
RESEARCH ARTICLE

Y chromosomal evidence on the origin of

northern Thai people

Andrea Brunelli1, Jatupol Kampuansai2,3, Mark Seielstad4, Khemika Lomthaisong5,

Daoroong Kangwanpong2, Silvia Ghirotto1*, Wibhu Kutanan6*

1 Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy, 2 Department of

Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, 3 Center of Excellence in

Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand,

4 Department of Laboratory Medicine & Institute for Human Genetics, University of California San Francisco,

San Francisco, California, United States of America, 5 Forensic Science Program, Faculty of Science, Khon

Kaen University, Khon Kaen, Thailand, 6 Department of Biology, Faculty of Science, Khon Kaen University,

Khon Kaen, Thailand

* ghrslv@unife.it (SG); wibhu@kku.ac.th (WK)

Abstract

The Khon Mueang represent the major group of people present in today’s northern Thai-

land. While linguistic and genetic data seem to support a shared ancestry between Khon

Mueang and other Tai-Kadai speaking people, the possibility of an admixed origin with con-

tribution from local Mon-Khmer population could not be ruled out. Previous studies con-

ducted on northern Thai people did not provide a definitive answer and, in addition, have

largely overlooked the distribution of paternal lineages in the area. In this work we aim to

provide a comprehensive analysis of Y paternal lineages in northern Thailand and to explic-

itly model the origin of the Khon Mueang population. We obtained and analysed new Y chro-

mosomal haplogroup data from more than 500 northern Thai individuals including Khon

Mueang, Mon-Khmer and Tai-Kadai. We also explicitly simulated different demographic

scenarios, developed to explain the Khon Mueang origin, employing an ABC simulation

framework on both mitochondrial and Y microsatellites data. Our results highlighted a similar

haplogroup composition of Khon Mueang and Tai-Kadai populations in northern Thailand,

with shared high frequencies of haplogroups O-PK4, O-M117 and O-M111. Our ABC simu-

lations also favoured a model in which the ancestors of modern Khon Mueang originated

recently after a split from the other Tai-Kadai populations. Our different analyses concluded

that the ancestors of Khon Mueang are likely to have originated from the same source of the

other Tai-Kadai groups in southern China, with subsequent admixture events involving

native Mon-Khmer speakers restricted to some specific populations.

Introduction

The area of northern Thailand situated in proximity to southern China, northern Myanmar

and northern Laos hosts several ethnicities who can be linguistically classified in four groups:

Austroasiatic, Tai-Kadai (TK), Hmong-Mien and Sino-Tibetan. The languages belonging to
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the Austroasiatic subfamily Mon-Khmer (MK) are spoken today by populations, e.g. Lawa

(LW) and Mon (MO), historically and archaeologically recorded as the native inhabitants of

this area before the arrival of Tai-Kadai people form southern China 2,000 years ago [1–3].

Other ethnicities, such as the Hmong-Mien (e.g. Hmong) and different Sino-Tibetan groups

(e.g. Karen), migrated from nearby countries to the mountainous areas of northern and west-

ern Thailand no more than 200 years ago [4–5]. In addition, other recent migrations from

southern China and/or northern Myanmar are recorded as involving several Tai-Kadai groups

such as Lue (LU), Khuen (KH), Yong (YO) and Shan (SH) [6].

Linguistic similarity between populations has often been used to disentangle patterns of

relationship, under the assumption that a common language implies a common origin [7,8].

However, genetic similarities between different populations are often more complex than

expected from linguistic data due to the effect of processes such as drift and migration [9]. The

mountainous area of northern Thailand consists of several river plains surrounded by moun-

tains, which continue from the Shan Hills in bordering Myanmar to Laos. In this region, dis-

similar geographic areas are often occupied by different ethnolinguistic groups. The hill tribes,

such as LW and SH speaking groups, currently live on the mountain where mobility is quite

limited while, on the other hand, populations such as MO and different TK speaking groups

inhabit the well-connected lowland regions. Geography, acting in addition to cultural/linguis-

tic isolation, might have been an influential factor in determining the divergence by inbreeding

of these populations [10]. Due to the combined effect of these different processes, northern

Thailand is an extremely interesting site for studies on human population genetics.

