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Abstract: The purpose of the study was to examine the subjective and objective potential advantage
for speech understanding in noise achieved by cochlear implant (CI) recipients when using the
autosensitivity control (ASC) input signal processing in combination with the adaptive dynamic
range optimization (ADRO). Eighteen subjects (8 females, 10 males, mean age 17.7 &+ 6.7) were
enrolled in a prospective open blinded comparative study between the ASC + ADRO condition vs.
the ADRO alone; 16 were sequential binaural and 2 were monoaural CI recipients. All patients had
been wearing their CI for at least 3 years, had no additional disabilities, had an age-appropriate
receptive and expressive language. Word recognition performances in noise (at signal-to-noise ratio
+5 dB HL) were significantly better in the ADRO-alone condition than in the ADRO + ASC condition.
(p = 0.03) These objective outcomes were in agreement with the subjective reports. No significant
difference was found in quiet. Our results, apparently in contrast with other reports in the literature,
suggest that the decision of adding the slow-acting automatic reduction in microphone sensitivity
provided by ASC should be limited to selected CI recipients.

Keywords: ADRO; ASC; CI; cochlear implantation; word recognition score; speech in noise; fitting

1. Introduction

Among the input signal pre-processing systems of cochlear implantations (CI), many
authors have described the benefits of the autosensitivity control (ASC) [1-6]. The ASC
was firstly introduced in the body-worn mini sound processor in 1989 by Cochlear Limited
(Lane Cove, Australia) [7] and was designed to improve speech recognition by keeping the
speech level in the comfortable loudness region in the presence of background noise [8]. It
is a slow-acting linear compression pre-processing system that acts after the amplification
performed by the speech-processor microphone; its purpose is to optimize the speech-
to-noise ratio, based on the unmodulated noise input (“noise floor”) of the surrounding
environment [9]. The ASC attack time is generally 2 second, and the release time is 8 second;
its long release time is used to reduce distortion and/or maintain a comfortable listening
level [10]. While the overall noise floor is continuously monitored by the slow dynamics of
ASC [8], any transient and abrupt increase in noise is not controlled by a slow system that
misses them completely [9]. As a result, every time an unexpectedly loud sound occurs in
the environment, the user perceives an uncomfortably loud stimulation [11,12]. In order to
reduce the effect of impulsive noises, another pre-processing automatic gain control (AGC)
has been implemented, called AGC-input, working together with ASC in a system defined
as “dual-loop AGC”. While ASC acts like a slow-acting AGC, the AGC-input is built to
react quickly in response to sudden loud noise, by reducing the gain of high-amplitude
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inputs and avoiding distortion and peak clipping [13,14]. Modulation rates and depths are
used to classify a signal as speech (i.e., 2-20 Hz) or noise.

The ASC is activated when the average noise floor increases exceeding the automatic
gain kneepoint, defined as the AutoSensitivity Break-Point (ASBP), that is, 57 dB SPL at
default settings [15]. Once the ambient noise floor reaches or exceeds 57 dB SPL, whether it
is impulsive or not, the sensitivity of the speech-processor microphone is slowly reduced
by the ASC according to the level of the background noise; this produces a subjective
reduction of loudness. In order to keep the noise floor at least 10-15 dB SPL below the
AGC kneepoint [16], the ASC shifts all the instantaneous input dynamic range (IIDR),
with a compression at a ratio of 1:1. Since the ASC acts as a linear amplifier with minimal
variations in the signal, it reduces the whole input gain and not only the high intensities
or the unmodulated sounds (Figure 1). This input signal pre-processing systems have
been implemented in the Smartsound® software by Cochlear (Cochlear Limited, Sydney,
Australia); however, the literature on the real-world joint benefit of AGCs to ASC in CI
recipients is still scarce, and some authors have raised the hypothesis that the ASC might
negatively affect the interaural level difference cues [6]. In our clinical practice, we noticed
that most of our patients frequently reported to prefer to use only the Adaptive Dynamic
Range Optimization (ADRO) alone rather than ASC + ADRO in noisy conditions. The aim
of this study was to examine the subjective and objective potential benefits or disadvantages
in speech recognition in noise by the use of ASC input signal processing.
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Figure 1. The autosensitivity control (ASC) input-output curves.

2. Materials and Methods

The study design is prospective, cross-sectional, observational blinded, focused on
the direct effect of ASC vs. ADRO. As in the study conducted with children by Rakszawski
B. et al. [17], the other preprocessing systems (Whisper®, Beam® and Zoom®) (Cochlear
Limited, Sydney, Australia) that modify the microphone directionality and adjust the
electrode gain in noise were deactivated.

