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Abstract
Background: The exogenous administration of Insulin-like Growth Factor-I (IGF-I) induces
hepatoprotective and antifibrogenic actions in experimental liver cirrhosis. To better understand
the possible pathways behind the beneficial effect of IGF-I, the aim of this work was to investigate
severe parameters involved in oxidative damage in hepatic tissue from cirrhotic animals treated
with IGF-I (2 µg. 100 g-1. day-1). Iron and copper play an important role in oxidative mechanisms,
producing the deleterious hydroxyl radical (*OH) that peroxides lipid membranes and damages
DNA. Myeloperoxidase (MPO) and nitric oxide (NO) are known sources of free radicals and
induce reduction of ferritin-Fe3+ into free Fe2+, contributing to oxidative damage.

Methods: Liver cirrhosis was induced by CCl4 inhalation in Wistar male rats for 30 weeks. Healthy
controls were studied in parallel (n = 10). Fe and Cu were assessed by atomic absoption
spectrometry and iron content was also evaluated by Perls' staining. MPO was measured by ELISA
and transferrin and ferritin by immunoturbidimetry. iNOS expression was studied by immuno-
histochemistry.

Results: Liver cirrhosis was histologically proven and ascites was observed in all cirrhotic rats.
Compared to controls untreated cirrhotic rats showed increased hepatic levels of iron, ferritin,
transferrin (p < 0.01), copper, MPO and iNOS expression (p < 0.01). However, IGF-treatment
induced a significant reduction of all these parameters (p < 0.05).

Conclusion: the hepatoprotective and antifibrogenic effects of IGF-I in cirrhosis are associated
with a diminution of the hepatic contents of several factors all of them involved in oxidative damage.
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Background
Insulin-like growth factor-I (IGF-I) is an anabolic hor-
mone produced in different tissues in response to growth
hormone (GH) stimulation [1]. Liver synthesis of IGF-I
accounts for 90% of the circulating peptide. In cirrhosis
the reduction of receptors for GH in hepatocytes and the
diminished synthesis ability of the hepatic parenchyma
cause a progressive fall in serum IGF-I levels. The clinical
impact of the decreased in IGF-I production in advanced
cirrhosis is largely unknown [2-5]. Recent studies from
our laboratory in rats with carbon tetrachloride-induced
cirrhosis have demonstrated that short courses of treat-
ment with low doses of IGF-I are able to produce systemic
beneficial effects [6-13] and are associated to hepatopro-
tective [14,15] and antifibrogenic [16] effects.

In order to give a better insight into the pathways by
which IGF-I seems to exert its the hepatoprotective and
antifibrogenic actions, this study was aimed at analyze
several parameters involved in oxidative stress or inflam-
mation in the liver, such as metals ions (iron and copper),
iron transport and store proteins (transferrin and ferritin)
and enzymes (myeloperoxidase -MPO- and inducible
nitric oxide synthase -iNOS-) both in IGF-I treated and
untreated cirrhotic rats.

Metal ions, such as iron and copper, exhibit the ability to
produce reactive oxygen species, resulting in lipid peroxi-
dation, DNA damage, depletion of sulfhydryls and altered
calcium homeostasis [17-19]. Iron-dependent processes
play a pivotal role in the development of oxidative-
induced cell injury. Specifically, the generation of
hydroxyl radicals from hydroperoxide and the formation
of aldehydes and lipid peroxy radicals from lipid
hydroperoxides are catalyzed by redox-active metals,
including iron and copper [17,20,21]. MPO and NO are
known sources of free radicals and induce reduction of
ferritin-Fe3+ into free Fe2+ contributing to oxidative dam-
age [22,23].

