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Abstract 

During sensory-guided behavior, an animal’s decision-making dynamics unfold through 
sequences of distinct performance states, even while stimulus-reward contingencies remain 
static. Little is known about the factors that underlie these changes in task performance. We 
hypothesize that these decision-making dynamics can be predicted by externally observable 
measures, such as uninstructed movements and changes in arousal. Here, combining 
behavioral experiments in mice with computational modeling, we uncovered lawful 
relationships between transitions in strategic task performance states and an animal’s 
arousal and uninstructed movements.  Using hidden Markov models applied to behavioral 
choices during sensory discrimination tasks, we found that animals fluctuate between 
minutes-long optimal, sub-optimal and disengaged performance states. Optimal state 
epochs were predicted by intermediate levels, and reduced variability, of pupil diameter, 
along with reduced variability in face movements and locomotion. Our results demonstrate 
that externally observable uninstructed behaviors can predict optimal performance states, 
and suggest mice regulate their arousal during optimal performance.  

Introduction 

Behavioral and neural responses are notoriously variable across trials in both animals and 
humans (1).  Recent studies have demonstrated that this variability is not random, but arises 
from changes in neural and physiological states (1-3). For example, arousal levels fluctuate 
on a moment-to-moment basis, and a significant fraction of neural and behavioral variability 
can be predicted by pupil diameter, which is tightly linked to arousal (4). Uninstructed 
movements also influence neural dynamics, as shown in the visual system (5-9) and reported 
ubiquitously across cerebral cortex (10-12). Methods for studying behavioral variations in 
relation to arousal vary but can lead to cohesive views of the nervous system and its function 
(13). For instance, the Yerkes-Dodson law, first proposed in 1908 and developed and 
modified through the years since, outlines an inverted-U relationship between arousal and 
performance on difficult tasks, with optimal performance occurring at intermediate arousal 
(14).  
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While some studies have successfully demonstrated a lawful inverted-U shaped relationship 
between behavioral performance and arousal, others have failed to achieve similar findings 
(4, 15). Uncovering the mechanisms of behavior is highly dependent upon detecting and 
understanding these behavioral and neural state-dependent processes. One possible reason 
for this inter-study variability is that certain sub-states of behavior were undetected or non-
occurring. Further, these prior studies on the impact of arousal and movement consider 
moment-to-moment fluctuations, but do not address structured variations across time during 
task performance. Therefore, developing a robust strategy for detecting variations in 
behavioral strategy, and understanding how they interact, is an essential prerequisite to 
revealing the underlying neural mechanisms of behavior. A recent study (16) showed that 
mice and humans alike express a handful of discrete strategies during decision-making 
tasks, and switch between them within the same experimental session. This advances 
classical models of performance by accounting for structured fluctuations in engagement 
strategies. However, the precise relationship between arousal, movements, and discrete 
strategic performance states is not known. 

Here, we address this fundamental question by linking transitions between decision-making 
strategies to changes in arousal (as measured by pupil diameter) and uninstructed 
movements (as measured by face video motion energy and locomotion speed). We 
identified epochs of optimal task performance and showed that trained animals maintain 
them for longer durations when compared to periods of sub-optimal strategic engagement. 
Consistent with the Yerkes-Dodson law, we found a striking inverted-U relationship 
between the likelihood of optimal state occupancy and pupil diameter and uninstructed 
movement in both auditory and visual discrimination tasks.  Similarly, we found a U-
relationship between the probability of task dis-engagement and pupil diameter/uninstructed 
movement. Furthermore, reduced variability in pupil diameter and movement measures 
signaled transitions into the optimal state and could be used to predict the onset and offset 
of decision-making states. Our results reveal that a significant fraction of behavioral 
variability can be accounted for through detection variations in sustained behavioral 
state/strategy, which can be predicted by shifts in a subject's arousal and uninstructed 
movements, and further suggest that controlled arousal is key to maintaining optimal 
performance. 

Results  

Mice switch between several performance states during auditory and visual decision-
making  

To identify performance states/strategies explored by an animal during perceptual decision 
making, we trained mice for extended sessions on either an auditory or a visual stimulus 
discrimination task (Fig. 1A-C). Both versions of the task required mice to lick a left or right 
reward port to categorize the stimulus. For the auditory discrimination task, tone clouds 
were differentiated by the concentration of frequencies in high or low frequency bands, 
while in the visual task the angle of a drifting Gabor patch was categorized as closer to a 
vertical or horizontal orientation (Fig. 1B). We specifically sought to explore a broad range 
of arousal in our mice, from drowsy to highly aroused.  Two factors of the task design were 
chosen specifically to promote this broad range of arousal during performance. First, mice 
were trained on a running wheel to allow high levels of arousal, such as those that occur 
with sustained running. Second, long inter-trial intervals (5 ± 2 seconds, Fig. 1C) were used 
to allow a reduction of arousal between stimuli, facilitating access to lower arousal levels, 
such as occurring during prolonged quiescence. Mice had three options available in each 
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trial: lick left, lick right, or not respond. Indeed, we found that subjects sometimes did not 
respond following a stimulus, so we considered every stimulus presentation during analysis, 
including trials with no response (Fig. 1D).  

Examining the behavior during single sessions revealed that mice switch rapidly between 
epochs of varying stimulus-response contingencies (Fig. 1E, top). During the first five 
minutes the subject shown in this figure responded predominately to both left and right-
target stimuli by licking to the left - thus exhibiting a strong left response bias.  After several 
(30) trials of this left-bias behavior, the animal stopped responding to either left or right-
target stimuli, and therefore was disengaged from the task (Fig. 1E, top).  This 14-trial long 
period of disengagement was followed by another period of left-bias that lasted 29 trials.  
Suddenly, the animal started responding accurately to both left and right-target stimuli, in 
what we term as the “optimal state”.  The subject remained in this state for a prolonged 
period of time (~20 minutes).  The remainder of this behavioral session could be roughly 
described as transitions between states characterized by either left-bias, right-bias, 
disengaged, optimal, or intermediate (indeterminant) states (Fig. 1E, top).  

