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Abstract
This year's Congress of the International Society of Thrombosis and Haemostasis 
(ISTH)	was	hosted	virtually	from	Philadelphia	July	17–	21,	2021.	The	conference,	now	
held	annually,	highlighted	cutting-	edge	advances	in	basic,	population	and	clinical	sci-
ences of relevance to the Society. Despite being held virtually, the 2021 congress was 
of	the	same	scope	and	quality	as	an	annual	meeting	held	in	person.	An	added	feature	
of	the	program	is	that	talks	streamed	at	the	designated	times	will	then	be	available	on-	
line	for	asynchronous	viewing.	The	program	included	77	State	of	the	Art	(SOA)	talks,	
thematically	grouped	in	28	sessions,	given	by	internationally	recognized	leaders	in	the	
field.	The	SOA	speakers	were	invited	to	prepare	brief	illustrated	reviews	of	their	talks	
that were peer reviewed and are included in this article. The topics, across the main 
scientific	 themes	 of	 the	 congress,	 include	Arterial	 Thromboembolism,	 Coagulation	
and	 Natural	 Anticoagulants,	 COVID-	19	 and	 Coagulation,	 Diagnostics	 and	 Omics,	
Fibrinogen,	 Fibrinolysis	 and	 Proteolysis,	 Hemophilia	 and	 Rare	 Bleeding	 Disorders,	
Hemostasis in Cancer, Inflammation and Immunity, Pediatrics, Platelet Disorders, von 
Willebrand	 Disease	 and	 Thrombotic	 Angiopathies,	 Platelets	 and	 Megakaryocytes,	
Vascular	Biology,	Venous	Thromboembolism	and	Women's	Health.	These	illustrated	
capsules highlight the major scientific advances with potential to impact clinical prac-
tice.	Readers	are	invited	to	take	advantage	of	the	excellent	educational	resource	pro-
vided by these illustrated capsules. They are also encouraged to use the image in 
social media to draw attention to the high quality and impact of the science presented 
at the congress.
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Splanchnic vein thrombosis

Walter Ageno MD

For	references,	see	Di	Nisio	et	al.1

Anticoagulant Therapy for Splanchnic Vein Thrombosis: 
Summary of Suggested Treatment Strategies

(Adapted from Di Nisio et al JTH 2020)

Cirrhotic patients Other patients

Initial management: Therapeutic
dose LMWH
Primary treatment: Switch to 
VKAs or DOACs (depending on 
severity of liver dysfunction)

Initial management and primary
treatment: LMWH or DOACs.

Initial management and primary
treatment: DOACs

Duration: at least 3 to 6 months, 
consider indefinite if bleeding
risk acceptable

Remarks: Consider early variceal
screening and prophylaxis of 
high-risk varices

Cancer patients

Remarks: LMWH first choice in 
patients with endoluminal
gastrintestinal cancer or 
genitourinary cancer at high 
bleeding risk. Apixaban possible
alternative for primary
treatment 

Duration: at least 3 to 6 months. 
Consider indefinite if active
cancer and low bleeding risk

Remarks: LMWH and VKAs if
contraindications to or 
unavailability of DOACs. 
DOACs are not specifically
approved for splanchnic vein
thrombosis

Duration: 3 to 6 months. 
Consider indefinite if
unprovoked or persistent risk
factors and low bleeding risk
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Venous thromboprophylaxis  in the  intensive care unit