Methods
Induction of liver cirrhosis
Cirrhosis was induced as previously described [9,12].
Briefly, male Wistar rats (3 weeks old, 130–150 g) were
subjected to CCl4 inhalation (Merck, Darmstadt, Ger-
many) twice a week for 11 weeks with a progressively
increasing exposure time from 1 to 5 minutes. From that
time until the 30th week rats were exposed to CCl4 once a
week for 3 min. During the whole period of cirrhosis
induction animals received Phenobarbital (Luminal,
Bayer, Leverkusen, Germany) in the drinking water (400
mg/L). Rats were housed in cages placed in a room with
12-hour light-dark cycle and constant humidity and tem-
perature (20°C). Both food (standard semipurified diet
for rodents; B.K. Universal, Sant Vicent del Horts, Spain)

and water were given ad libitum. Healthy, age and sex-
matched control rats were maintained under the same
conditions but receiving neither CCl4 nor Phenobarbital.

All procedures were performed in conformity with The
Guiding Principles for Research Involving Animals [24].

Study design
The treatment was administrated the last three weeks (27th

-30th) of CCl4 exposure (from day 0 to day 22nd). In the
morning of day 0, animals were weight and blood sam-
ples were drawn from the retroocular venous plexus from
all rats with capillary tubes (Marienfeld, Germany) and
stored at -20°C until used for analytical purposes. Cir-
rhotic rats were randomly assigned to receive either vehi-
cle (saline) (CI, n = 10) or recombinant human IGF-I
(Pharmacia-Upshon, Sweden) (2 µg × 100 g bw -1 × day -1

in two divided doses, subcutaneous) (CI+IGF, n = 10) for
three weeks. Control rats (CO, n = 10) received saline dur-
ing the same period. The last dose of IGF-I was adminis-
trated the day 21st at 6 p.m.

In the morning of the 22nd day, animals were weight and
killed by decapitation. After the abdominal cavity was
opened, the liver was dissected and weight. A sample from
the left major liver lobe was processed for histological
examination (fixed in Bouin's solution). The rest of liver
samples were stored at -80°C.

Liver histopathology, Perls'stain and 
immunohistochemistry
Bouin-fixed tissues were processed and sections (4-µm.)
were stained with Haematoxylin and Eosin and Masson's
trichrome. Liver cirrhosis was diagnosed according to the
criteria previously described [14,16]. Liver sections were
stained for iron detection with Perls' Prussian Blue
[25,26]. A semiquantitative score was given since 0 to 6
points: 0 when no staining was observed, as it was
observed in controls; 6 points were assigned to sections
with the maximal staining (full staining), that it was
observed in liver macrophages and fibrous septa from cir-
rhotic rats; 2–5 points when the staining were less extent.
Four fields from each preparation (×100 magnification)
were evaluated twice by two different observers. The arith-
metical mean of the two punctuations was taken as the
final score.

Immunohistochemical staining of iNOS in paraffin sec-
tions (4 µm) was performed using an avidin-biotin perox-
idase technique as described by Shu el al. [27], with some
modifications. The primary antibody anti-iNOS (1:500)
was obtained from Oxford Biomedical Research, INC, NS
01. The procedure for negative controls was performed by
omission of antigen retrieval part of the protocol. The pos-
itive staining was estimated blindly in the entire
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preparation by using a numerical scored from 1 to 8
points attending to the staining area and the intensity of
the color. The arithmetical mean of the two evaluations
was taken as the final score.

Analytical methods
Sample processing
Hepatic samples were homogenized in a Potter homoge-
nizer in 7 volumes of cold buffer (0.1 M Tris-HCl, 0.25 M
sucrose, pH= 7.4) containing 5 mM 2-mercaptoethanol,
0.5 µg/mL Leupeptin, 0.7 µg/mL pepstatin A and 100 µg/
mL PMFS. Fibrous parts and unbroken cells debris were
eliminated by centrifugion at 500 g for 5 min. Superna-
tans were used as the whole homogenate.

