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Gene Perturbation Atlas (GPA): 
a single-gene perturbation 
repository for characterizing 
functional mechanisms of coding 
and non-coding genes
Yun Xiao1,2,*, Yonghui Gong1,*, Yanling Lv1,*, Yujia Lan1,*, Jing Hu1, Feng Li1, Jinyuan Xu1, 
Jing Bai1, Yulan Deng1, Ling Liu1, Guanxiong Zhang1, Fulong Yu1 & Xia Li1

Genome-wide transcriptome profiling after gene perturbation is a powerful means of elucidating gene 
functional mechanisms in diverse contexts. The comprehensive collection and analysis of the resulting 
transcriptome profiles would help to systematically characterize context-dependent gene functional 
mechanisms and conduct experiments in biomedical research. To this end, we collected and curated 
over 3000 transcriptome profiles in human and mouse from diverse gene perturbation experiments, 
which involved 1585 different perturbed genes (microRNAs, lncRNAs and protein-coding genes) across 
1170 different cell lines/tissues. For each profile, we identified differential genes and their associated 
functions and pathways, constructed perturbation networks, predicted transcription regulation and 
cancer/drug associations, and assessed cooperative perturbed genes. Based on these transcriptome 
analyses, the Gene Perturbation Atlas (GPA) can be used to detect (i) novel or cell-specific functions 
and pathways affected by perturbed genes, (ii) protein interactions and regulatory cascades affected 
by perturbed genes, and (iii) perturbed gene-mediated cooperative effects. The GPA is a user-friendly 
database to support the rapid searching and exploration of gene perturbations. Particularly, we 
visualized functional effects of perturbed genes from multiple perspectives. In summary, the GPA is 
a valuable resource for characterizing gene functions and regulatory mechanisms after single-gene 
perturbations. The GPA is freely accessible at http://biocc.hrbmu.edu.cn/GPA/.

Gene perturbations by knockout, RNA interference (RNAi) or overexpression have been widely used 
to elucidate gene functions, considerably impacting many areas of biological and medical research over 
the past decade1,2. Huge numbers of gene perturbation screens have been performed in many model 
organisms and in humans. In general, these screens focus on detecting molecules associated with spe-
cific biological phenotypes, such as cell morphology, viability, migration and growth rates3. The recent 
development of high-throughput screening techniques further facilitates the comprehensive identifica-
tion of important genes involved in phenotypes of interest. However, it is difficult to directly characterize 
the molecular mechanisms of perturbed genes and depict how perturbed genes contribute to specific 
phenotype changes, such as via interactions with other key genes or inducing the dysfunction of spe-
cific biological processes or pathways4. Notably, many studies have performed transcriptome analysis 
of expression profiles measured on microarrays after gene perturbations. For example, Boumahdi et al.  
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uncovered a gene network regulated by SOX2 by analyzing the transcriptome profile of SOX2 dele-
tion in squamous-cell carcinoma5. Through analyzing the transcriptome profiles of 147 large intergenic 
non-coding RNA (lincRNA) knockdowns, Guttman et al. revealed that lincRNAs mainly regulated global 
gene expression in trans, maintained the pluripotency and repressed the differentiation of embryonic 
stem cells6. These expression profiles reveal global gene expression changes caused by perturbed genes 
and can be used to infer their context-dependent biological functions, cellular pathways and regulatory 
cascades (interacting genes or upstream transcription factors). Thus, it is valuable to identify changes of 
the functions, pathways and regulatory cascades through gene perturbation, which provide a unique view 
of the molecular mechanisms of perturbed genes.

Currently, there are many databases serving gene perturbation experiments. Some of these databases 
provide experimentally validated perturbation reagents (e.g., siRNAs), perturbed model organisms (e.g., 
knockout mouse) or experimental protocols, such as DEQOR7, E-RNAi8, IKMC9 and ZFIN10. Others 
mainly collect phenotype images or descriptions of gene perturbations, such as GenomeRNAi11, IMPC12, 
MPD13. To our knowledge, there is no specific database designed to store gene expression profiles pro-
duced by gene perturbations and perform corresponding transcriptome analysis, although the transcrip-
tome profiles of gene perturbations are being rapidly accumulated. Thus, the development of such a 
database will greatly promote the discovery of gene function and regulatory mechanism, facilitating 
biological and medical research by experimental scientists.