Yaseen Arabi MD

Prevention	of	venous	thromboembolism	in	critically	ill	patience	involves	multi-	modality	approach.	A	systematic	review	of	randomized	con-
trolled	trials	(RCTs)	demonstrated	that	early	mobilization	in	critically	ill	patients	was	associated	with	a	significant	reduction	in	deep	vein	thrombosis	
(DVT) (RR 0.16, 95% CI 0.06, 0.47).2	Avoidance	of	unnecessary	use	of	central	venous	catheters,	especially	in	the	femoral	vein,	is	an	important	
aspect	of	DVT	preventive	strategy.	One	RCT	found	that	subclavian	compared	to	femoral	venous	catheterization	in	critically	ill	patients	was	as-
sociated	with	a	significant	reduction	in	catheter-	related	thrombosis	documented	by	ultrasonographic	examination	(RR	0.09,	95%	CI	0.02,	0.36).3 
Pharmacologic	thromboprophylaxis	with	unfractionated	or	low-	molecular-	weight	heparin,	compared	to	no	thromboprophylaxis,	also	reduces	the	
incidence of DVT (RR 0.51, 95% CI 0.41, 0.63).4 Data on the effectiveness of pneumatic review that included observational studies demonstrated 
lower DVT with intermittent pneumatic compression (RR 0.34, 95% CI 0.19, 0.60).5
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Myeloprol iferat ive neoplasm- associated thrombosis

Tiziano Barbui

For	references,	see	Barbui	et	al,6 Tefferi et al,7 and De Stefano et al.8
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Venous thrombo-  embol ism; r isk in premenopausal  women:  Quest ions st i l l  unanswered

Suzanne Cannegieter MD PhD

VTE:	Venous	thrombo-	embolism;	PCOS:	Polycystic	ovary	syndrome
For references, see Samuelsson et al,9 Scheres et al,10 and Roach et al.11
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Primar y thromboprophylaxis:  Who,  what ,  and how?

Marc Carrier MD, MSc, FRCPC

Venous	thromboembolism	(VTE)	is	associated	with	significant	morbidity,	mortality	and	healthcare	utilization	among	ambulatory	patients	with	
cancer initiating systemic chemotherapy. Direct oral anticoagulants and low molecular weight heparins have been shown to be safe and effec-
tive	to	prevent	cancer-	associated	thrombosis	in	this	patient	population.12	Hence,	the	use	of	primary	thromboprophylaxis	should	be	considered	
to	decrease	the	risk	of	VTE	and	tailored	to	minimize	the	risk	of	bleeding.12	Patients	should	be	educated	about	signs	and	symptoms	of	cancer-	
associated thrombosis and stratified according to their underlying risk of VTE and bleeding for potential consideration of primary thromboprophy-
laxis.	Multidisciplinary	approaches	(nurses,	pharmacists	and	physicians)	are	successful	models	for	primary	thromboprophylaxis	implementation	in	
ambulatory patients with cancer initiating systemic chemotherapy.13

DOAC:	Direct	oral	anticoagulants;	KS:	Khorana	Score;	LMWH:	Low	molecular	weight	heparin;	VTE:	Venous	thromboembolism.
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Molecular  analysis  of  vascular  gene expression

Audrey C. Cleuren

Vascular	heterogeneity,	particularly	in	the	endothelial	cell	(EC)	compartment,	has	long	been	recognized	yet	difficult	to	study	given	the	poor	
accessibility	of	these	cells.	(A)	The	Ribotag	mouse	model14	enables	evaluation	of	gene	expression	profiles	directly	in vivo	in	a	cell-	specific	manner	
via	translating	ribosome	affinity	purification	(TRAP).	(B)	EC-	TRAP	combined	with	high-	throughput	RNA	sequencing	provides	an	accurate	in vivo 
snapshot	of	organ-	specific	endothelial	gene	expression	programs.	In	addition	to	the	extensive	EC	heterogeneity	across	organs	under	physiologic	
conditions	shown	here,	our	data	also	showed	vascular	bed-	specific	EC	reactivity	after	lipopolysaccharide-	induced	endotoxemia	(ref15).
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Hemostat ic  management of  postpar tum hemorrhage

Peter Collins

Postpartum	hemorrhage	(PPH)	is	caused	by	obstetric	complications	but	may	be	exacerbated	by	impaired	hemostasis.	Hypofibrinogenemia	is	
the commonest coagulopathy associated with PPH and occurs early in abruptions and amniotic fluid embolism. Depletion of other coagulation 
factors, thrombin generation and platelets is uncommon until large bleeds have occurred.16