To more accurately and automatically capture these dynamics in performance, we used 
Hidden Markov Models with Generalized Linear Model emissions (GLM-HMM, Fig. 1F). 
Each HMM state (further referred to as a strategic or performance state) corresponds to a 
psychometric curve, captured by a GLM. GLM-HMM models have been previously used 
on two-alternative forced choice tasks with only two possible outcomes (L, R choices), 
leading to Bernoulli emissions (16). Here we extended this model to include multinomial 
emissions representing the three possible choices (L, R, no response). This proved crucial 
to capturing the full range of performance states, including disengagement. The model 
parameters include a transition probability matrix capturing the transition rates between 
different states, as well as GLM observation parameters representing the stimulus weights 
and bias of the psychometric curve in each state (Fig. 1F). The number of performance states 
for the model was determined for each mouse using cross-validation. For the example 
mouse shown in Figure 1G, this method yielded 4 discrete states. A final model was fit to 
all available data for a subject. The models yield posterior probabilities for each decision-
making state in each trial, revealing long-lived states detected with high confidence and 
lasting for tens of consecutive trials (Fig. 1E, bottom).  
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Fig. 1. GLM-HMM reveals epochs of optimal performance amidst periods of sub-
optimal strategies and complete disengagement. (A) During task performance 
mice were head-fixed above a running wheel in front of a screen and speaker. (B) 
Mice were trained to categorize the angle of a drifting Gabor patch as mostly vertical 
vs. horizontal, or the concentration of pure tones in a tone cloud as mostly high vs. 
low frequency. Negative stimulus values are associated with left-target stimuli and 
positive values with right-target stimuli. (C) Stimuli were presented after a random 
duration (5 ± 2s) of licking quiescence. Subsequently licking the corresponding 
(L/R) reward port resulted in water reward delivery. (D) Performance of an example 
mouse during the visual task, presented as the probability of each choice type (left 
(<), right (>), no response (o)) given each possible stimulus. (E, top) Structured 
fluctuations appear in trial outcomes during example session. Trial stimulus values 
are represented by marker size and color (size increases with ease of discrimination). 
(E, bottom) GLM-HMM state posterior probabilities capture fluctuations in 
performance dynamics. A confidence criterion of 80% was set for inclusion of a trial 
in a state for further analyses. (F) GLM-HMM, with generalized linear models of 
psychometric performance for each hidden Markov state, and state transition 
probabilities. (G) An appropriate number of states, denoted here by a red square, 
was determined using cross validated test-set log likelihood. Choice prediction 
accuracy continues to increase with number of states. (H) Performance of example 
mouse during trials sorted by GLM-HMM states. Some states occurred in only a 
subset of sessions (indicated by n sessions). 

Psychometrics generated from trials of each performance state yielded clearly interpretable 
and distinct task engagement profiles. For the representative subject presented in Figure 1, 
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decision-making performance alternates between a state containing optimal performance, 
where responses were lawfully guided by the sensory stimulus, a disengaged state, with no 
response following stimuli, and sub-optimal left and right bias states, where the subject 
responded predominately in one direction regardless of the stimulus identity (Fig. 1H).  
From here on we refer to the state in which the animal is responsive and performance yields 
psychometric curves indicating responses are correctly guided by the stimulus, without 
significant leftward or rightward bias, as the “optimal state” (see Fig. 1H). 

To compare the accuracy of this GLM-HMM technique to a model that assumes an animal 
does not switch between performance states, we use it to predict choices of the mouse on 
each trial. We again used cross-validation, and generated models trained on 80% of trials 
from each session, withholding blocks of 20% of trials as a test-set. Posterior probabilities 
of state occupancy for trials of test-set data were generated and used to predict the true 
choices based on the GLMs for each state. A one-state GLM-HMM, equivalent to assuming 
stationary performance during training, correctly predicted the choice of the mouse on 70% 
of trials, while the best-fit 4-state GLM-HMM correctly predicted 85% of choices (Fig. 1G). 

To examine the generality and robustness of these observations, we fit GLM-HMM models 
separately to each of 13 mice that reached proficiency on the sensory discrimination task (8 
auditory, and 5 visual task performers). While there was a diversity in the best number of 
states across subjects (3 to 5 states, Fig. S1), six stereotypical performance states emerged, 
as follows. Each subject exhibited both optimal (state 1) and disengaged (state 2) states, 
along with at least one additional sub-optimal performance state. In sub-optimal states, 
subjects either responded predominantly to the left (or right) regardless of stimulus value 
(yielding states 3 and 4 - left or right biased), or responded correctly to left-target (right-
target) stimuli while withholding responses to right-target (left-target) stimuli (yielding 
states 5 and 6 - avoid right or avoid left, Fig. 2A). Subjects spent the largest proportion of 
trials in the optimal performance state (Fig. 2B; opt. vs dis. p = 2.4 x 10-4, opt. vs sub. p = 
2.4 x 10-4, opt. vs ind. p = 2.4 x 10-4, Wilcoxon signed-rank tests). Additionally, epochs of 
the optimal state lasted longer than those of sub-optimal states (Fig. 2C; opt. vs dis . p = 2.4 
x 10-4, opt. vs sub. p = 2.4 x 10-4, Wilcoxon signed-rank tests). Finally, we determined the 
choice prediction accuracy for each mouse, and found the best-fit GLM-HMM correctly 
predicted 82.5 ± 4.3% of choices, a significant 17.7 ± 5.3% improvement over the classical 
static-performance assumption (Fig. 2D, p = 2.4 x 10-4, Wilcoxon signed-rank tests). These 
observations demonstrate that multinomial GLM-HMMs describe task performance better 
than classical static-performance models, that these models can be used to identify epochs 
of optimal performance. Using these models revealed that trained mice selectively maintain 
optimal strategic states longer than in sub-optimal strategies during task performance. 
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Fig. 2. GLM-HMMs converge on six stereotypical performance states across mice. (A) 
Probability of hit, error, or no response for each mouse in each performance state. 
Each mouse had an optimal (L/R choice guided by stimulus) and disengaged (non-
responsive to stimuli) state, along with one or more sub-optimal performance states. 
Sub-optimal states could be classified into four categories – bias left or right, where 
the mouse responds to the opposite stimulus with an error, and avoid left or right, 
where a stimulus of one direction was not responded to, while the other was 
responded to with a lick to the correct side. (B) Mice were in the optimal state around 
half of all trials. (C) Cumulative probability of performance state dwell times, 
averaged across individual mice. Inset: on each entry into an optimal state, mice 
remained in the optimal state for longer periods compared to other performance 
states. ** indicates p < 0.01, *** indicates p < 0.001. All data are represented as 
mean +/- SEM. 