In this study, we collected and analyzed a large number of transcriptome profiles of single-gene 
perturbations, including protein-coding genes, microRNAs and long non-coding RNAs (lncRNAs), in 
human and mouse. Integrating these profiles and corresponding transcriptome analysis results, we devel-
oped a user-friendly database called the Gene Perturbation Atlas (GPA) with several web tools to support 
rapid searching, exploration and visualization of the gene perturbations. The GPA provides considerable 
resources, helping biologists to systematically characterize context-dependent gene functions and regu-
latory mechanisms and providing references for biomedical gene perturbation experiments conducted 
by experimental scientists.

Results
We manually collected and curated 3072 transcriptome profiles of single-gene perturbations measured 
on microarrays in human and mouse from Gene Expression Omnibus (GEO). These profiles refer to 
1585 different perturbed genes, including 628 protein-coding genes, 95 microRNAs and 14 lncRNAs in 
human, and 731 protein-coding genes, 39 microRNAs and 78 lncRNAs in mouse (Fig. 1a). These profiles 
are derived from 1170 different types of cell lines or tissues, the majority of which are MCF-7, HeLa and 
LNCaP cell lines in human, and liver tissues and V6.5 ES cells in mouse (Fig. 1b). We then performed 
a systematic transcriptome analysis for each profile, including differential expression analysis, enrich-
ment of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, 
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Figure 1.  Data statistics of the GPA. (a) The number of perturbed lncRNAs, protein-coding genes and 
microRNAs in human and mouse. (b) The number of perturbation datasets involved in primary cell lines or 
tissues.
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extraction of interaction subnetworks, prediction of transcription factor- and microRNA-mediated reg-
ulations, identification of cancer/drug associations, and determination of cooperative perturbed genes 
(e.g., Supplementary Fig. S1). To facilitate the study of context-dependent gene functional mechanisms, 
we detected (i) novel or cell-specific functions and pathways affected by perturbed genes, (ii) protein 
interactions and regulatory cascades affected by perturbed genes and (iii) perturbed genes mediat-
ing cooperative effects. To make the above resources publicly available and easy to use, we designed a 
user-friendly web-interface named GPA. We also developed web-based visualization and analysis tools 
to assist users in identifying correlated perturbed genes based on their own gene lists or transcriptome 
profiles. The GPA curation procedure is shown in Fig. 2.

Perturbed genes affecting functions and pathways.  Gene perturbation is a powerful means to 
explore gene functions in specific cell contexts because a gene can play distinct roles in different con-
texts, especially in the case of cell-specific functions or pathways14. Therefore, for each perturbed gene, 
the GPA offers GO functions and KEGG pathways enriched by differentially expressed genes (DEGs) 
across different cell lines or tissues. We compared perturbation experiments that were generated using 
the same microarray platform in the same organism for a common gene. We found some cell-specific 
functions and pathways. For example, hsa-miR-1204 was separately perturbed in the human breast 
cancer cell line SKBR3 (GPA ID: GPAHSA100105) and in the ovarian carcinoma cell line OVCAR8 
(GPA ID: GPAHSA100107), both of which were measured using the Affymetrix HT Human Genome 
U133A Array. We did not find any common DEGs between these two perturbation experiments (26 
DEGs in SKBR3 and 24 DEGs in OVCAR8). Pathway comparisons showed that hsa-miR-1204 could be 
involved in different pathways in different cell lines, such as ‘Steroid hormone biosynthesis’ in SKBR3 
and ‘Cell cycle’ in OVCAR8 (Fig. 3a). As another example, we found a significant overlap (p =  2.05e− 8, 
cumulative hypergeometric test) of DEGs between hsa-miR-221 perturbations in the human breast can-
cer cell line MCF7-FR (GPA ID: GPAHSA100046) and the prostate cancer cell line PC-3 (GPA ID: 
GPAHSA100168), both of which were detected using the Affymetrix Human Genome U133 Plus 2.0 
Array. We also found different pathways enriched in different cell lines, such as the ‘Chemokine signaling 
pathway’ in MCF7-FR and the ‘Jak-STAT signaling pathway’ in PC-3 cells. Moreover, GPA enables the 
discovery of new cellular functions or biological pathways. When investigating functions enriched by 
DEGs from SOX2 deletion in the human colorectal cancer cell line SW620 (GPA ID: GPAHSA000268), 
we found novel functions based on comparisons with known functional annotations from GO. Among 
these functions, two, including the regulation of cell migration and focal adhesion, have been corrob-
orated by a recent study5. Some novel functions of SOX2, such as the regulation of viral genome rep-
lication and cell-substrate junction, should be further investigated in future studies. Similarly, in the 
perturbation of PTEN in the human breast cancer cell line MCF-10 A (GPA ID: GPAHSA001288), we 
found many potential novel functions, such as epithelial cell differentiation, granulocyte migration, epi-
dermis development and wound healing. Among these functions, epithelial cell differentiation has been 
demonstrated by Qi et al. in 201415.