Early hypofibrinogenemia predicts progression to severe hemorrhage, however, laboratory Clauss fibrinogen is usually too slow to be clin-
ically	useful	during	rapid	bleeding.	Point-	of-	care	viscoelastometric	hemostatic	assays	(VHA)	allow	surrogate	measurement	of	fibrinogen	and	
predict severe outcomes.17	A	double	blind	RCT	showed	that	fibrinogen	>2	g/L	is	adequate	for	hemostasis	during	PPH.18

An	all	Wales	quality	improvement	programme	involving	60,000	deliveries	combined	accurate	measurement	of	blood	loss	with	VHAs	to	
guide	early	fibrinogen	replacement.	It	was	associated	with	reduced	massive	PPH	(≥	2500	ml)	by	23%,	decreased	red	cell	and	FFP	transfusion	
by 22% and 58%, respectively and reduced severe anemia (Hb <80 g/L) by 33%.
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Mechanist ic  ins ight s from 3-  D visual izat ion of  thrombus formation in cancer

Laurence Panicot- Dubois

For references, see Carminita et al19	and	Palacios-	Acedo	et	al.20
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Plate let s:  Inf luenza and other v ira l  responses

Jane E. Freedman, MD

Growing	mechanistic	and	clinical	data	demonstrate	 that	platelets	perform	various	 immune	functions	during	 infection.	A	platelet	can	form	
heterotypic aggregates with various types of immune cells including monocytes, neutrophils, eosinophils, and dendritic cells. Platelets participate 
in	innate	and	adaptive	immunity	and	act	as	immune	cells	during	viral	infections.	Platelets	may	internalize	ssRNA	viruses	including	influenza,	HIV,	
severe	acute	respiratory	syndrome	coronavirus-	2	(SARS-	CoV-	2)	and	encephalomyocarditis.	For	some	viruses,	this	internalization	leads	to	lysosomal	
degradation	of	the	viral	coat	and	activation	of	the	pathogen-	associated	molecular	pattern	receptor,	TLR7	(Toll-	like	receptor	7).	Activation	of	TLR7	
by	influenza	also	results	in	C3	(complement	3)	release	from	platelets	that	leads	to	complement	cascade	activation	and	release	of	neutrophil	DNA	
which can contribute to aggregates.
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Hemostat ic  phenot ypes and genet ic  d isorders

Kathleen Freson

More than 60 genes have already been discovered as cause of an inherited platelet disorder (IPD).21	Many	of	these	genes	are	widely	expressed	
and	are	associated	with	broader	clinical	symptoms	than	causing	solely	a	bleeding	tendency.	In	this	presentation	examples	will	be	discussed	on	how	
next	generation	sequencing	has	proven	successful	with	its	implementation	in	clinical	diagnostics22,23 and gene discovery.23 Still at least half of the 
IPD	patients	receive	no	genetic	diagnosis.	Ideas	will	be	put	forward	on	how	to	tackle	the	challenges	ahead	that	include	discoveries	in	the	non-	
coding genome space and setting up improved disease models for IPD that will allow (automated) deep phenotyping.
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Func t ional  d isulf ide bonds in hemostasis  and thrombosis

Philip Hogg PhD

For	references,	see	Butera	and	Hogg,24 Hogg25
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Dispar it ies in pregnancy outcomes:  Dif ferences by condit ion and communit y

Andra H. James MD

Both	 the	maternal	and	 fetal	outcomes	of	pregnancy	vary	according	 to	a	pregnant	woman’s	community	and	her	condition.	The	most	dev-
astating	outcome	is	the	death	of	a	month.	On	2017,	there	were	approximately	295,000	maternal	deaths	with	dramatic	differences	in	maternal	
mortality	based	on	the	region	of	the	world,	the	country,	and	women’s	underlying	conditions.26 Worldwide, the leading cause of maternal death 
is	hemorrhage.	Ninety-	nine	percent	of	maternal	deaths	and	99%	of	those	due	to	hemorrhage	occur	in	low-		or	middle-	income	countries.	Whether	
a hemorrhage originates from inside the uterus (80%), from laceration or incisions (20%), or from an underlying coagulopathy (less than 1%), and 
acute acquired coagulopathy will evolve unless the hemorrhage is not available, because besides the usual obstetric measures, blood, hemostatic 
medication	and	hematologic	expertise	are	necessary	to	save	mothers’	lives.27,28
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Specif ic it y of  ADAMTS13 and regulat ion of  ADAMTS13 func t ion