Analytical determinations on hepatic homogenates
MPO was measured by ELISA, using a commercial kit
from BIOXYTECH® (OXIS Int. Portland, OR, USA). Trans-
ferrin and ferritin were determined by immunoturbidim-
etry, using a Hitachi 710 autoanalyzer (Roche Diagnostic,
Basilea, Switzerland) and kits for clinical human, from the
same laboratory. MDA was assessed after heating samples
at 45°C for 60 minutes in acid medium. It was quanti-
tated by a colorimetric assay using LPO-586 (Bioxytech;
OXIS International Inc., Portland, OR, USA), which after
reacting with MDA, generating a stable chromophore that
can be measured at 586 nm (Hitachi U2000 Spectro;
Roche). Total proteins were assessed by Bradford's
method [28].

Determinations of iron and copper by Atomic Absorption 
Spectrophotometry
Representative samples (approximately 1 g. of each rat
liver) were collected, weighed and later dried in stove
(70°C) to constant weight. Iron and copper concentra-
tions were determined by flame atomic absorption spec-
trophotometry (Perkin Elmer 460, Uberlingen, Germany)
[25].

Statistical Analysis
Data were expressed as mean ± SEM. To analyse the
homogeneity among groups, Kruskall-Wallis test was
used, followed by multiple post-hoc comparisons using
Mann-Whitney U tests with Bonferroni adjustment. Any P
value < 0.05 was considered to be statistically significant.
Calculations were performed with SPSS program version
6.0 (SPSS Inc., Chicago, IL).

Results
Liver cirrhosis was histologically proven and ascites was
observed in all rats treated with CCl4.

Table 1 shows the values of parameters involved in oxida-
tive damage in hepatic homogenates. Compared with
healthy controls, untreated cirrhotic rats (CI group)
showed increased hepatic levels of the following varia-
bles: Fe (p < 0.01); transferrin and ferritin (p < 0.01); Cu
(p < 0.001); MPO and iNOS expression (p < 0.001). How-
ever, cirrhotic animals treated with IGF-I (CI+IGF group)
showed significant reductions in hepatic Fe and Cu con-
tents, ferritin, transferrin and MPO levels and iNOS
expression (p < 0.05 for all the parameters).

As shown in Figure 1, untreated cirrhotic rats (CI) have
significantly greater scores of iron (ferric iron) in the liver
using Perls' Prussian blue staining as compared with con-
trols (CO = 0.68 ± 0.11) and cirrhotic rats treated with
IGF-I (CI = 5.50 ± 0.22; CI+IGF = 1.70 ± 0.40; AU, p <
0.01). As mentioned before, hepatic levels of iron,
assessed by atomic absorption spectrophotometry, were
also significantly higher in CI group compared to controls
and CI+IGF group (see Table 1). On the other hand,
hepatic levels of copper were also increased in untreated
cirrhotic rats and returned to normal in CI+IGF group.

Figure 2 shows the immunohistochemical expression of
iNOS that was increased in CI group compared both to
control and CI+IGF groups.

Table 1: Hepatic levels of some parameters involved in oxidative damage in the three experimental groups.

Control group 
(CO, n = 10)

Untreated cirrhotic rats 
(CI, n = 10)

Cirrhotic rats treated with IGF-I 
(CI+IGF, n = 10)