Arousal and uninstructed movement are regulated during optimal performance 

How do arousal and uninstructed movement relate to strategic states and their transitions? 
We hypothesized that there would be lawful relationships between arousal and movement 
(face, locomotion) measures, and discrete strategic performance states and their transitions. 
To examine this idea, we monitored measures of pupil diameter, face video motion energy, 
and locomotion speed of mice during task performance. Our analyses used the value of each 
measure immediately before the onset of a stimulus to determine their influence on 
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variations in the subject’s response (Fig. 3A). A comparison between the time course of 
these arousal measure values and the HMM state dynamics within single sessions revealed 
precise relationships between these variables, providing support for our hypothesis (Fig. 
3B). To quantify these relationships we examined how differences in pupil diameter and 
movements measures affected the probability of state occupancy (e.g., probability of being 
in the “optimal state”). Interestingly, we found a striking inverted-U relationship between 
probability of optimal state occupancy and pupil diameter, where the likelihood of being in 
the optimal state is highest at intermediate pupil diameters (Fig. 3C). The inverted-U 
relationship was found in nearly all subjects, and the pupil diameter that gave the highest 
probability for being in the optimal state was calculated for each (Fig. S2). Subjects 
performing the auditory task had significantly smaller optimal pupil sizes than those 
performing the visual task, suggesting optimal arousal levels may be task modality 
dependent (Fig. 3D; p = 0.013, Wilcoxon rank sum test). 

 

Fig. 3. Optimal performance state is characterized by intermediate levels and lower 
variability of both pupil diameter and uninstructed movement. (A) Pupil 
diameter, face video motion energy, and locomotion speed before stimulus 
presentation are used for further analysis. (B) Example session shows shifts in 
arousal measures that coincide with GLM-HMM state changes. Note restricted 
variance and range of measures in optimal state as compared to disengaged or sub-
optimal states. (C) Probability of GLM-HMM states across pupil diameters for an 
example mouse. Optimal state probability is fit with a polynomial function to 
estimate optimal pupil diameter for each mouse. (D) Optimal pupil diameter is 
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significantly larger in mice performing the visual task when compared to those 
performing the auditory task. (E) Average probability of GLM-HMM states across 
all mice as a function of distance from optimal pupil reveals a robust inverted-U 
relationship with optimal state occupancy. (F) A movement index, combining face 
motion energy and locomotion speed, also has an inverted-U relationship with 
optimal state probability. There is a marked U-shaped relationship between both 
pupil diameter and movement index and the probability of being in the disengaged 
state. (G) Variability of all recorded measures decreases when entering the optimal 
state and increases when exiting this state. Plotted data represents the change in the 
standard deviation of each measure across the previous ten trials for trials 
surrounding optimal state transitions. Data were averaged across state transitions for 
each subject. Dashed line represents no change. Plots represent the mean +/- SEM 
across mice. 

To visualize the relationship between pupil diameter and performance states across mice, 
we normalized the x-axis (pupil diameter) to the “difference from the optimal pupil 
diameter” for each subject to account for individual differences in the optimal pupil 
diameter (Fig. 3E). Similar to the inverted-U relationship between pupil diameter and 
probability of being in the optimal state, we found a prominent U relationship between the 
probability of being in the disengaged state and pupil diameter.  At either low or high pupil 
diameters, there was a dramatic increase in the probability of mice being in the disengaged 
state, and a consequent large decrease in probability of the animal being in the optimal state 
(Fig. 3E). Individual analysis of movement measures showed that face motion energy had 
a largely monotonic relationship with probability of optimal state occupancy, and 
locomotion speed showed an inverted-U relationship across subjects (Fig. S3).  The 
inverted-U relationship between the probability of optimal state occupancy and locomotion 
speed was less prominent than it was for pupil diameter, and was not present for all mice 
(Fig. S3).  

Locomotion and facial movements are inter-related, but can convey independent 
information (e.g., while locomotion is always associated with facial movements such as 
whisking, facial movements often occur without overt locomotion).  Owing to this, we 
combined these two measures into a single measure of uninstructed movement termed 
“movement index”.  When face motion energy and locomotion speed were combined into a 
single movement index, a clear inverted-U pattern emerged, showing that optimal 
performance states occupancy peaked at intermediate levels of uninstructed movement (Fig. 
3F; see materials and methods for movement index details). These correlations translate to 
a significant decrease in the distance from the optimal pupil diameter during optimal state 
occupancy as compared to sub-optimal or disengaged states, (Fig. S4; opt. vs dis. p = 2.4x10-

4, opt. vs sub. p = 4.8x10-4, Wilcoxon signed-rank tests), a trend toward larger raw face 
video motion energy during optimal state occupancy (Fig. S4; opt. vs dis. p = 0.06, opt. vs 
sub. p = 0.04, Wilcoxon signed-rank tests), but no significant differences in raw locomotion 
speed (Fig. S4; opt. vs dis. p = 0.84, opt. vs sub. p = 1, Wilcoxon signed-rank tests).  
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Fig. 4. Arousal and movement measures effectively predict optimal state occupancy. 
(A) Example decision function of a state vector machine (SVM) classifier with a 
radial basis function kernel using pupil measures of diameter and trial-to-trial 
variability to predict performance states. One of five cross-validated folds shown. 
Color bar represents decision function confidence, with white representing the 
decision boundary. Small circles: training set, large circles: test set. (B) Example of 
z-scoring test set accuracy of performance state decoder trained on empirical data 
(blue line; one fold from panel A) against class-shuffled data (gray distribution). (C) 
Performance state classification accuracy and z-scores for each classifier. To 
determine the accuracy of classification using the value and variability of individual 
measures all other measures were shuffled. All data are represented as mean +/- 
SEM. 