Colin A. Kretz
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Pregnancy,  postpar tum and per iods:  Current chal lenges in the management of  women with 
Von Wil lebrand disease

Michelle Lavin MB, PhD, FRCPath

Women	are	disproportionately	impacted	by	Von	Willebrand	disease	(VWD)	due	to	gynaecological	bleeding.	Heavy	menstrual	bleeding	(HMB)	
is the most frequently reported and highest scoring bleeding symptom for women with VWD yet optimal treatment strategies remain uncertain.29 
In pregnancy, there remains controversy regarding the ideal therapeutic plasma Von Willebrand factor (VWF) target at delivery. While thresholds 
similar	to	surgery	are	often	utilized,	this	approach	fails	to	account	for	the	physiological	pregnancy-	induced	increase	in	plasma	Von	Willebrand	factor	
(VWF)	levels,	with	median	plasma	VWF	levels	>200–	250	IU/dl	in	healthy	women	at	delivery.30 The limitations of current approaches for women 
with VWD are reflected in primary postpartum haemorrhage (PPH) rates, which remain increased even when replacement therapy is used.31

Postpartum, as plasma VWF levels return, to baseline women with VWD are at a markedly increased risk of secondary PPH following dis-
charge.	As	women	with	VWD	may	be	normalized	to	HMB,	recognition	of	secondary	PPH	may	be	delayed	or	missed.
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The impac t of  aging and inf lammation on plasma Von Wil lebrand fac tor levels

Frank W.G. Leebeek

In the general population Von Willebrand factor (VWF) levels rise with aging, especially above the age of 40.32	As	is	shown	in	the	figure,	several	
mechanisms have been suggested to be responsible for this increase. This may be increased release of VWF from the endothelium, or decreased 
VWF clearance. Mechanisms contributing to increase of VWF are endothelial dysfunction, comorbidities (hypertension, diabetes), weight gain, 
atherosclerosis and inflammation.32,33	This	age-	related	increase	is	also	observed	in	patients	with	type	1	Von	Willebrand	disease	(VWD)	and	may	
result in (near) normal levels in elderly VWD patients.34 It is still disputed whether this rise is associated with attenuation of the bleeding tendency. 
Results of an observational study on bleeding symptoms over one year have shown that bleeding was not reduced in type 1 VWD patients above 
the age of 65 compared to those <65 years, however prospective data are still lacking.34
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Struc tura l  basis  of  antagonizing the v itamin K cata ly t ic  cycle for  ant icoagulat ion

Weikai Li PhD

The	catalytic	cycle	of	vitamin	K	epoxide	reductase	(VKOR)	and	inhibition	by	vitamin	K	antagonists	are	accompanied	with	redox-	state	and	con-
formation changes. The hemisphere (pink) and cylinder (grey) illustate VKOR luminal and transmembrane domain, respectively. VKOR reduces vita-
min	K	epoxide	(KO)	to	quinone	(K)	and	then	to	hydroquinone	(KH2).	A	catalytic	cysteine	forms	covalent	and	charge-	transfer	complex	with	KO	and	
K,	generating	mercapto	adducts	of	3-	hydroxyl	K	(S-	KOH)	and	K	(S-	KH),	respectively.	Their	binding	induces	a	closed	conformation	that	juxtaposes	
all	cysteines	(SH	or	S-	S)	for	unimpeded	electron	transfer	to	reduce	the	mercapto	adduct.	VKOR	becomes	fully	oxidized	and	changes	to	an	open	
conformation	that	releases	the	reaction	product.	Warfarin	competes	with	the	substrates	for	the	partially-	oxidized	enzyme.	Unlike	the	substrates,	
warfarin	binds	also	to	the	fully-	oxidized	enzyme	and	removes	it	from	the	enzyme	pool.	The	bound	warfarin	locks	HsVKOR	in	both	redox	states	into	
a closed conformation.35-	37
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Pathogenic fac tor XI I  mutat ions:  Form determines dysfunc t ion