To further understand how perturbed genes induce functional changes in pathways, we provide all 
enriched KEGG pathway maps and color member genes according to fold changes in expression. For 
example, we found that DEGs of BRCA1 knockdown in the human breast cancer cell line MCF− 7 (GPA 
ID: GPAHSA000935) were significantly enriched in the JAK-STAT pathway (p <  0.01), indicating that 
BRCA1 can be involved in the regulation of the JAK-STAT pathway, which is consistent with previous 
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Figure 2.  Schematic illustration of the architecture of the GPA. 
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evidence that BRCA1 can constitutively activate JAK-STAT signaling16 and participate in the metastasis 
of breast cancer17. As shown in Fig. 3b, BRCA1 knockdown results in remarkable expression change of 
CSF2, an upstream cytokine in the JAK-STAT signaling pathway, which can stimulate the JAK-STAT 
signaling pathway through the tyrosine phosphorylation of STAT3 in cancer cells16,18. Thus, BRCA1 can 
contribute to the metastasis of breast cancer by influencing the expression of CSF2. Interestingly, we 
found that BRCA1 knockdown led to the down-regulation of SOS1 and the up-regulation of SPRY1. 
SOS1 and SPRY1 are the activator and repressor of the Ras/MAPK pathway, respectively19–21. The dys-
regulated SOS1 and SPRY1 induced by BRCA1 knockdown might therefore inactivate the Ras/MAPK 
pathway, which has an important role in breast cancer.

Effects of gene perturbation on protein interactions and regulatory cascades.  The protein 
interactions and regulatory cascades affected by perturbed genes are valuable information to explore 
how dysfunctional information propagates in the protein interaction networks and to infer possible 
regulatory mechanisms. We provide protein interaction subnetworks centered on perturbed genes and 
utilize the Cytoscape plugin to visualize the interactions in the GPA. Figure 3c shows the protein inter-
action subnetwork of EZH2 in the human metastatic breast cancer cell line MDA-MB-231 (GPA ID: 
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GPAHSA000520). Previous studies have confirmed that EZH2 can interact with histone deacetylase 1 
(HDAC1) and induce the activity of HDAC1. We find that HDAC1 interacts with numerous DEGs (e.g., 
NFKBIA) of EZH2 knockdown, suggesting that EZH2 knockdown may affect the activity of HDAC122, 
which in turn influences the expression levels of these DEGs. Notably, Kleer et al. demonstrated that 
EZH2 participates in cancer cell invasion and breast cancer progression and that EZH2-mediated cell 
invasion requires histone deacetylase activity22. Moreover, previous experiments performed both in vivo 
and in vitro strongly suggested the involvement of NF-kappaB in breast cancer23. These results implicated 
EZH2-NFKBIA regulation mediated by HDAC1 in breast cancer. In addition, we provide characteriza-
tions of regulatory cascades initiated by perturbed genes through enrichment analysis of transcription 
factors and microRNAs (Methods). Users can easily and precisely identify transcription factors and/
or microRNAs whose target genes are substantially affected by perturbed genes. For example, miR-205 
overexpression (GPA ID: GPAHSA100034) caused the down-regulation of transcription factor E2F1 in 
the LNCaP cell line, and its DEGs were significantly enriched for targets of E2F1 (p <  0.001), indicating 
that E2F1 may function as a key intermediate element of miR-205-mediated regulatory cascades, which 
is consistent with previous studies24.