We further hypothesized that performance states would differ not only in the values of 
arousal and movement measures, but also in their variability over the past ten trials. For all 
arousal measures recorded - pupil diameter, face motion energy, and locomotion speed - we 
found significantly reduced variability during optimal performance state occupancy as 
compared to sub-optimal or disengaged states (Fig. S4; pupil diameter: opt. vs dis. p = 
2.4x10-4, opt. vs sub. p = 7.3x10-4; face motion energy: opt. vs dis. p = 3.4x10-3, opt. vs sub. 
p = 0.01; locomotion speed: opt. vs dis. p = 0.001, opt. vs sub. p = 0.048, Wilcoxon signed-
rank tests). Strikingly, this decrease in variability predicts transitions into and out of the 
optimal state (Fig. 3B, G), and suggests arousal levels may be regulated during epochs of 
optimal task engagement.  

Arousal measures predict optimal performance state 

To quantify the extent to which different performance states can be predicted based on the 
recorded arousal and movement measures, we implemented a cross-validated state 
classification analysis. For each subject, we trained a classifier to discriminate between 
optimal performance state and disengaged or sub-optimal states using the value and 
variability of each arousal measure as features. Figure 4A shows an example of such a 
classifier using the value and trial-to-trial variability of pupil diameter. We found that for 
all subjects, performance states could be significantly predicted using the recorded arousal 
measures with high accuracy (opt. vs dis. = 88.2% ± 6.1; opt. vs sub. = 77.7% ± 8.6; Fig. 
4B-C; significance was assessed by comparing empirical classification accuracy to 
surrogate datasets obtained by shuffling class labels in the training set). To assess the 
contributions of individual arousal measures to performance state decoding, subsets of 
measures were shuffled in the training sets of the classifiers. Pupil diameter (value and trial-
to-trial variability) was the best individual raw measure for state classification (Fig. S5; 
pupil vs face motion energy p = 3.9x10-3, pupil vs locomotion p = 0.106, Wilcoxon signed-
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rank tests). Interestingly, we found that the best predictor of performance state was the 
computed movement index incorporating face motion energy and locomotion speed, which 
encoded more information about states compared to pupil diameter (Fig. 4C; pupil vs 
movement index p = 0.024, Wilcoxon signed-rank tests).  

Discussion  

In this study we provide evidence that a significant fraction of behavioral variability arises 
from rapid transitions between identifiable substates, that pupil diameter and uninstructed 
movements can accurately predict these substates and their transitions (including epochs of 
optimal performance), and that controlled arousal is key to maintaining optimal 
performance. First, using GLM-HMM modeling of task performance we show that well-
trained mice alternate between discrete strategic performance states, and accounting for 
these states significantly improves the accuracy of behavioral modeling. Our methods, 
including trials where the subject does not respond, allowed us to go beyond previous 
reports16 and identify disengaged and other low performance states in addition to optimal 
performance states. Interestingly, we found that mice selectively maintained optimal states 
for longer durations than sub-optimal and disengaged states (Fig. 1D, 2C). Second, 
consistent with the classical Yerkes-Dodson law, we demonstrate that optimal task 
performance occurs at intermediate arousal levels during sensory discrimination tasks (Fig. 
3E, S2). While previous reports demonstrated this relationship during auditory detection 
(4), it has not been reported during visual tasks (15). Here we find an inverted-U relationship 
during both auditory and visual discrimination task performance. There was a significant 
difference in optimal pupil diameters between sensory modalities, suggesting modality 
specific modulation of arousal during optimal performance. Third, we found significantly 
lower trial-to-trial variability in both pupil diameter and movement measures during optimal 
performance, with rapid shifts in variability at transitions into and out of the optimal state 
(Fig. 3G, S4). Finally, we found that arousal measures, taken prior to stimulus presentation, 
can be used to accurately predict the discrete task performance states produced by GLM-
HMM modeling (Fig. 4C). By using GLM-HMMs, we extend analysis of arousal measures 
beyond average characterizations of a moment-to-moment performance-arousal 
relationship in mice and suggest strategic regulation of arousal levels during optimal 
performance.  