Coen Maas
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Plate let  vesic les communicate with the bone marrow dur ing inf lammation

Kellie Machlus PhD

During	inflammation,	platelets	are	activated	and	release	extracellular	vesicles	(EVs).	These	EVs	enter	the	bone	marrow	(BM),	where	they	bind	
to	resident	BM	cells	including	megakaryocytes	(MKs).	These	plasma-	originating	EVs	help	communicate	changes	in	the	circulation	directly	into	the	
BM,	and	may	contribute	to	BM	reprogramming	during	inflammation.
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Current and future haemophi l ia  t reatment opt ions:  Cl in ic ian perspec t ive

Michael Makris MD

Current Future2021

Standard half-life
• FVIII/FIX – Plasma/recombinant

Extended half-life
• FVIII- Fc, PEG
• FIX- Fc, Albumin, PEG

Bypassing agents
• rFVIIa
• Activated PCC

Bispecific antibody

Extended half-life
• Intravenous: FVIII-Fc+XTEN
• Subcutaneous: FVIII, FIX, FVIIa

Bispecific antibodies
• FIX/X mimetics
• Vs other molecules

Rebalancing therapies
• Antithrombin siRNA
• Anti-TFPI
• Anti-APC

Gene therapy
• AAV
• Lentivirus
• Lipid nanoparticles

Shielded spheres

HEMOPHILIA TREATMENTS
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Cerebral  venous s inus thrombosis

Ida Martinelli MD, PhD

Abbreviations:	CVST,	cerebral	venous	sinus	thrombosis;	CT,	computed	tomography;	MRI,	magnetic	resonance	imaging
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Fibr in (ogen)-  endothel ia l  ce l l  interac t ions in inf lammation

Leonid Medved, PhD

Two	of	the	proposed	fibrin(ogen)-	dependent	pathways	of	leukocyte	transmigration	are	based	on	the	bridging	mechanism.	The	first	one	sug-
gests	that	fibrinogen	bridges	 leukocytes	to	the	endothelium	through	the	 interaction	with	endothelial	 receptor	 ICAM-	1	and	 leukocyte	 integrin	
Mac-	1	to	promote	leukocyte	transmigration41 (left panel). The second one suggests that fibrin degradation product E1 fragment promotes leuko-
cyte	transmigration	by	bridging	leukocytes	to	the	endothelium	through	the	interaction	with	endothelial	VE-	cadherin	and	leukocyte	integrin	CD11c	
(left panel), and the β15-	42	fragment	inhibits	this	interaction	and	thereby	inflammation.42 Our studies revealed that interaction of fibrin with the 
endothelial	VLDL	receptor	promotes	transendothelial	migration	of	leukocytes	through	the	fibrin-	VLDL	receptor-	dependent	pathway	(left	panel),	
identified two monoclonal antibodies inhibiting this interaction, and clarified the molecular mechanism underlying this pathway and the inhibitory 
role of β15-	42	in	this	pathway43	 (right	panel).	These	antibodies	exhibited	significant	anti-	inflammatory	properties	and	may	represent	potential	
therapeutics	for	treatment	of	fibrin-	dependent	inflammation.

E1 fragment 

βN-domains

βN-domains (β15-64)

Fibrin
D region D regionE region

β15-42 fragment

Fibrinogen • Transendothelial migration of leukocytes is a key step in their recruitment to
sites of inflammation.

• Fibrin(ogen) and its degradation products promote leukocyte transmigration and
thereby inflammation by interacting with various endothelial cell receptors.

• Interaction of fibrin and its degradation product E1 fragment with the endothelial
VLDL receptor (VLDLR) and VE-cadherin occurs through fibrin βN-domains.