Fe (µg/mg protein) 2.74 ± 0.19 12.87 ± 1.90** 6.80 ± 1.10&

Cu (µg/mg protein) 160 ± 5 1626 ± 678*** 500 ± 258&

Ferritin (ng/mg prot) 32.60 ± 3.80 97.60 ± 12** 67.70 ± 11.30&

Transferrin (µg/mg protein) 8.46 ± 1.05 10.96 ± 0.98** 8.36 ± 0.36&

MPO(ng/mg protein) 1.02 ± 0.02 1.25 ± 0.04** 1.06 ± 0.07&

iNOS (AU) 1.20 ± 0.64 5.53 ± 0.54*** 2.88 ± 0.68&

&p < 0.05 between CI and CI+IGF groups; **p < 0.01 and ***p < 0.001 CI vs CO groups; AU = arbitrary units
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In order to find a relationship between the studied param-
eters and oxidative liver damage, MDA levels, an index of
lipid peroxidation, were evaluated [29]. Hepatic levels of
MDA (nmol/mg protein) were increased in untreated cir-
rhotic rats compared with control group (CI = 1.741 ±
366; CO = 0.565 ± 0.030; p < 0.05) as it was previously
reported in similar protocols [14,16]. This marker of lipid
peroxidation was again reduced in CI+IGF (0.99 ± 0.11
nmol/mg protein, p = ns vs controls). A significant direct
correlation was found between hepatic iron and hepatic
MDA levels (see Figure 3, r = 0.857 p < 0.001). In addi-
tion, MPO correlated with hepatic levels of iron (r =
0.719, p < 0.001), iron content with hepatic ferritin (r =
0.656, p < 0.001) and hepatic levels of Cu with MDA
(0.649 p < 0.01).

Perl's Prussian Blue staining for ferric iron (original magnifica-tion ×150) in the liver of an untreated cirrhotic rat (CI group) and a cirrhotic animal treated with IGF-IFigure 1
Perl's Prussian Blue staining for ferric iron (original magnifica-
tion ×150) in the liver of an untreated cirrhotic rat (CI 
group) and a cirrhotic animal treated with IGF-I. The CI 
preparation was scored as 3 points (see Methods) and the 
section from CI+IGF group was scored with 1 point. No 
staining was found in control group (CO).

Immunostaining for iNOS in liver from: A, healthy control group (CO); B, untreated cirrhotic group (CI); C, cirrhotic animals treated with IGF-I for three weeksFigure 2
Immunostaining for iNOS in liver from: A, healthy control 
group (CO); B, untreated cirrhotic group (CI); C, cirrhotic 
animals treated with IGF-I for three weeks. An increased 
iNOS immunoreactivity was observed in hepatocytes from 
CI group, compared to controls and CI+IGF groups. These 
two pictures (B and C) correspond to two animals from each 
cirrhotic group that presented the most severe cirrhosis. 
Although in this section (C, CI+IGF) from a series with 
decompensated cirrhosis can be observed thick collagen 
septa, it is also clear the hepatoprotective effect of the IGF-I-
therapy versus untreated cirrhotic group (B).
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Discussion
These results show that the treatment with low doses of
IGF-I induces a reduction of all studied parameters
involved in oxidative damage mechanisms in this model
of cirrhosis. These findings support the hepatoprotective
and antifibrogenic effects previously reported [14,16].
This study also provides evidence for the involvement of
oxidative stress in the cell injury occurring in CCl4-
induced cirrhosis associated with iron and copper over-
load and an increase of myeloperoxidase and iNOS
expression.

It is well known that iron and copper promote oxidant
forces [17,18,21,30]. Oxidant stress is considered present
when there is either an overproduction of free radicals or
a significant diminution in antioxidant defenses, the
result of either being excessive levels of free radicals
[29,31]. In both iron and copper storage disorders, gener-
ation of free radicals and depletion of antioxidants may be
critical factors determining the intensity of liver injury
[18,19,30,31]. In a previous work we showed that antioxi-
dant enzymes (superoxide dismutase, SOD, Glutathione
peroxidase, GSHPx, and catalase) were reduced in the
liver of cirrhotic animals and improved by low doses of
IGF-I administration [14]. Of interest, in the present study
we demonstrate that hepatic levels of iron and copper
metals (both involved in oxidative damage), increased in
untreated cirrhotic rats, reverted to normal levels after
IGF-I treatment.

Free iron (or low molecular iron or chelatable iron pool)
facilitates the decomposition of lipid hydroperoxides
resulting in lipid peroxidation and induces the generation
of OH radicals and also accelerates the nonenzymatic oxi-
dation of glutathione to form O2*- radicals [18,19,30,32].
The direct and significant correlation between lipid perox-
idation and hepatic iron content presented here provides
new evidence of the relationship between these
parameters.