Hidden Markov models are a crucial tool for inferring performance states. Here we used 
recently implemented GLM-HMM models (16, 17) and advanced their utility to account for 
stimuli not responded to by the subject. This extended model accounts for additional 
behavioral states present during decision making in mice, in particular revealing states of 
disengagement and selective avoidance of a particular stimulus category (i.e., left- or right-
target). Using an individual model for each subject accounted for differences in individual 
psychometric response patterns and state transition probabilities. Despite individual 
differences, when comparing across subjects a consistent view of task performance 
emerged, with a limited number of easily classifiable, congruent strategies in the population. 
In the current study, we observed arousal related differences between optimal and sub-
optimal strategic states, but different performance states may additionally have markedly 
different neural activity and/or functional connectivity correlates. Studying neural data 
regarding decision making could benefit from comparing not only hits and errors, but also 
comparing differences between similar trial outcomes during various strategic performance 
states. 
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Arousal and movement can be indexed by numerous, often correlated measures (1). Here 
we use simple and accessible measures of pupil diameter, face video motion energy, and 
locomotion speed. Head-fixed mice on a running wheel can exhibit a broad range of arousal 
and movement, from sleep to rapid locomotion. To promote a broad range of arousal in our 
mice, we both allowed mice to locomote rapidly on a running wheel during task 
performance (therefore allowing access to higher levels of arousal and uninstructed 
movement) and used long inter-trial-intervals, to promote periods of behavioral quiescence 
and task disengagement. Preliminary results indicated that short inter-trial intervals 
typically resulted in a lack of lower levels of arousal (e.g., smaller pupil diameter during 
behavioral quiescence) and biased our results towards intermediate to high arousal levels. 
These factors were crucial for observations of an inverted-U relationship between optimal 
state probability and pupil diameter (Fig. 3E). We additionally saw an inverted-U 
relationship between a movement index combining face motion energy and locomotion 
speed with optimal state probability, similar to that of pupil diameter (Fig. 3F). The 
measurement of face motion energy individually showed a monotonically increasing 
relationship with optimal performance state occupancy. Onset of facial movements tracks 
rapid shifts in intracellular (6, 18, 19) and neuromodulatory neural dynamics (19-21) but 
lacks fidelity during prolonged bouts of movement and locomotion, when face movement 
is ubiquitous. Conversely, locomotion speed does not capture the onset of whisking and 
movement, but provides a continuous measure of high-energy movements. Thus, our facial 
motion energy measure is well-suited for detecting both lower levels of uninstructed 
movements (e.g., movements that do not include the large skeletal muscles of the limbs and 
body), while locomotion speed is better suited for detecting higher levels of these 
movements. While some mice had an inverted-U relationship between these individual 
measures and optimal performance state, combining the two movement measures allowed 
for one index to account for a wide range of movement levels, and resulted in an inverted-
U relationship with optimal performance state across all mice. Based on these factors we 
consider pupil diameter to be the best easily accessible, individual measure of arousal. 
While complex analysis of video data could lead to more precise measures of unique 
movements profiles for individual subjects basis, the simple movement index used here is 
sufficient to make accurate predictions of task performance state and corroborates a long 
standing physiological phenomenon first described by Yerkes and Dodson (14). 

What factors contribute to the inverted-U phenomenon during task performance? In the 
auditory cortex, membrane potential dynamics at intermediate arousal levels are ideal for 
stimulus detection (4). Task engagement also influences auditory processing in multiple 
brain regions, and changes are congruent and often overlapping with pupil-linked effects 
(22). In this case maintaining an intermediate arousal level could directly improve 
discriminability of neural representations and task performance. However, in the visual 
system, locomotion increases neural responses along with stimulus decoding accuracy using 
neural activity at the population level (5, 23-25). How this relates to behavioral performance 
is not clear, as rodent performance on visual tasks generally lags behind population level 
neural decoding potentials in the visual system of mice (26). While individual neural 
responses in the visual system vary in their relationship to locomotion speed (27, 28), 
decoding accuracy has often only been tested with a binary classification of states 
(stationary vs locomoting). Binary classification of locomotion in some instances indicates 
locomotion is beneficial for task performance, while others have found it to be detrimental 
(15, 29). In the present study, the probability of both task disengagement and sub-optimal 
strategic states increased at higher levels of both the continuous pupil diameter and 
movement indexed, leading to decreased performance at high arousal/movement levels 
across both auditory and visual modalities. Crucial to this observation is that movement is 
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measured on a continuous scale. In addition, effects on stimulus decoding accuracy have 
only been performed in passive contexts and are restricted to the visual cortex. While 
arousal-dependent cortical decoding capacities may contribute to behavioral performance, 
other brain regions receiving their signals may have different arousal-dependent dynamics, 
where heightened arousal may inhibit optimal performance.  

Regulation of arousal to maintain ideal levels for decision making may lead to increased 
performance. During difficult tasks, external feedback based on optimal neural activity in 
humans can increase performance and decrease arousal as measured by decreases in pupil 
diameter and increases in heart rate variability (30), consistent with the right half of the 
Yerkes-Dodson relationship. Internal factors may also regulate arousal. Development 
during childhood and adolescence leads to self-regulation of arousal, contributing to 
executive function in humans (31-33). This developmental phenomenon is not unique to 
humans - in mice projections from the prefrontal cortex (PFC) to the serotonergic dorsal 
raphe nucleus (DRN) increase through adolescence, and their emergence coincide with 
increases in persistence during active foraging (34). Recent work has shown humans can 
gain volitional control of pupil size through training, systematically regulating neural 
structures related to arousal (35). In the present study, in addition to finding an ideal range 
of pupil diameters for optimal task performance, we report a decrease in trial-to-trial 
variability of all recorded arousal measures during epochs of optimal performance states, 
and differing optimal pupil diameters based on sensory modality (Fig.s S4, 3D). While we 
do not present direct evidence of volitional control of arousal in mice, the arousal regulation 
shown during optimal engagement states opens questions regarding the mechanisms that 
contribute to this effect. While strategic control of movements may account for much of the 
arousal changes, further study is warranted into the use and development of regulatory 
mechanisms and contextual control of arousal.  

What is the neural mechanism underlying performance state switching and its arousal-
induced regulation? Fluctuations in pupil diameter are correlated with activity in arousal-
linked neuromodulatory centers in mice, non-human primates and humans (20, 36, 37). The 
PFC is well situated to be an orchestrator of neuromodulatory centers linked to arousal and 
pupil size. In mice, PFC projections target both serotonergic and GABAergic populations 
in the DRN, and electrical stimulation of the PFC modulates DRN activity (38-40). Direct 
activation of serotonergic cells in the DRN sustains arousal, slowing pupil constriction (41). 
Similarly, direct stimulation of the noradrenergic locus coeruleus (LC) leads to increases in 
pupil diameter, and stimulation of PFC projections to inhibitory populations surrounding 
the LC leads to pupil constriction (42). PFC projections can act as dynamic regulators for 
key arousal-linked neuromodulatory centers, and their coordination could maintain optimal 
arousal levels during task engagement. Further work is necessary to determine the activity 
and influence of such projections during various task engagement states. 