Eighteen CI recipients (8 females and 10 males, mean age of 17.7 & 6.7 years, ranging
from 10 to 46 years) were randomly selected to be enrolled in the study. All subjects had
age-appropriate receptive and expressive language; none had additional disabilities.

The demographics and the main clinical features of the patients are reported in Table 1.
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Table 1. CI recipients demographic informations.

. . Device Implanted Ear Type of Age at 1st CI Age at 2nd Interaural .
Participants Age at Test Sex Configuration (Left[()Right/Both) Heal}',irrig Loss (Yeagrs of CI Use) s CI Equivalence Internal Device
1 16 M Bilateral B congenital 3 12 Yes CI24RE; CI24RE
2 13 M Bimodal L congenital 2 CI24RE
3 13 M Bilateral B congenital 2 11 No CI24RE; CI512
4 10 F Bilateral B congenital 1 8 Yes CI24RE; CI24RE
5 30 F Bilateral B congenital 21 8 No CI24RE; CI512
6 12 F Bilateral B congenital 1 10 Yes CI24RE; CI24RE
7 12 F Bilateral B acquired 8 3 Yes CI24RE; CI24RE
8 12 M Bilateral B congenital 2 9 yes CI24RE; CI24RE
9 47 M Bilateral B acquired 38 9 Yes CI24RE; CI512
10 8 M Bilateral B congenital 1 7 Yes CI24RE; CI24RE
11 8 M Bilateral B congenital 1 7 yes CI24RE; CI24RE
12 31 F Bilateral B congenital 18 13 No CI24RE; CI24RE
13 18 F Bimodal R acquired 16 CI512
14 14 M Bilateral B congenital 4 10 yes CI24RE; CI24RE
15 14 F Bilateral B congenital 2 12 No CI24RE; CI512
16 14 M Bilateral B congenital 1 13 Yes CI24RE; CI512
17 10 M Bilateral B congenital 1 9 yes CI24RE; CI24RE
18 36 F Bilateral B acquired 26 9 No CI24RE; CI24RE

M = males; F = female; R = right ear; L: left ear; B = both ear; CI24RE: Receiver-Stimulator Contour Advance.
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Participants had been implanted either with the Nucleus Freedom® (Cochlear Limited,
Sydney, Australia) or with a Nucleus 5 (C1512)® (Cochlear Limited, Sydney, Australia).
Sixteen were sequential binaural CI and two were monaural CI recipients. All patients
used a CP810® (Cochlear Limited, Sydney, Australia) speech processor. The mean duration
of CI use was 9 years, with a range from 2 to 13 years. All participants used the Advanced
Combination Encoder (ACE) speech coding strategy.

All CI recipients” maps were checked and re-programmed weekly for 6 to 8 weeks.
Minimum stimulation (T) levels were set at counted thresholds to ensure audibility, and
maximum stimulation (C) levels were set at loud but comfortable levels to ensure the
dynamic range was maximized. All participants in this study were programmed according
to this protocol after at least 3 years from their initial CI activation. All 22 electrode contacts
were active in all Cl recipients. A monopolar stimulation was selected for all patients, and
stimuli were trains of symmetric biphasic pulses of 25 msec duration; the duration of each
pulse-train was 600 msec. The rate of stimulation was 2400 pulses per second per channel
(pps/ch) in 70% of patients and 1200 pps/ch in the other 30%.

All participants were fitted with two maps: one map included ADRO and the other
map included ADRO + ASC; the patients were blinded to the allocation of the 2 maps and
were asked to use arbitrarily the two maps in everyday life and in the different environment
conditions (e.g., at home, in the pub, in the street traffic, at work). The sensitivity and
volume of the microphone were kept at default settings. All subjects should indicate
the map they considered most favourable and were interviewed regarding the subjective
qualitative differences between the two maps.

All subjects underwent a speech-tracking (ST) test in noise [18] by a trained audiologist
in a double-blind setting, since both the patient and the Audiologist were unaware of which
maps were tested. The ST takes four minutes to be accomplished; it is routinely used in
the fitting protocol to evaluate the effectiveness of hearing aids and CI, given its high
sensitivity in detecting any decline in hearing performance in intra-subject testing. It
also investigates the recognition of ongoing speech, and it can be used as a method of
training [19]. According to Burdo et al. [20], by counting the number of words repeated
correctly in a minute, the ST returns a word recognition score (WRS) in a free-running
connected discourse.