Among the multi-ethnic groups in northern Thailand, the Khon Mueang (KM) are the

most represented, with a total number of individuals reaching 6 million [11]. KM is the name

with which local northern Thai people, possibly the Yuan (YU), call themselves, and refers

more to a past social and political category rather than a distinct population [12,13]. Linguisti-

cally speaking, the KM’s language is similar to that of the YU, which is classified as belonging

to the TK family.

It is widely accepted that genetic markers can be efficiently used to reconstruct past popula-

tions’ history and interactions [14–20]. Three types of genetic markers are commonly used to

reconstruct past population processes, differing in the modality of inheritance: the maternally

inherited mitochondrial DNA (mtDNA), paternally inherited Y chromosome, and the autoso-

mal and X chromosomes that are inherited by both parents. Even after the rise of whole-

genome techniques, uniparental markers continue to be widely used in population genetics.

Due to their specific patterns of inheritance, the information provided by the Y-chromosome

and by the mitochondrial DNA (mtDNA) allows for in depth analyses of sex-specific patterns

of population history and demography. These data can be used to locate asymmetric contribu-

tions of male and female individuals to a migration, an event of admixture and generally to the

pattern of gene-flow in a certain area.

A previous study, based on comparisons among autosomal Short Tandem Repeat (STR)

loci, suggested an admixed origin for KM, with a higher contribution from the TK than from

the MK groups [21]. On the other hand, a coalescent modelling using mtDNA genome data

indicated southern China as the most probable origin of the KM, without admixture with LW

groups in northern Thailand [22]. Y chromosomal data of KM and of their linguistic and geo-

graphic neighbours in northern Thailand have been reported, but they have been limited to

STR markers [10,23]. Here, we investigated newly generated data of single nucleotide poly-

morphism (SNP) on Y chromosome along with previously published Y-STRs and mtDNA

data. We used a combination of classical statistical analyses and model based simulations to

shed light on the past population dynamics linked to the origin of KM of northern Thailand.
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Material and methods

Y binary markers and assembled datasets

A sample of 519 males belonging to 24 populations from northern Thailand was subdivided

into three groups: Khon Mueang (KM), Mon-Khmer (MK) and Tai-Kadai (TK) (Table 1). The

DNA samples were obtained from our previous studies with written informed consent [21,23].

We genotyped a total of 104 binary polymorphisms on the Y chromosome (M6, M49, M32,

M42, M94, P85, M181, M182, M168, M294, P144, M174, M15, M179, P99, M96, P150, P147,

M75, P143, M216, RPS4Y711, M8, M105, M38, M217, M356, P55, M428, P96, M201, P257,

M342, P287, M69, M52, P127, P123, M258, U179, M253, M450, P215, P209, M304, M172, M9,

P128, M147, P60, P79, P261, P263, M11, M20, M76, M317, M357, P256, M106, M5, M353,

P118, P195, M214, M231, P191, P186, M119, P31, M122, P198, M45, P281, M242, M306,

M173, P231, M124, P249, P204, P202, M70, M320, M128, P63, Tat, P203, M103, M50, M95,

PK4, M111, M88, SRY465, P49, 47z, M324, M121, M164, M159, M7, M134 and M117) ac-

cording to iPLEX Assay [24] using a Sequenom Mass ARRAY iPLEX Platform (Sequenom,

Hamburg, Germany). To assign specific Y chromosomal haplogroup or Y lineage to each indi-

vidual, we employed a phylogenetic hierarchical approach based on Y-DNA Haplogroup Tree

YSOGG 2016 [25]. The use of human subjects for this study was ethically approved by Chiang

Mai University, Thailand.