Materials and Methods 

Animals 

All procedures were carried out with approval from the University of Oregon Institutional 
Animal Care and Use Committee. Animals (Female and male mice, 8-15 weeks at time of 
surgery) were of C57BL/6J background purchased from Jackson Laboratory and bred in-
house, including wild-type C57BL/6J, transgenic Cre and tTA driver lines (CaMK2-Cre, 
Jax #005369; CaMK2-tTA, Jax #007004), and fluorescent reporter lines (tetO-GCaMP6, 
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Jax #024724; TIGRE2.0 GCaMP6s Jax #31562). The mice were kept on a reverse light 
cycle and had ad-libitum access to food and water until time of behavioral training. 

Headplate implantation 

All surgical procedures were performed in an aseptic environment with mice under 1-2% 
isoflurane anesthesia with an oxygen flow rate of 1.5 L/min, and homeothermic 
maintenance at 36.5° C. Mice were administered systemic analgesia (Meloxicam SR: 6 
mg/kg, Buprenorphine SR: 0.5 mg/kg) and a fluid supplement (1 ml lactated ringer’s 
solution) subcutaneously. Fur was removed across the dorsal and right temporal surfaces of 
the skull, and the skin was sterilized with povidone/iodine solution followed by isopropyl 
alcohol three times over. The skin, connective tissue, and part of the right temporalis muscle 
were removed, and the exposed skull was cleaned. A custom-designed headplate was 
affixed to the skull using dental cement (RelyX Unicem Aplicap, 3M), and skin was affixed 
to the outside edge of the headpost as necessary (Vetbond, 3M). The exposed skull was 
covered using cyanoacrylate (Slo-zap, Zap), and protected with a silicone elastomer (Kwik-
Sil, World Precision Instruments). Mice recovered for three days in an incubator recovery 
chamber, and lactated ringer’s solution was administered as necessary. 

Task details 

Data collection and stimulus presentation was conducted using custom LabView (National 
Instruments) scripts. Mice were headfixed on a running wheel and trained on either an 
auditory or a visual stimulus discrimination task to receive water rewards. Mice made a 
binary classification of stimuli, and reported their choice by licking one of two reward ports 
(left and right) spaced 500 µm apart.  

For the auditory task, stimuli consisted of tone clouds with three concurrent streams of 
tones, where each tone lasted 30 ms and had a frequency selected between 5 – 40 kHz. Tone 
clouds were differentiated by selecting a varied proportion of tone frequencies in either the 
bottom (5-10 kHz) or top (20-40 kHz) octave of the range. The remaining tones were 
randomly distributed across the rest of the frequency range. Auditory stimulus values are 
defined based on the proportion of tones in the right-target octave (e.g. high frequency) 
minus the proportion of tones in the left-target octave (e.g. low frequency), such that -1 
represents a tone cloud with all tones in the left-target octave, 1 represents a tone cloud with 
all right-target octave tones, and 0 represents a stimulus with an equal number of tones in 
each target octave. Tones were calibrated to 60 dB SPL and waveforms were generated (NI 
PXI-4461, National Instruments) at 200 kHz sampling rate, conditioned (ED1, Tucker Davis 
Technologies), and transduced by electrostatic speakers (ES1, Tucker Davis Technologies).  

For the visual task, stimuli consisted of drifting Gabor patches displayed on an LED screen 
with a refresh rate of 30 Hz. Stimuli had a constant mean luminance, matched to the static 
gray background displayed between stimuli. Each Gabor had 0.08 cycles per degree of 
visual field and drifted at 1.5 cycles per second. Gabor were differentiated by being closer 
to a horizontal (e.g., 0, 18, or 36 degrees) or vertical (e.g., 90, 72, or 54 degrees) orientation. 
Visual stimulus values were defined between 0 and 1 by the normalized difference of their 
angle from 45 degrees, and signed in accordance with their directional representation 
(negative if left, positive if right). 

Stimuli (high/low tone cloud or horizontal/vertical gabor) were randomly assigned to left or 
right identities for each subject at the beginning of training. In both tasks stimuli lasted 1.2 
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seconds and were presented with an inter trial interval (ITI) of 5 ± 2 seconds. Licking of 
reward ports was electrically monitored at 1 kHz (USB-6008, National Instruments). If mice 
responded to stimuli by licking the appropriate reward port during the stimulus or within 1 
second of the stimulus offset, the trial was considered a hit and a 3 μL reward was delivered 
through the port by a syringe pump (NE-500, Pump Systems Inc.). If the incorrect port was 
licked first during the stimulus or response period the trial was considered an error. If no 
response was made the trial was considered to have no response.  

Training & inclusion criteria 

After postoperative recovery, mice were weighed for three days to establish a baseline 
weight before beginning a water regulation protocol. After 3-5 days, mice had reached a 
steady weight on water regulation and began behavioral training. Mice were habituated to 
human handling, head fixation, locomotion on the wheel and collecting water from the 
reward ports. Reward port position was adjusted by a manual xyz manipulator. To ensure 
consistent lick spout positioning, a 3D printed jig was made for each mouse and used to 
align reward ports at the beginning of each training session. 

Behavioral training was conducted using the following stages and progression criteria: 

Stage 1 - To encourage licking and associate left and right ports with the appropriate 
directional stimuli, the left or right port was randomly ‘armed,’ so a lick would prompt 
appropriate (value -1 if left, 1 if right) stimulus presentation, and water reward delivery. The 
stimulus and reward were spontaneously delivered after 20 seconds if the subject did not 
lick the armed port. The ITI was set to 2 seconds to promote consistent licking. After 75 
such trials in a session, stimuli were presented without a reward, and a reward was delivered 
if the subject licked the correct port within the response period. If subjects achieved 1500 
total licks to each port, and >150 hits in a session, they progressed to stage 2 in their next 
training session. 

Stage 2 - To promote licking only following stimulus presentation, the ITI was extended to 
5 ± 2 seconds, and was reset following aberrant licking for all following stages. Only the 
easiest stimulus values were used (-1 or 1), and a reward was delivered following any lick 
to the correct port during the response period. If subjects failed to respond to 10 consecutive 
trials, a free reward was delivered with the stimulus. If subjects achieved >50% hit rate on 
both ports, with no less than 30% of licks to each port and >150 hits, they progressed to 
stage 3. 