The speech material consisted in 20 sentences extracted from common written texts
chosen on the basis of the patient’s age; for adults, it consists of reading a newspaper
(level +3), delivered live-voice by a professional reader (always the same one in all sessions
with all patients), without lip-reading, in quiet and in noise, at a root mean square level of
65 dB (A) SPL, located 1 m directly in front of the proband (0° azimuth). The background
(“cocktail party”) noise was delivered from a second loudspeaker located 1 m behind the
patient’s shoulders (180° azimuth). Both signal and noise were adjusted in order to achieve
a constant signal-to-noise (SNR) ratio of +5 dB HL. [21] The speech tests were performed
in a sound-treated booth; live voice output was constantly monitored during the test, and
the loudspeaker output was checked with a sound meter before each patient’s session.

Statistical analysis. The Kolmogorov-Smirnov test was used to assess the normal-
ity of the examined variables. The paired Student’s t-test was carried out to determine
the statistical significance of average differences of scores obtained with the two maps.
A p-value of less than 0.05 was considered statistically significant. All statistics were cal-
culated using the Statistical Package for the Social Sciences 24.0 for Windows software
package (SPSS Inc., Chicago, IL, USA).

3. Results

No association was found between the outcomes obtained with the two maps (with
and without ASC) and the patients’ characteristics. WRS in quiet were not statistically
different between ASC + ADRO compared to ADRO alone.

Conversely, when the speech tracking task was performed with a masking noise, the
difference between ADRO + ASC and ADRO alone was significant: 15 out of 18 patients
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(83.34%) scored significantly better at WRS with the ADRO alone, as shown in Figure 2,
(p = 0.03) with an average improvement of 7 words per minute at a SNR of +5 dB HL. Patient
10 had the same WRS at SNR +5 dB HL with the two maps; only patient 11 and 12 had a
slightly higher number of correct answers at WRS with ADRO + ASC compared with ADRO
alone. However, they both indicated the ADRO as the preferred map, complaining about the
reduction of speech recognition in noise with ASC, due to a subjective significant lowering of
the speech signal intensity in noise.
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Figure 2. Word recognition scores for each CI recipient with the two settings.

From a subjective viewpoint, all patients reported discomfort when using the map
with ADRO + ASC in quiet and noisy environments. Only two CI recipients reported
to perceive sometimes a clearer voice with the ASC map in noise but, nevertheless, they
preferred and used more frequently the ADRO alone. The major complaints with the
ASC + ADRO map concerned the lowering of the loudness of speech and the perceived
fluctuations of the voice, which resulted in a significant subjective reduction of speech
comprehension in noise. On the contrary, all patients reported a certain improvement of
the SNR in a noisy environment with ADRO alone.

4. Discussion

In the literature, the ASC has been consistently reported to provide a 2-3 dB SNR
improvement of the 50% correct answers threshold either alone or in combination with
ADRO [22]. In this current open, double-blinded investigation, we failed to observe the
expected objective improvement in noise with ASC. Our results indicate that ADRO alone
allows a significantly better response, with an average improvement of 7 words per minute
at an SNR of +5 dB HL. The patients’ feedback was also in agreement with these objective
results, since all the patients reported preferring the map with ADRO alone in different
noisy environments. The major complaints reported by the patients when using ASC
resemble the disadvantages of the slow-acting compression systems applied in hearing
aids [23]:
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e Loudness perception that is not restored to “normal”. The output level typically
shifts only slightly from the input level; it may be difficult for the user to judge the
strength of sound sources. This may have adverse effects on the interpretation of
environmental sounds [24].

e  When the acoustic scene changes abruptly, such as when two voices with markedly
different levels alternate or when switching rapidly from a loud to a quiet environment
(e.g., when leaving a noisy room), the gain takes a second or two to reach the value
appropriate for the new situation. Hence, the aid may appear to become “dead” for a
while.

e  When trying to listen to one (target) voice in the presence of another (background)
voice, a normally hearing person can extract information about the target during the
temporal dips in the background, a process called “Listening in the dips” [25]. The
information in the dips may be at a relatively low level, especially when the mean
target level is lower than the mean background level. Hearing-impaired people have
a reduced ability to listen in the dips [23], partly because of reduced audibility of the
target speech in the dips [26]. A slow-acting system may be of limited benefit in this
situation because the gain does not increase significantly during brief dips in the input
signal; the gain applied during the dips is essentially the same as the gain applied
during the peaks in the input.

Conversely, as already reported by James et al. in 2003 [27], the results in quiet
observed in this study did not show any difference between the two maps. Therefore,
we tried to understand why introducing the ASC did not bring in our data the expected
objective improvement in noise.