Most of the body's iron is tightly bound to transferrin,
entering cells via receptor-mediated endocytosis. Transfer-
rin avidly binds 2 moles of Fe3+ per mole of protein [32].
Normally the average of transferrin iron saturation is
about one third of the full capacity, thereby ensuring that
there is virtually no free iron circulating in the extracellu-
lar fluids. At pH 7.4, the iron-transferrin complex does not
participate in the Fenton reaction. Under more acidic con-
ditions, the complex breaks down with release of iron.
This is of important physiological relevance, since the
iron-transferrin complex, within endocytotic vesicles, is
subjected to an acidic environment (pH 5–6). Intracellu-
lar iron released from transferrin is rapidly incorporated
into ferritin, minimizing its inherent toxicity [17,30,31].
Iron can be released from the ferritin within the cell by a
number of factors that occur in inflammation: acidic pH,
proteolysis, myeloperoxidase, NO, O2*-, etc. [33].
Enhanced degradative proteolysis, which also occurs in
oxidative stress, may lead to proteolytic modification of
ferritin, causing an increase in cellular iron. Although in
this study free iron could not be quantified, all of the fac-
tors certainly involved in inducing an increase of free iron
pool appeared elevated in untreated cirrhotic rats (MPO,
iNOS, Cu,...) and returned to normal levels after IGF-I-
treatment.

In the present study, we have found that hepatic transfer-
rin and ferritin levels increased in cirrhotic rats with a par-
allel rise in iron deposition, whereas in cirrhotic rats
treated with IGF-I all the above-mentioned parameters
appeared diminished (see Table 1 and Figure 1).

High serum ferritin levels and hepatic iron storage have
also been reported in hepatitis B virus and hepatitis C
virus-related chronic hepatitis and alcoholic liver disease
[26,34,35]. It has also been shown that iron induces ferri-
tin biosynthesis [21,22,35-39]. A result here presented
shows a direct correlation between hepatic iron and ferri-
tin levels which is consistent with the over-mentioned
Authors statements.

In liver cirrhosis the increase in iron content is not a real
iron overload as in hemochromatosis, because iron is
stored mainly inside the macrophages [40]. In agreement
with this data, the present work shows that the iron scores

Correlation between hepatic iron content and hepatic MDA levels, a marker of lipid peroxidation (Sperman r = 0.857, p < 0.001, two tails)Figure 3
Correlation between hepatic iron content and hepatic MDA 
levels, a marker of lipid peroxidation (Sperman r = 0.857, p < 
0.001, two tails).
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detected in this experimental model of cirrhosis were
found in Kupffer cells, as it is shown in Fig. 1.

Transferrin is mainly produced by the liver when hepatic
regeneration takes place, as occurs in cirrhosis [37,41,42].
Thus, the reported increase of transferrin in untreated cir-
rhotic animals could be due to regeneration. However,
cellular proliferation does not explain our findings,
because in a parallel study in this series we showed that
cellular proliferation (assessed by PCNA expression) was
higher in IGF-treated cirrhotic animals [15] than those
which showed lower hepatic levels of transferrin. There-
fore, the hepatoprotective effect of IGF-I in cirrhotic ani-
mals could be mediated partly by enhancing the
endogenous regenerative response, aimed al the restora-
tion of functional liver mass [14]. In the present work, the
described increase of transferrin in untreated cirrhotic ani-
mals seems to be a defensive response to the enhanced
iron content [17,18,21,22,32].

On the other hand, the mechanisms responsible for the
effects of IGF-I described in this article are not fully under-
stood. The beneficial effects of IGF-I could be a result of
many properties of this hormone that require further
investigation. The well known erythropoietic activity of
IGF-I [43,44] could even contribute to an extrahepatic uti-
lization of iron, decreasing its storage in the liver.