Perturbed genes mediating cooperative effects.  Cooperation between genes is crucial for main-
taining cell biological processes25. Therefore, genes inducing similar transcriptome changes will most 
likely have similar biological functions or potential cooperation. To identify cooperative effects between 
different perturbed genes, we calculated the Pearson correlation coefficients of global transcriptome 
changes between pairs of perturbed genes. For example, the knockdown of lncRNA HOTAIR in the 
human Primary Foot Fibroblasts (GPA ID: GPAHSA200003) and SUZ12 in the human HepG2 cells 
(GPA ID: GPAHSA001271) affected many common genes (32%, fold change ≥  2). We found that their 
global transcriptome changes showed a statistically significant correlation (p <  0.001, Pearson’s correla-
tion test), indicating that they might function cooperatively. A previous study has shown that HOTAIR 
can interact with SUZ12 (a core component of Polycomb repressive complex 2 (PRC2)) to promote 
cancer invasiveness and metastasis26, and HOTAIR functions mainly through its 5’ domain binding to 
PRC2 and in turn altering epigenetic modifications at specific genomic loci27. Moreover, the cooperative 
functions of these genes were found to be involved in many important biological processes of various 
cancers26. Finally, we provide genes possessing underlying cooperative or similar functions for each per-
turbed gene based on similar transcriptome changes, which can help to characterize gene functions or 
provide references for perturbation experiments, such as combinatorial knockout.

In addition, we created Kaplan-Meier survival curves and visualized expression changes of perturbed 
genes within multiple cancers from TCGA (Supplementary Table 1) in the GPA. To further facilitate the 
discovery of potential novel cancer-related genes, we measured whether the DEGs of perturbed genes 
were significantly enriched in multiple cancers using gene set enrichment analysis (GSEA). Moreover, 
we evaluated the potential therapeutic benefit of perturbed genes by measuring correlations between 
drugs/small molecules and perturbed genes. We designed several web-based tools for identifying GPA 
entries associated with user-uploaded gene lists or transcriptome profiles from users’ own experiments. 
As a whole, the GPA is a valuable resource for the functional genomics community. The GPA contains 
a large number of curated transcriptome profiles from various perturbation experiments for discovering 
context-dependent gene functional mechanisms. The GPA provides references for experimental scientists 
to conduct biomedical experiments. The primary applications of the GPA are shown in Fig. 4.

Discussion
Over the past decade, increasing numbers of genome-wide transcriptome profiles of gene perturbations 
have been generated. A large number of studies have performed transcriptome analysis through gene 
perturbations to explore the underlying molecular mechanisms of the perturbed genes. The GPA is an 
online database collecting the transcriptome profiles of perturbed genes and providing comprehensive 
functional characterizations to facilitate the rapid searching, exploration and visualization of gene per-
turbations along with references for experimental scientists to conduct perturbation experiments.

At present, there are several tools that offer a compendium of gene expression analyses, such as 
iPathwayGuide (http://www.advaitabio.com/ipathwayguide.html), CRSD28 and CARMAweb29, based on 
user-uploaded gene expression profiles or lists of genes. By comparison, the GPA performs more specific 
transcriptome analysis under the condition of single-gene perturbations, including the identification of 
differentially expressed genes, enrichment of GO and KEGG, construction of perturbation networks, 
prediction of transcription regulation and cancer/drug associations, and assessment of cooperative per-
turbed genes. Moreover, the GPA database offers useful resources for analyzing genome-wide expression 
changes after single-gene perturbations. In particular, the GPA can characterize novel or cell-specific 
functions affected by perturbed genes, provide perturbation networks to explore how dysfunctional 
information propagates in protein interaction networks, and assess cooperation between perturbed genes.

Currently, the GPA mainly focuses on single-gene perturbations by knockout, RNA interference and 
overexpression. Most perturbed genes are protein-coding genes. With extensive functional research on 
non-coding RNAs, non-coding gene perturbation data will quickly accumulate in public resources. We 
will periodically update the GPA to include these accumulating permutation data on non-coding RNAs, 
enlarging our database. Multiple genes are generally required to cooperatively contribute to specific 
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phenotypes or biological processes30,31. Recent studies have revealed that combinatorial perturbations 
of multiple genes can induce obvious phenotype changes, whereas perturbation of the single genes did 
not32. In the future, the GPA will also include combinatorial gene perturbations to overcome the limita-
tions of single-gene perturbations, such as compensatory effects, genetic buffering, and the redundancy 
of cellular mechanisms or pathways.

Recently, we observed that large amounts of high-throughput sequencing data were generated from 
gene perturbations using RNAi, TALEN or CRISPR/CAS systems. These data allow us to capture changes 
of transcriptome, epigenome and regulatome, providing new insight into the molecular mechanisms of 
perturbed genes from different layers. For instance, RNA-seq presents the possibility of detecting the 
expression of non-coding RNAs (e.g., lncRNAs), alternative splicing events and 3` UTR shortening. 
In next version of the GPA, we also intend to incorporate these data and provide more comprehensive 
molecular depictions of gene perturbations.