Stage 3 - To refine choice behavior, a reward was only delivered if the first lick following 
stimulus presentation was to the correct reward port. To prevent mice from only responding 
at one reward port, probabilistic bias correction was added, so that more target stimuli of 
one direction would be presented if that port was being neglected. If subjects achieved >60% 
hit rate on both ports and >150 hits, with no less than 33% of hits at each port they 
progressed to stage 4. 

Stage 4 - More difficult stimuli were introduced, and probabilistic bias correction was 
reduced. If subjects achieved >60% hit rate on both ports and >200 hits, with no less than 
33% of hits at each port, they progressed to stage 5. 
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Stage 5 - Bias correction was removed and three difficulties of stimuli are presented per 
direction. A subset of mice were advanced to stage 6 after at least 10 consecutive stage 5 
training sessions. 

Stage 6 - Half of the stimuli were of the un-trained sensory modality, presented as 
distractors. There was no discernible change in task performance, and response rates to the 
distractors were <10%. 

If subjects failed to meet the advancement criteria of a lower training stage for consecutive 
sessions, they were returned to that training stage. For further analysis we included sessions 
from stages 5 and 6 with at least 100 rewards delivered, balanced such that no less than 20% 
of rewards were delivered in each of the left and right ports. 13 of 31 mice had 10 or more 
sessions that met inclusion criteria, with a total of 381 of their 500 stage 5 and 6 training 
sessions included for further analysis. Mice that reached proficiency took 21 ± 8 training 
sessions to reach stage 5. 

Modeling task performance 

To test the hypothesis that animals switch between discrete decision-making states within 
single sessions, we developed a hidden Markov model with multinomial Generalized Linear 
Model observations (GLM-HMM). The multinomial GLM observation, parameterized as 

is the set of three psychometric curves representing the probability of choosing actions 
c=Left, Right, No response in each trial t, given stimulus 𝑢𝑢𝑡𝑡 and the hidden state 𝑧𝑧𝑡𝑡  =  𝑘𝑘. 
Each hidden state represents a different performance state, including one optimal, and 
several sub-optimal or disengaged states. A model with K hidden states is described by the 
following parameters: a KxK transition probability matrix 𝐴𝐴𝑘𝑘𝑘𝑘, representing the probability 
of switching between different states at each trial t; a K-dimensional vector representing the 
initial state probabilities 𝜋𝜋(𝑘𝑘); and the observation parameters comprising weights 𝑤𝑤𝑐𝑐(𝑘𝑘) and 
biases 𝑏𝑏𝑐𝑐

(𝑘𝑘) for each of three multinomial categories c=L,R,Nr, the latter corresponding to 
three choices Left, Right, and No response, available to the subject in each trial. We fit a 
multinomial GLM-HMM to trials from individual subjects using the Expectation-
Maximization (EM) algorithm to maximize the log-posterior and obtain the optimized 
parameters 𝛩𝛩 = {𝑤𝑤𝑐𝑐

(𝑘𝑘),𝑏𝑏𝑐𝑐
(𝑘𝑘),𝐴𝐴𝑘𝑘𝑘𝑘,𝜋𝜋(𝑘𝑘)}. Model selection for the number of states was 

performed using 5-fold cross-validation across sessions of an individual subject. A model 
was fit to the concatenated trials of the training set, and the log-posterior of the test set was 
estimated (normalized by the number of trials per test set). Because the EM may lead to 
local maxima of the log-posterior, for each choice of number of states, the EM algorithm 
was performed 10 times starting from random initial conditions. We performed model 
selection in two alternative ways: either by maximum likelihood estimation (MLE); or by 
maximum a posteriori (MAP, including a Gaussian prior on the weights with mean zero and 
variance equals to 2, and Dirichlet prior on transition probabilities with alpha=2, see ref 16 
for details on the procedure). The best number of states was chosen as the maximum of the 
plateau of the test MLE or test MAP log likelihoods. We then fit a single model to the time 
series of the observations and inputs concatenating all sessions from a subject, optimizing 
the model parameters 𝛩𝛩 using MLE.  
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For all further analysis we set an 80% state probability criterion for inclusion of a trial within 
a performance state and consider all other trials as in an indeterminate state.  Performance 
states from the final models were distinct and clearly interpretable, and classified as one of 
six stereotypic states: optimal (responses congruent with stimulus identity), left bias 
(leftward licks regardless of stimulus), avoid right (left lick to left-target, no response to 
right-target stimuli), right bias (rightward licks regardless of stimulus), avoid left (right lick 
to right-target, no response to left-target stimuli), or disengaged (no response to any stimuli).  

Recording Arousal Measures 

All data collection was conducted using custom LabView scripts. While headfixed, subjects 
were free to locomote on top of a cylindrical wheel with a 15 cm diameter and 20 cm width. 
The axle of the wheel was connected to a rotary encoder (Model 15T/H, Encoder Products 
Company), which was used to calculate locomotion speed.  

A CMOS camera (Teledyne G3-GM11-M2020, or Basler ace acA780-75gm) with an 
affixed lens (TEC-M55MPW, or Navitar NMV-50M23) and IR filter (MIDOPT BN810-46, 
or Thorlabs FGL780) was pointed at the face of the subject. The face was illuminated with 
an infrared LED (Digi-Key TSHG8200, 830 nm) adjusted to provide even illumination of 
the face and eye, and with a white LED (RadioShack 5 mm 276-0017), adjusted so the pupil 
would have large dynamic range, while not being obscured by the eyelid when maximally 
dilated. Images of the face were acquired at 30 Hz throughout task performance, and time 
stamps for each frame were saved at time of acquisition. 