Table 1. Samples included in this study and basic indices of genetic diversity.

HVR-I Y-STR Y-SNP

Population Code Group N h sd No. of haplotypes N h sd No. of haplotypes N No. of haplogroups

Khon Muang 1 KM1 KM 50 0.967 0.0121 31 21 1 0.0147 21 21 7

Khon Muang 2 KM2 KM 41 0.974 0.0103 25 16 0.9917 0.0254 15 16 5

Khon Muang 3 KM3 KM 36 0.967 0.0141 22 15 1 0.0243 15 15 7

Khon Muang 4 KM4 KM 52 0.98 0.0085 36 29 1 0.0091 29 29 9

Khon Muang 5 KM5 KM 43 0.933 0.0222 22 20 1 0.0158 20 21 8

Khon Muang 6 KM6 KM 45 0.954 0.0193 29 22 1 0.0137 22 22 12

Khon Muang 7 KM7 KM 46 0.934 0.0201 21 23 0.9921 0.0154 21 23 6

Khon Muang 8 KM8 KM 45 0.961 0.0143 26 22 0.9913 0.0165 20 22 11

Khon Muang 9 KM9 KM 45 0.932 0.028 25 22 0.987 0.0201 20 22 7

Khon Muang 10 KM10 KM 30 0.922 0.023 12 14 0.989 0.0314 13 14 5

Mon MO MK 41 0.921 0.0216 16 15 0.981 0.0308 13 18 6

Lawa 1 LW1 MK 46 0.959 0.0134 25 25 0.95 0.0237 15 25 4

Lawa 2 LW2 MK 50 0.913 0.0178 15 25 0.9533 0.0296 18 25 4

Khuen KH TK 60 0.967 0.0096 31 29 0.9877 0.0133 25 24 7

Lue 1 LU1 TK 51 0.915 0.0274 23 25 0.99 0.0142 22 24 9

Lue 2 LU2 TK 44 0.878 0.0257 14 21 0.981 0.0197 17 22 6

Lue 3 LU3 TK 50 0.988 0.0072 39 26 0.9969 0.0117 25 26 7

Lue 4 LU4 TK 46 0.932 0.0197 19 24 0.9783 0.0205 20 19 4

Yuan 1 YU1 TK 39 0.969 0.0145 26 20 0.9895 0.0193 18 19 6

Yuan 2 YU2 TK 50 0.974 0.0094 30 25 0.9833 0.0171 21 23 7

Yuan 3 YU3 TK 50 0.966 0.0116 28 26 0.9692 0.022 20 24 11

Yuan 4 YU4 TK 44 0.948 0.0147 21 21 0.9952 0.0165 20 19 7

Yong YO TK 62 0.965 0.0088 31 31 0.9892 0.0108 26 26 9

Shan SH TK 43 0.972 0.0106 26 19 0.9942 0.0193 18 20 7

N = number of samples; h = haplotype diversity: sd = standard deviation. The linguistic affiliation of the populations is coded as: TK = Tai-Kadai; MK = Mon-

Khmer; KM = Khon Mueang. Y-STRs and mtDNA-HVR1 were retrieved from previous studies [10,23]

https://doi.org/10.1371/journal.pone.0181935.t001
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In order to investigate the origin of the KM populations from both maternal and paternal

perspectives using a simulations based analysis, we assembled two datasets in which we col-

lected genetic information for 17 Y-STRs loci: DYS19, DYS388, DYS389a, DYS389b, DYS390,

DYS391, DYS392, DYS393, DYS426, DYS434, DYS435, DYS436, DYS437, DYS439, DYS460,

DYS461, Y-GATA-A10 and mtDNA HVR-I sequence (Table 1). A total of 536 genotypes for

Y-STR and 1,109 for mtDNA-HVRI sequences were retrieved from literature [10,23].