First of all, according to the classification of the compression algorithms proposed
by Dillon [12], the ASC has a linear slow-acting dynamics with a medium compression
threshold. While fast-acting compression with a short release time ( <50 ms) such as the
AGC-input component is designed to follow the intensity variations encountered at the
phonemic or syllabic level of speech, longer release time (>200 ms), such as the ASC, is
used to reduce distortion and/or maintain a comfortable listening level; as a result, the
ASC is more useful when the change in gain is needed for larger intensity levels and
longer duration. For this reason, the improvement observed with ASC may differ in the
presence of other types of noise or environments (i.e., steady-state noise or diffuse noise
in a reverberant environment) [2], and different levels of speech and noise influence the
real-life outcomes.

As an example, a child’s everyday listening environment is much noisier than that en-
countered by the typical adult [28]. However, we noticed that the school background noise
reported in the ASC literature is much higher (dB Leq/day: 87.3 dBA to 95.5 dBA [29], with
a mean of 56 dBA during silent classroom reading to 73 dB A during group activities [28])
than the noise level found in our schools, which are more similar but lower than other
European reports (dB Leq/day 51.5 dBA + 4.5 dBA; ranging from 38 to 58 dBA) [30]. This
observation might confirm that the beneficial effect of ASC + ADRO is more evident in
diagnostic and real-life settings in which there are higher levels of constant surrounding
noise and higher root-mean-squared output level.

As far as Cls are concerned, previous research demonstrated that loudness grows as
an exponential function of the current intensity [31,32]. It is also known that the loudness
growth functions are dependent on pulse rate, with loudness growing faster at low pulse
rates [33,34]. Electrical thresholds and maximum acceptable loudness levels, in fact, vary
for stimulation rates between 250 and 2400 pps/ch on the absolute current level (CL)
value [35]. T and C levels decrease as a function of pulse rate but the slopes of the C level
vs. pulse rate functions are shallower than the slopes of the T level vs. pulse rate functions.
This ends up in a larger dynamic range at low pulse rates compared to that at high pulse
rates [36]. The sensitivity setting determines when the AGC will start acting and is aligned
to C-level stimulation [37].
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Another source of discrepancy in the research studies is represented by the range of
stimulation rates employed in different CI: it varies extensively from low (<500 pps/ch) to
moderate (500-1000 pps/ch) to high (>1000 pps/ch) [37]. Comparing the methods used in
this study to the others reported in the literature in which the beneficial effects of ASC was
very evident, we applied higher stimulation rates and lower C levels.

As already mentioned, ASC works like an “automatic input volume control com-
pressor”, modifying the T and C levels, as reported in Figure 1. Furthermore, the ASC
is considered a broadband strategy, since the manipulation of microphone sensitivity af-
fects the entire possible spectral range from 188 to 7938 Hz [28]. Several studies have
investigated the effect of increasing the compression ratio and shortening the compression
time constants on subjectively perceived sound quality, but the parameter of compression
channel bandwidth (or number of compression channels) has not received much attention
in the literature [38]. Therefore, mapping information (e.g., T/C levels, IDR/IID, number
of active electrodes and rate of stimulation) was generally not cited in initial studies and
shows large variations in more recent reports might significantly affect the results. In the
present study, C levels were set at a lower level and at a higher rate of stimulation than
those of other previous studies; thus, the addition of ASC might have led to a significant
reduction of loudness as described by our patients. This, in turn, would explain the signifi-
cant hearing threshold decline that negatively affects the CI recipient’s clinical performance;
a similar effect is observed when a microphone fails, causing a persistent reduction in the
sound processor sensitivity.

Objective measures for detecting C levels, such as those based on the stapedial re-
flexes [39], might provide more uniform data to evaluate the effect of these pre-processing
compressions.

5. Conclusions

Our data indicate that word recognition performances in noise of experienced CI
recipients were significantly better in the ADRO-alone than in the ADRO + ASC condition
(p = 0.03), both with objective measures and by subjective reports. The apparent contrast
with other reports in the literature may lie in the different parameters of the electrical
stimulation in the different trials.

Every CI recipient differs in T and C levels; similarly, each patient selects different
preferred microphone sensitivity, volume control, and noise-reduction settings.

We wish to stress the importance of reporting all these settings” data e.g., T/C levels,
IDR/ IID, number of active electrodes and rate of stimulation in order to compare the
results obtained by different research groups studying Smartsound® (Cochlear Limited,
Sydney, Australia) technologies.

6. Summary of Evidence

1. Among this study’s subjects, 83.34% of patients performed significantly better with
the ADRO alone rather than with ADRO + ASC.

2. The ASC is more useful when the change in gain is needed for larger intensity levels
and longer duration.

3. The sensitivity setting determines when the AGC will start acting and is aligned to
C-level stimulation. Mapping parameters (e.g., T/C levels, IDR/ 1ID, number of
active electrodes and rate of stimulation) might significantly affect the results.
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