• Three pathways of fibrin(ogen)-dependent leukocyte transmigration have been
proposed: 1. (Mac-1)-Fibrinogen-(ICAM-1)-dependent

2. (CD11c)-E1 fragment-(VE-cadherin)-dependent
3. Fibrin-VLDL receptor-dependent

ICAM-1

Fibrinogen

Leukocyte
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E1 fragment
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Molecular mechanism of Fibrin-VLDLR-dependent pathway
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Fibr in (ogen)  in human disease

Marguerite Neerman- Arbez PhD

With	fibrin,	produced	by	thrombin-	mediated	cleavage,	 fibrinogen	plays	 important	roles	 in	many	physiological	processes.44,45 Formation of 
a	stable	blood	clot,	containing	polymerised	and	cross-	linked	fibrin,	is	crucial	to	prevent	blood	loss	and	drive	wound	healing	upon	injury.	Balance	
between clotting and fibrinolysis is essential. Several diseases are the consequence of altered levels of fibrinogen, others are related to structural 
properties of the molecule. Inflammation leads to elevated circulating levels of fibrinogen and hypercoagulability, a risk factor for cardiovascular 
disease (CVD). The source and localisation of fibrin(ogen) also has clinical implications. Fibrin(ogen) has been associated with cancer development 
and progression. While fibrin(ogen) is implicated in defense against pathogens, in other settings it enhances bacterial virulence.
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Von Wil lebrand fac tor modulates adhesion of  malar ia-  infec ted er y throcy tes to endothel ia l 
ce l ls

James S. O’ Donnell

Markedly	elevated	plasma	VWF:Ag	levels	and	VWF	propeptide	levels	are	present	in	children	with	severe	Plasmodium falciparum malaria, con-
sistent	with	acute	endothelial	cell	 (EC)	activation	and	Weibel	Palade	body	(WPB)	secretion.46 Higher VWF levels correlate with worse clinical 
outcomes.	Pathological	ultra-	large	(UL-	)	VWF	multimers	are	also	a	feature	of	cerebral	malaria.47	In	vitro	studies	have	demonstrated	that	UL-	VWF	
strings	on	the	surface	of	activated	EC	can	recruit	platelets.	Subsequently,	the	platelet-	decorated	UL-	VWF	strings	can	then	tether	malaria-	infected	
red	blood	cells	(IRBC)	under	physiological	shear	stress.48 In particular, P. falciparum	erythrocyte	membrane	protein-	1	(PfEMP-	1)	on	the	IRBC	inter-
acts	with	platelet	CD36.	Collectively,	these	findings	support	the	hypothesis	that	VWF	plays	role	in	regulating	microvascular	sequestration	of	IRBC	
in children with cerebral malaria.

Image	created	with	BioRender.com.
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Von Wil lebrand Fac tor s truc ture- func t ion in the regulat ion of  cancer metastasis

Jamie O'Sullivan

For reference, see Patmore et al49
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Pulmonar y embol ism in chi ldren

Madhvi Rajpurkar MD

For	references,	see	Biss	et	al,50 Carpenter et al,51 Rajpurkar et al52
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Intermolecular  interac t ions that s tabi l ize mult imeric  F XII I

Verena Schroeder PhD

For references, see Handrkova et al,,53 Li et al,54 Schroeder et al55

Intermolecular Interac�ons that Stabilize Mul�meric FXIII

What holds the A subunits together? What holds the A and B subunits together?

B

A A

AP

AP

B

Domains of the A subunits: Ac�va�on pep�de (AP), 
β-sandwich, core domain, β-barrel 1, β-barrel 2

The ac�va�on pep�de, 
and in par�cular the 
sequence 8FGGR12R, 
stabilizes the FXIII A2
dimer [1]

Four intersubunit
interac�ons located at 
the dimer interface 
stabilize the A2 dimer [2]:
Arg11 - Asp343
Lys113 - Asp367
Lys257 - Glu401
Arg260 - Asp404

In the B subunits, the N-terminal Sushi domains 1 and 
2 are responsible for binding to the A subunits, 
stabilizing the FXIII A2B2 tetramer

In the A subunits, β-barrel 1 and β-barrel 2 domains 
bind to the B subunits

B subunit 
consis�ng of 
10 Sushi 
domains

Figures modified from [3] where also further references can be found



30 of 34  |     KRISHNASWAMY et Al.