Statistical analyses

We employed a discriminant analysis of principal components (DAPC) [26] on both unipa-

rental datasets to define genetic relationship among KM, MK and TK groups. The DAPC anal-

ysis can be used to investigate the relationship between populations optimizing the variation

between- and within-groups while being free from assumptions about Hardy-Weinberg equi-

librium or linkage equilibrium [26]. We first assessed the best number of clusters in the HVR-I

and Y-STR datasets using the find.clusters function in adegenet 1.3–1 [27] and compared the

results of 5 independent runs using a custom made R script. We then ran the DAPC analysis

with 100,000 iterations and checked for the consistency of the groups founded.

An exploratory analysis such as the DAPC however do not account for geographic location

of the samples, thus precluding the visualization of geographic locations where gene flow

between populations is either hindered or facilitated. Estimated Effective Migration Surfaces

(EEMS) which employed individual based migration rates can be used to visualize zones with

higher/lower migration with respect to the overall rate [28]. The region under study is first

divided in a grid of demes and the individuals are assigned to the deme closest to their sam-

pling location. The matrix of effective migration rates is then computed by EEMS based on the

stepping-stone model [29] and on resistance distances [30]. We applied EEMS to a matrix of

pairwise Fst distances constructed on the mtDNA dataset using Arlequin 3.5 [31] and on the

17 Y-STRs using the script available from Github at https://github.com/dipetkov/eems. We

averaged three runs each with 200, 300, 400 and 500 demes to produce the final EEMS surface,

as the number of demes simulated during the grid construction phase can influence the scale

of the deviation from overall migration detected [28]. Each single run consisted of 200,000

burn—in steps followed by 500,000 MCMC iterations sampled every 1000 steps. We plotted

the averaged EEMS and checked for MCMC convergence using the rEEMSplots package in R v

3.2.2.

In order to unravel the origin of the KM population, we employed an Approximate Bayes-

ian Computation (ABC) approach on both the HVR-I and Y-STR datasets. We first con-

structed two competing models (Fig 1), which are admixture and tree-like models based on

our previous results [21,22].

In the admixture model, the KM population originated as a consequence of an admixture

event from the parental populations, the MK and TK groups. The tree-like model postulates

instead a recent separation of the KM and TK populations and a split of this combined popula-

tion from the MK ones further back in time. For both the admixture and the tree-like models,

we assumed constant effective population sizes based on historical records (S1 Table) and that

the prior distributions were all uniform. The ABC methodology allows us to simulate thou-

sands of genetic datasets for both of our competing models by means of the coalescent theory.

These datasets are generated taking into account the prior distribution associated with each

of the model parameters while being also composed of the same number of individuals and

type of genetic markers that characterize the observed ones. The genetic variation in both the

observed and simulated datasets is then summarized using a fixed set of statistics and com-

pared using Euclidean distance. The posterior probabilities of each model are computed using

Y chromosomal evidence of northern Thai people

PLOS ONE | https://doi.org/10.1371/journal.pone.0181935 July 24, 2017 4 / 13

https://github.com/dipetkov/eems
https://doi.org/10.1371/journal.pone.0181935


a weighted multinomial logistic regression (LR) considering the simulations, which generate

summary statistics most similar to the observed ones, as shown by smallest Euclidean distances.

In the LR methodology, the model is considered as the categorically dependent variable in the

simulations and the summary statistics as the predictive variables. The regression is local around

the vector of observed summary statistics and the probability of each model is finally evaluated

at the point corresponding to the observed vector of summary statistics. Maximum likelihood is

used to estimate the β coefficients of the regression model. To evaluate the stability of the mod-

els’ posterior probabilities, we considered different thresholds by considering different number

of retained simulations for LR (25 000, 50 000, 75 000 and 100 000 best simulations). To gener-

ate the simulated datasets, we used the software package ABCtoolbox, running 500 000 simula-

tions for each model. To calculate the models’ posterior probabilities, we used R scripts from

http://code.google.com/p/popabc/source/browse/#svn%2Ftrunk%2Fscripts, modified by SG.