In summary, we will keep the GPA datasets up to date and maintain the GPA as an extensible data-
base. We believe the GPA will become a valuable resource for the functional genomics community and 
a practical tool for experimental scientists.

Methods
Data collection and compilation.  We collected transcriptome profiles of single-gene perturbations 
across different cell types or tissues in human and mouse by searching all experimental datasets from 
GEO using the keywords ‘knock out’, ‘knock down’, ‘RNAi’, ‘knock in’, ‘overexpression’, ‘high expression’, 
‘low expression’, ‘siRNA’ or ‘shRNA’. For each collected profile, we extracted the samples in which a spe-
cific gene is perturbed as case samples. The samples described with keywords of ‘scramble’, ‘non-specific’, 
‘empty control’, ‘negative control’, ‘non-targeting control’, ‘untreated control’, ‘ethanol control’ or ‘wild-type’ 
in the sample description of GEO were defined as control samples. Other experimental information, such 
as perturbed gene symbol, cell line, microarray platform, perturbation manner and experiment design, 
was also compiled with the corresponding profile. This process was triple-checked by different research-
ers. For the convenience of downstream analysis, the probe identifiers of each transcriptome profile were 
converted to Entrez Gene IDs.

Database architecture and web interface.  The GPA is built on Apache Tomcat 7.0.47 with MySQL 
5.6.14 (database server) at the back end and HTML, JSP 2.1 and JavaScript at the front end to provide a 
user-friendly interface for locating and retrieving information from the database. Apache, MySQL, and 
JSP are preferred because they are open-source software and platform independent. The architecture of 
the GPA database is shown in Fig. 2.
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Organization of data.  Primary data.  Expression profiles of gene perturbations together with the 
corresponding information, including permutation manner, number of differential genes, experimental 
design and out-links to other databases, were compiled as the primary data. For each profile, a unique 
GPA ID was assigned (e.g., GPAHSA000001), which represented a form of global address in the database.

Secondary data.  Secondary data were derived from various transcriptome analyses for each collected 
primary profile. These data mainly include DEGs, enriched GO terms and KEGG pathways, interac-
tion subnetworks, enriched transcription factors and microRNAs, correlated cancers and drugs, and 
correlations between different perturbed genes. These secondary data will assist experimental scientists 
in further harnessing the power of these profiles, focusing on the detection of (i) novel or cell-specific 
functions and pathways affected by perturbed genes, (ii) protein interactions and regulatory cascades 
affected by perturbed genes and (iii) perturbed genes mediating cooperative effects for each collected 
transcriptome profile.

Transcriptome analysis of gene perturbations.  Differential expression analysis.  For each transcrip-
tome profile, we used the t test to calculate p values with FDR correction and computed the fold changes 
of genes by comparing perturbed samples and their corresponding controls. Finally, the genes with fold 
change ≥2 were identified as DEGs.

Cumulative hypergeometric test for enrichment analysis.  Enrichment analysis of DEGs was performed 
mainly based on the cumulative hypergeometric test. The statistical significance of the enrichment was 
calculated using the following formula (1):
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where N is the total number of genes in the transcriptome profile, M is the number of DEGs, n is the 
number of genes annotated in a certain functional category and q is the number of overlapping genes 
between DEGs and the functional category.

GO and KEGG pathway enrichment analysis.  GO terms for the Entrez genes were downloaded from the 
NCBI ftp site. The KEGG pathways were downloaded from the KEGG database. For each transcriptome 
profile, the significance of enrichment analysis of DEGs with GO terms and pathways was determined 
using a hypergeometric test with FDR correction (FDR ≤  0.05).

Evaluating new GO functions and KEGG pathways of perturbed genes.  A GO term (or KEGG pathway) 
enriched by DEGs of the perturbed gene but not annotated by the perturbed gene was considered as a 
new function (or pathway).

Extracting interaction subnetworks.  Protein interaction networks were obtained from the Mentha 
Database33 on June 2014, containing 141,247 interactions in human and 22,213 in mouse. For each per-
turbed gene, its directly interacting genes and DEGs at a distance of two steps in the protein interaction 
network were extracted to construct its initiated subnetwork.