Fac tor VI I I  s truc ture:  Determinant s of  inhibitor  development

Paul Clinton Spiegel, Jr. PhD

Hemophilia	A	is	an	X-	linked	bleeding	disorder	that	affects	1	in	5,000	males	worldwide	due	to	a	deficiency	in	blood	coagulation	factor	VIII	(fVIII),	
an	essential	protein	for	the	proteolytic	activation	of	factor	X	to	Xa.	Through	the	past	20	years,	the	structure	and	function	of	fVIII	has	come	into	
focus.	New	atomic-	level	structural	findings	illustrate	a	detailed	domain	organization	of	fVIII	structure,56	novel	localized	and	domain-	scale	confor-
mational	changes,	the	molecular	nature	of	the	fVIII/Von	Willebrand	factor	complex,	and	pathogenic	antibody	epitopes.57,58 Further structural char-
acterization	of	fVIII	circulatory	complexes	will	uncover	the	fundamental	basis	for	its	procoagulant	cofactor	function	and	may	aid	in	next-	generation	
bioengineering	efforts	to	improve	fVIII	stability	and	circulatory	half-	life	while	minimizing	its	immunogenicity.	These	efforts	may	prove	vital	for	both	
fVIII replacement and gene therapy approaches.

Coagulation Factor VIII: Structure, Function, Inhibition

A2 domain interfacial interactions

C1 domain C2 domain

C2 domain large-scale 
conformational changes, 
membrane binding implications

Characterization of anti-fVIII inhibitor epitopes
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Do plate let  transfusions work?

S.J. Stanworth and Laura Green

A	number	of	randomised	trials	have	evaluated	the	risk-	benefit	ratio	for	platelet	transfusion	for	prophylaxis	and	treatment	of	major	bleeding.	
Trials	in	some	settings	have	indicated	evidence	of	harm	with	more	‘liberal’	use	of	platelets,59 although a benefit to improve outcomes has also been 
found in major bleeding.60 Our understanding of donor, storage and processing characteristics on outcomes following platelet transfusion have 
been inadequately investigated.61 We need a better understanding of how platelet transfusions affect both haemostasis and inflammation in pa-
tients, to indicate which patients really require platelet transfusions.

Pa�ent with low 
platelet count / 
bleeding

• Platelet content / donor characteris�cs
• Gene�c factors e.g., platelet reac�vity
• Processing and storage age

Infec�on Angiogenesis
Tissue repair
Wound healing

Primary 
haemostasis

Inflamma�on
Neuro-inflamma�on

Donor and 
Dona�on variability

Platelet physiology 
and func�ons

Pa�ent factors
and bleeding

Benefits of platelet transfusion:
• Decreased risk of bleeding
• Decreased complica�ons/ 

organ dysfunc�on
• But variable/ limited  efficacy 

e.g., cold-stored platelets, 
autologous transplanta�on

Harm of platelet transfusions:
• Mortality
• Long-term recovery
• Transfusion reac�ons 

(platelets most commonly 
implicated blood 
component)

• Different causes of 
thrombocytopenia

• Count provides no 
informa�on on 
platelet func�on

transfuse Randomised trialMonitor 
efficacy



32 of 34  |     KRISHNASWAMY et Al.

Prothrombotic f ibr in c lot  proper t ies and vascular  d iseases

Anetta Undas MD, PhD

Fibrin	clot	structure	characterized	by	fiber	diameter	and	pore	size	differs	between	healthy	persons	and	patients	with	thromboembolic	diseases.	
Prothrombotic fibrin clot phenotype is associated with faster formation of denser fibrin mesh, relatively resistant to lysis, as reflected by prolonged 
clot lysis time (CLT). Increased plasma fibrin clot density has been reported in patients with prior or acute thromboembolic events.
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