To summarize the genetic information contained in both the HVR-I and Y-STR datasets we cal-

culated two arrays of statistics within and between populations. For the mitochondrial DNA

dataset, we considered the number of haplotypes, the number of private polymorphic sites, Taji-

ma’s D, the mean number of pairwise differences for each population, the mean number of pair-

wise differences between populations and pairwise Fst. When we analysed Y-STR, we used as

summary statistics the mean and the sd. over loci in each population of four parameters: the

number of alleles, haplotype diversity, modified Garza–Williamson index and the allelic range.

Finally, as the genetic heterogeneity was observed in KM populations [23], we repeated the

ABC approach outlined in Fig 1 for each KM population (KM1 to KM10).

Results

Y haplogroups

The haplogroup frequencies in each studied population are listed in Table 2 and represented

geographically in Fig 2, while the evolutionary relationships between them are presented in S1

Fig. Haplogroup O-PK4 (or O1b1a1) is the most diffuse, being present in all populations with

frequencies ranging from 7.7% (YO) to 72.0% (LW1). The O-M117 (O2a2b1a1) is a hap-

logroup which is also commonly found (4.3% - 43.5%) in almost all the populations, except

LW2. The differentiation of LW2 is also evident from the elevated frequency of haplogroup

N-M231 (56.0%), which occurred only at minor frequencies in the other populations (ranging

Fig 1. The models tested in the ABC analysis on Mon-Khmer (MK), Khon Mueang (KM) and Tai-Kadai (TK) populations: admixture (A) and

tree-like (B). Times of populations split and admixture are indicated as T1, T2 and Tadm.

https://doi.org/10.1371/journal.pone.0181935.g001
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from 4.0% to 16.6%). However, LW2 is the only MK population harbouring O-M111

(O1b1a1a1a1a), a haplogroup otherwise widely distributed in both KM and TK. The similarity

between KM and TK groups is further shown by the shared presence of haplogroups C-M217

(C2), D-M15 (D1a1), O-P203 (O1a1a) and O-M7 (O2a2a1a2). This similarity is enhanced

when considering the populations inhabiting the central part of northern Thailand. Some

other haplogroups commonly present in KM, such as C-M130 and O- M324 (O2a), seem to be

shared with some MK (MO, LW2) and some TK (LU3, YO, YU3) groups. Interestingly, while

being geographically removed from the other sampled locations, YU4 showed similar hap-

logroup distribution related to the other TK populations.

Population structure

The DAPC analysis failed to find a clear most supported number of K in both uniparental

datasets (S2A and S2B Fig). However, once we assigned each sample to either its original popu-

lation (S2C and S2D Fig) or language group (Fig 3A and 3B), the resulting scatterplots high-

lighted several patterns. The DAPC analysis based on the Y-STR dataset revealed a general

overlapping of the Tai-Kadai and Khon Mueang clusters while the Mon-Khmer populations

seemed clearly distinct, especially LW1 and LW2. When grouped separately, some the Khon

Mueang populations inhabiting central northern Thailand such as KM3, KM4, KM5 and KM1

slightly departed from the general trend of similarity with the majority of Tai-Kadai. These

Fig 2. Location of the studied populations and frequencies of the 7 major haplogroups obtained in Northern Thailand.

https://doi.org/10.1371/journal.pone.0181935.g002
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populations appeared closer to the Mon-Khmer populations than the rest of KM. The Tai-

Kadai population clusters were largely overlapping, with the notable exception of the SH that

fell closer to LW1 and MO. The DAPC based on the mtDNA-HVR1 dataset presented less sep-

aration among both linguistic and population-based clusters, showing the overall similarity

between maternal lineages in northern Thailand.