Online pupil diameter and face motion energy estimates were made using LabView 
software, and post-hoc analysis was done using custom python scripts as necessary. Face 
motion energy was calculated within a rectangular ROI anterior to the eye (Fig. 3A). The 
absolute value of the frame-to-frame change in pixel intensity was averaged within the ROI 
and normalized to the maximum within a session. To calculate pupil diameter an ROI 
around the eye was selected and the image was binarized with a manually selected threshold. 
The contour of the pupil was extracted and the long axis of a fit ellipse was recorded as the 
pupil diameter. Pupil diameters were normalized to the maximum within a training session. 
Pupil diameters were manually verified, and if accurate measurements could not be 
acquired, frames were dropped and values interpolated if gaps between data points were 
less than 200 ms. 

All measures were smoothed with second order Savitzky Golay filters with 500 ms (face 
energy and locomotion speed) or 1 second (pupil diameter) windows and upsampled to 1 
kHz. In order to determine the influence of arousal and movement on performance, measure 
values concurrent with the beginning of stimulus presentation were used for further analysis. 
In addition to the raw values, the standard deviation and coefficient of variation of the 
measures’ values over the past 10 trials were calculated for each trial.  

The measures of face motion energy and locomotion speed individually account for 
qualitatively distinct magnitudes of movement in mice during head fixation. Face motion 
energy effectively captures change in low-medium ranges of movement while the subject is 
stationary (not walking), and locomotion speed effectively differentiates medium-high 
output movements. In order to create a single value representative of a broad range of 
movement, the values of face motion energy and locomotion speed were z-scored and 
summed to create a single continuous movement index. The same was done for the past 10 
trial standard deviation values. 
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Determining optimal pupil diameters 

Probability of a performance state was calculated in relation to each arousal measure by 
binning trials by measure values and determining the proportion of trials in each 
performance state. In order to determine the optimal pupil diameter for each subject, 
polynomial functions were fit to the optimal state occupancy probability across pupil 
diameters. Polynomial degree for a fit was selected by determining the elbow of the test set 
r2 increase function with 5-fold cross validation. A final polynomial was fit to all data, and 
the optimal pupil diameter was determined for each subject as the maximum of the fit curve 
within the range of the true data. The unique optimal pupil value for each subject was used 
to align pupil values for visualization, and to calculate the absolute difference from the 
optimal pupil diameter for each trial. 

Performance state classification from arousal measures 

We used cross-validated classifiers (support vector machines with a radial basis function 
kernel) to discriminate trials from the optimal performance states against trials of each of 
the disengaged and sub-optimal states (binary classifications) using six features: the 3 
recorded behavioral measures and their variability over the 10-past-trials. Classification was 
performed on a randomly selected equal number of trials of each performance state using 
5-fold cross-validation. Accuracy is reported as the mean accuracy of test set classification 
across five such folds. To test the significance of the reported accuracies, we z-scored the 
empirical accuracy against 1000 classifiers trained on surrogate data obtained by randomly 
permuting class labels (43). To determine the contribution of features to classification 
accuracy, we compared the performance of the classifiers trained on the empirical data to 
those trained on surrogate data obtained by shuffling the labels for a subset of features across 
trials within the training set. 

Statistical Analysis 

Sample sizes were not predetermined with statistical methods but are similar to other studies 
in the field. Data are reported as the mean ± standard deviation in the text, and are plotted 
with standard error of the mean. Two-tailed Wilcoxon signed rank (paired) or rank sum 
(unpaired) statistical tests were used to avoid assumptions regarding the normality of data 
distribution. Individual data points are shown when possible. 
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Supplemental Figures 

 

Fig. S1. Selection of number of HMM states. State selection was performed using five-fold cross 
validation of test set log likelihood (LL), training models on 80% of sessions, and testing 
the fit on the remaining 20%. Both MLE and MAP methods were used (see materials and 
methods), with ten initializations per state and model type, and the maximum LL acquired 
was kept. The plateau of the average LL across the five folds was considered the appropriate 
number of states to use for final model fitting. In case of discrepancies between MLE and 
MAP states, the larger number of states was used. 
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Fig. S2. Optimal pupil diameter can be calculated for individual subjects. Polynomial functions 
were fit to the optimal state occupancy probability data for each individual mouse. 
Polynomial degree was selected using 5 fold cross-validation, and the elbow of the function 
was used to fit a final curve to all data. For the majority of mice, a quadratic function was 
sufficient to explain most of the variability. A cubic function was better fit in individuals 
with long tails to the inverted-U relationship. The optimal pupil diameter for each subject 
was defined as the maximum along the fit curve within the range of the true pupil data. 
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Fig. S3. Relationship between optimal state occupancy and individual movement measures 
are variable. Individual mice have inverted-U relationships between face motion energy 
and locomotion speed. However, the relationship is inconsistent, and not found in all 
subjects. Across subjects, face motion energy forms a largely monotonic relationship, while 
locomotion speed has a moderate inverted-U relationship.  
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Fig. S4. Value and variability of arousal measures by performance states. The average value 
and standard deviation of the past 10 trials of pupil diameter, face motion energy, and 
locomotion speed for each subject. Pupil diameter values are the absolute difference from 
the optimal for each mouse, and are significantly smaller in the optimal state than sub-
optimal and disengaged states. Face motion energy is slightly higher in the optimal state, 
and there is no difference in locomotion speed. The average standard deviation of the past 
10 trials is significantly lower during the optimal state for all recorded arousal measures. * 
indicates p < .05, ** indicates p < 0.01, *** indicates p < 0.001. 
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Fig. S5. Arousal measure contributions to performance state classification. (A) State 
classification using raw behavioral measures shows that pupil diameter is the best single 
measure used. (B) Shuffling the value and standard deviation of individual arousal measures 
indicates their unique contributions. Pupil diameter contributes significantly more to 
decoding than face motion energy (p = 0.004, Wilcoxon signed rank test), but only slightly 
more than locomotion speed (p = 0.14, Wilcoxon signed rank test). (C) Average decision 
functions across all subjects for disengaged (top) and sub-optimal states (bottom). Note that 
the low variability consistently predicts optimal state, along with intermediate levels of 
pupil, locomotion, and overall movement. 
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