Transcription factors and microRNA enrichment analysis.  Transcription factors and their target genes 
were downloaded from ChIPBase34. We obtained two million transcription factor-gene regulatory rela-
tionships involving 120 and 69 transcription factors for human and mouse, respectively. In addition, 2207 
microRNAs and 76,303 microRNA-target relations in human were retrieved from TargetScan35 with a 
context +  score ≤  − 0.3. Enrichment analysis of transcription factors and microRNAs was performed by 
comparing the DEGs of perturbed genes to target genes of transcription factors or microRNAs using a 
hypergeometric test (FDR ≤  0.05).

Enrichment analysis of perturbed genes with multiple cancers and drugs.  Gene expression profiles of thir-
teen types of cancers were downloaded from TCGA (Supplementary Table 1), which contained 4691 can-
cer samples and 422 normal samples. Gene set enrichment analysis (GSEA) was performed to measure 
whether the DEGs of specific perturbed genes showed significant expression changes in multiple cancers 
(FDR ≤  0.25). Individual drugs and their target genes were derived from DrugBank36. Active compounds 
and drug-induced gene expression profiles were downloaded from Connectivity Map37 (cmap). Finally, 
10,399 drug-target relationships from DrugBank and more than 7000 expression profiles from cmap 
were taken for enrichment analysis of perturbed genes with drugs by a hypergeometric test (FDR ≤ 0.05).
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Correlation analysis among gene perturbations.  For each perturbed gene in GPA, other perturbed genes 
sharing similar patterns of global expression changes were identified as cooperative genes or genes with 
similar functions. The Pearson correlation test was used to identify significantly correlated perturbed 
genes (p ≤  0.05 and Pearson correlation coefficient ≥  0.5).

Implementation of web-based tools.  Data searching.  The GPA provides three search modules with 
which to extract transcriptome profiles and the corresponding analysis results. In the simple search 
module, a search box enables users to retrieve data based on gene name (e.g., PTEN, has-miR-100 and 
HOTAIR) or GPA id (e.g., GPAHSA000001). The advanced search module provides a more detailed 
search for perturbation data by organism, gene type, perturbation manner and cell line. To facilitate a 
user-friendly text search, we adopted the jQuery AutoComplete technique to guide users for keyword 
selection (http://jqueryui.com/autocomplete/). We also designed a reverse search module to help users 
retrieve perturbation data by searching their secondary data, such as DEGs, enriched GO terms, enriched 
KEGG pathways and correlated drugs.

Data browsing.  We designed two browsing facilities (matrix view and list view) to provide an overall 
view of gene perturbations in the GPA. Users can search and sort all entries in the GPA by setting various 
options: (i) organism (Homo sapiens and Mus musculus), (ii) gene names, (iii) cell lines or tissues, and 
(iv) gene types (protein-coding gene, lncRNA and microRNA). In the matrix view, users can also flexibly 
choose multiple perturbation data by clicking green blocks within the browsing matrix table and seek 
details by clicking the ‘build archive’ button.

Gene list enrichment tool.  The gene list enrichment tool was designed for retrieving the perturbation 
data whose DEGs were enriched for the user-uploaded list of gene IDs or symbols by the cumulative 
hypergeometric test. Users can obtain enriched GPA entries to help characterize the custom gene list.

Similar Expression Pattern (SEP) tool.  The SEP tool was developed for exploring similar changes in 
gene expression between perturbation datasets and user-uploaded profiles. This tool utilizes the Pearson 
correlation test to obtain correlated perturbation entries from the GPA for each user-uploaded profile by 
measuring the correlations of their log2-fold changes.

GPA comparison tool.  The GPA comparison tool is used to compare any two GPA datasets to find simi-
larities and differences in the differentially expressed genes, biological functions and pathways, transcrip-
tion regulators, cancer/drug associations and cooperative perturbed genes. Before comparison, the GPA 
assesses the comparability between the two datasets by comparing additional information, including 
their organisms, experimental platforms, cells or cell lines, perturbed genes and perturbation manners. 
By default, the same organism and experimental platform are required when comparing two perturba-
tion experiments.

Download.  The download module supports both single and batch download. The single download can 
be used to extract perturbed data by GPA id (e.g., GPAHSA000001) in our database, and the batch 
download lists all perturbed differential expression profiles categorized by protein-coding gene, lncRNA 
and microRNA in human and mouse.

Updating of GPA.  We will incorporate newly released data every month. The GPA also allows users 
to submit custom perturbation data. However, before including custom data in the GPA, our team will 
scrutinize the authentication of the data.
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