The EEMS surfaces showed an overall pattern of good connectivity between neighbouring

populations in northern Thailand with only moderate reductions/increment of migration

rates (Fig 4A and 4B). Especially evident in the Y-STR dataset, the geographic outlier popula-

tion, YU4, was connected with TK and KM populations residing in the central part of northern

Thailand by a corridor of high effective migration (Fig 4A). These northern Thai populations

were in turn well connected with each other and with the eastern Lue (LU1 and LU2) popula-

tions. The strongest barrier in the Y-STR dataset was, not surprisingly, the one separating

LW1 and LW2 populations, leading to lower migration rates with surrounding KM and TK

populations (KM7, YU3 and YO). The MO did not conform to the isolation pattern presented

by the Lawa, showing higher than expected migration rates with TK and KM populations. The

EEMS surface based on the mtDNA-HVR1 dataset (Fig 4B) highlighted a weak spatial struc-

ture compared with the Y-STR dataset. We observed lower than expected migration rates

between LW1, LW2 and the KM populations from the southern part of northern Thailand

(KM8, KM9, KM10), as well as a feeble barrier between LU1 and LU2. However, higher migra-

tion rates indicate the connection between the SH and populations residing in the central part

of northern Thailand.

Model selection

The posterior probabilities from ABC analysis of the two considered evolutionary models are

presented in Table 3. For the Y-STR dataset, we found that the tree-like model postulating a

recent split between the ancestors of modern KM and TK populations provided a better expla-

nation for the KM origin than an admixture model. The high and stable posterior probabilities

Fig 3. DAPC analysis on the Y-STR (A) and mtDNA-HVR1 (B) dataset. Scatterplots show three linguistic grouping: TK (red), KM (black)

and KM (blue).

https://doi.org/10.1371/journal.pone.0181935.g003
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over a different number of retained simulations confirmed the chosen tree-like model. Once

we repeated the ABC analysis for each separated KM population (S2 Table), the results weakly

supported tree-like model in most of the KM populations. The ABC analysis failed to support

the tree-like model in KM9. The results based on mtDNA HVR-I were also less indicative of

supporting the tree-like model than the admixture, however, the results obtained from simula-

tions conducted on separated KM populations supported the tree-like model in almost all of

the KM populations (e.g. KM2, KM3, KM4, KM6, KM7 and KM10). There was only one

instance of KM5, in which the admixture model was preferred for the mtDNA-HVR1 dataset.

Discussion

The investigation of Y chromosomal lineages in northern Thai populations revealed that the

majority of the sampled individuals could be assigned to one of three common haplogroups:

O-PK4 (O1b1a1), O-M117 (O2a2b1a1) and O-M111 (O1b1a1a1a1a). These lineages are also

prevalent in Chinese and other Southeast Asian populations [32–35]. The overall pattern of

haplogroups distribution was also generally homogeneous in our studied populations, with

subhaplogroups of O1 and O2 reaching the highest frequencies amongst the studied individu-

als. This was especially true for TK and KM populations. Interestingly, the MO from northern

Table 3. Posterior probabilities of each model performed by ABC analysis under weighted multino-

mial logistic regression.

HVR-I Y-STR

Threshold Admixture model Tree-like model Admixture model Tree-like model

25000 0.566 0.434 0.294 0.706

50000 0.479 0.521 0.297 0.703

75000 0.468 0.532 0.299 0.701

100000 0.487 0.513 0.302 0.698

https://doi.org/10.1371/journal.pone.0181935.t003

Fig 4. EEMS analysis of effective migration rates (m) on the Y-STRs (A) and mtDNA-HVR1 (B) datasets. The effective migration rate is represented on a

log10 scale represented on the right. Areas showing negative values (orange) represent possible barriers to gene-flow while zones with positive values (blue)

correspond to places of increased gene-flow with respect to normal IBD (white).

https://doi.org/10.1371/journal.pone.0181935.g004
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Thailand show the presence of haplogroups usually found in South, Central and West Asia:

R-P249 (R2a) and J-M172 (J2) [36]. Connection between the ethnic Mon and populations

from South and Central Asia was already proposed from previous identification of mtDNA

lineage W3a1b [20]. Both groups of the MK speaking LW groups showed high differences

between each other and from other populations, presenting low levels of haplogroup diversity

(Table 1) with high frequencies of O-PK4 (O1b1a1) (72% in LW1) and N-M231 (56% in

LW2). Haplogroup N-M231 is prevalent in today’s TK and Hmong-Mien speaking popula-

tions, as well as in Han of southern China [37]. We also detected haplogroup C-M130 and its

sublineages (C-M356 and C-M217) in almost all KM and YU populations, as well as in one

Lue group (LU1). Haplogroup C-M130 has been found mainly in Mongolia and in Korea,

while in Southeast Asia it reaches high frequencies in the eastern part of Indonesia. C-M217 is,

instead, typically present at high frequencies across northeast Asia [38]. It is worth to note that

we observed haplogroup D1-M15 in several TK and KM populations, although at low frequen-

cies. High frequency of this lineage was reported in China especially in Tibet, Quiang and Yao

[39]. To account for the presence of C and D lineages in our TK groups, we speculate that

paternal admixture among several ethnolinguistic groups in the area of southern China were

heavily influenced by Han and Mongol expansion from the north [40–43]. This would have

happened before the southward migration of the TK ancestor to northern Thailand, which

could contribute to the presence of C and D lineages in these populations.

In agreement with earlier studies of mtDNA and autosomal STRs variation [20–22] that

reported genetic differentiation of MK speaking groups in northern Thailand, the two LW

groups appeared to differ from other populations and from each other, as indicated by the

DAPC results (S2C Fig). A lower level of gene flow caused by the presence of geographic barri-

ers may be the driven factor of this differentiation, as suggested by the EEMS surfaces (Fig 4).

On the other hand, the Mon is less genetically differentiated from the KM and TK groups.

Although the genetic origin of the Mon is related to South Asia, recent admixture with the Tai

sources could have been the main force that shaped the genetic variation of the northern Thai

Mon.

To investigate the origin of the KM, we proposed two demographic models, which summa-

rized previous hypothesis on their origin. The first scenario depicted an admixture event

involving local MK populations and migrating TK groups, while a second tree-like model sug-

gested that the KM originated following a recent split from the ancestors of modern TK popu-

lations (Fig 1). We then proceeded to test these hypotheses with ABC simulations on both

maternally and paternally inherited data. When all the KM individuals were pooled together,

the most supported model was the one postulating a close relationship between these popula-

tions and TK (Table 3). This demographic pattern was clearer when Y-STRs were employed

instead of mtDNA, possibly suggesting significant maternal contribution from local MK

speaking on current KM populations. This conclusion was reinforced when the single KM

populations were considered separately. In some specific cases (KM5, S2 Table), the admixture

scenario obtained higher posterior probabilities than the tree-like one, highlighting the impor-

tance of considering small scale local processes when investigating the history of a population.

In conclusion, we observe contrasting pattern of paternal and maternal genetic variation with

a clearer genetic structure in the Y-STRs than in the mtDNA-HVR1 sequences. Our different

approaches suggest nonetheless a common origin between KM and TK populations, previ-

ously proposed to be located in southern China [22]. After an initial migration southward,

fragmentation process in separate villages and contact with local MK speaking people could

have promoted secondary events of admixture, especially in the matrilineal lineage (S2 Table).

Although some models and populations compared are different from our previous mtDNA

genome study [22], the results are confirmed with the additional inclusion of post-settlement
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contacts with MK populations. Future work employing complete Y sequences and/or in depth

autosomal information from northern Thai and surrounding populations will be crucial to

determine the migration origin and to evaluate the full impact of secondary admixture.
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