparing of a single 
biomarker between stages of disease development and included 
in the model of disease progression.

Data analytics in diabetes progression

Utilizing the feature importance of T2DM, established meth-
ods have been employed by using different sets of inputs.106,107 
In the work of Bernardini et al,108 a multiple instance learning 
boosting (MIL-Boost) algorithm was used for creating a pre-
dictive model of worsening insulin resistance in T2DM in 
terms of Triglyceride-glucose index (TyG). The algorithm was 
able to extract hidden patterns from past electronic health 
record temporal data. Triglycerides, HDL cholesterol, and 
total cholesterol were among the most important aspects of 
the MIL-Boost experimental design, and these were included 
in our analysis, as well. Jelinek et al15 investigated whether 
additional biomarkers could be used in conjunction with 
HbA1c to improve diagnostic accuracy in T2DM if HbA1c 
levels are less than or equal to the current cutoff value of 6.5%. 
They concluded that oxidative stress marker 8-hydroxy-2-de-
oxyguanosine (8-OHdG) and interleukin-6 (IL-6) improved 
classification accuracy. Finally, Hathaway et al developed a 
model for precision medicine by applying machine-learning 
algorithms to predict the development of T2DM using vari-
ous cardiac indicators, as T2DM plays a crucial role on cardio-
vascular disease.109,110

Our study adapts to each of the several case studies in a 
meaningful way, and the parameters and variables follow physi-
ologically appropriate ranges. The proposed framework was 
created using a number of biomarkers and comorbidities (HT 
and CVD). The created algorithm, however, may enable the 
detection of pre-diabetes, diabetes, and related comorbidities if 
patient data from our study are included. One of the limita-
tions of this research pertains to the small number of patients 
within certain groups. Future studies should consider aug-
menting the sample size for these specific patient cohorts to 
enhance the robustness of findings. Additionally, future 
research of ours will now focus on the dynamics of biomarker 
changes during the various stages of Type 2 diabetes mellitus 
progression.
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Conclusions
Measures of the proposed biomarkers has shown the influence 
of comorbidities on biomarker involvement as a function dia-
betes progression. The observed changes of mitochondrial oxi-
dative stress markers as well as coagulation and inflammatory 
maker changes allow an improved assessment of diabetes dis-
ease progression and decisions on appropriate individualized 
medication prescription. In upcoming studies, the longitudinal 
biomarker evolution will be assessed.
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