Hepatic copper overload leads to progressive liver injury
and eventually cirrhosis in Wilson disease and Indian
childhood cirrhosis [45]. Copper is absorbed into the
intestine and transported by albumin to the liver. Any
excess in copper levels is excreted into the bile mainly
through a lysosome-to-bile pathway. Hepatic copper
accumulation results from a reduction in the bile excre-
tion of copper, as occurs in patients with Wilson disease,
biliary obstruction, or other types of cholestasis [45]. Cir-
rhotic animals included in this protocol showed severe
cholestasis after receiving CCl4 for 30 weeks. As previously
reported [14] IGF-I-treatment induced a reduction in
cholestasis parameters (serum levels of bilirubin, alkaline
phosphatase and cholesterol). This may account for
explanation of the decreased copper hepatic content
revealed in the present work.

After hepatic injury, several kinds of cells (endothelial
cells, Kuppfer cells, and circulating platelets, neutrophils
and monocytes) are activated in the subsequent inflam-
matory response [23]. Free radicals produced mainly by
macrophages cause local tissue damage in inflammatory
conditions [23,31]. Neutrophil and monocyte activation
is a critical step in both the host defense system against
microorganisms and the inflammatory response. When
neutrophils are activated, they begin to produce
superoxide radicals (O2*-) and secrete myeloperoxidase

(MPO) [23]. The majority of the O2*- formed during this
respiratory burst is converted to the bactericidal oxidant
hypochlorous acid (HOCl) via a series of reactions cata-
lyzed by superoxide dismutase and MPO [23,29]. Numer-
ous MPO-expressing cells have been detected in fibrous
septa of human cirrhotic livers [46]. MPO has been iden-
tified as a component of human Kupffer cells [46]. The
same authors suggest that the oxidative damage resulting
from the action of MPO may contribute to acute liver
injury and hepatic fibrogenesis [46]. In our study, the
increase of MPO in cirrhotic animals and its decrease in
those treated with IGF-I suggests an anti-inflammatory
effect of this hormone.

Another result which deserves particular mention is that
iNOS expression was significantly lower in cirrhotic rats
treated with IGF-I compared to untreated cirrhotic ani-
mals. This finding is in accordance with those reported by
other groups [47-53]. However the versatility of this mol-
ecule, small changes in the experimental conditions or the
studied cell line can show results that seem to be an appar-
ently contradiction [54-58]. For example, in our experi-
ence, we did not find a similar response in early stage of
cirrhosis animals (data not shown). Probably, in early
stages of cirrhosis NO induces an improvement in paren-
chyma irrigation by vasodilatation, but in advanced liver
cirrhosis, where exist thick collagen septa, the increase of
NO results to lead enhancing oxidative damage by N-
derived radicals.

Conclusion
In conclusion, these results show that the hepatoprotec-
tive and antifibrogenic effect of IGF-I in rats with liver cir-
rhosis is associated with a significant reduction of the
hepatic levels of several parameters such as Fe, Cu, MPO,
iNOS, ferritin and transferring, all of them involved in
oxidative damage. In this work, iron and copper overload
have been demonstrated in the liver from rats with CCl4-
induced cirrhosis. The hepatic levels of both metals
diminished in cirrhotic animals treated with IGF-I. MPO
content, iNOS immunohistological expression and
hepatic ferritin and transferrin levels were increased in
untreated animals and returned to normal in cirrhotic ani-
mals treated with IGF-I.

The IGF-I effects described in the present study suggest
that a therapeutical approach targeted at lowering
oxidative stress marker levels could be effective in the
chronic liver disease.

Abbreviations
IGF-I, insulin-like growth factor-I; Fe, iron; Cu, cooper;
MDA, malondialdehyde; CO, control healthy group; CI,
untreated cirrhotic rats; CI + IGF, IGF-treated cirrhotic
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iNOS, inducible nitric oxide synthase; AU, arbitrary units.
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